COSAM » COSAM Faculty » Chemistry and Biochemistry » Doug Goodwin

Doug Goodwin
Chemistry and Biochemistry
Associate Professor

Research Areas: Biochemistry

Office: 361 Chemistry Building

Address:
179 Chemistry Building
Auburn, AL 36849

Phone: (334) 844-6992
Fax: (334) 844-6959
E-Mail: goodwdc@auburn.edu

Research Page


Education

Ph.D., Utah State University
1996
B.A., University of Northern Colorado
1991


Professional Employment

Associate Professor, Department of Chemistry and Biochemistry, Auburn University
2002 - present
Assistant Professor, Department of Chemistry and Biochemistry, Auburn University
1999 - 2005
Post-doctoral Fellow, Vanderbilt University
1996 - 1999


Honors and Awards

College of Sciences and Mathematics Dean’s Award for Outstanding Advisor
2017
AU Student Government Association Outstanding Faculty Member Award
2015
College of Sciences and Mathematics Faculty Service/Outreach Award
2015
American Chemical Society Outreach Volunteers of the Year
2014
College of Sciences and Mathematics Outstanding Teacher Award
2011
Alpha Epsilon Delta Honorary National Membership
2011
Golden Key National Honor Society Teaching Award
2001
George H. and Billie Bush Emert Scholar
1996
Thomas F. Emery Memorial Research Scholar
1995
Willard Eccles Family Foundation Fellow
1992-1995


Research and Teaching Interests

Biochemistry:  Structure and function of heme-dependent enzymes

Our laboratory is interested in the relationship between an enzyme’s structure and its catalytic function in biological systems.  In particular, we focus on enzymes that require the organometallic cofactor heme in order to function.  Heme is used by a surprisingly broad range of enzymes to accomplish an equally broad range of biologically essential tasks.  For example, these enzymes are central to metabolizing foreign compounds, safely disposing of H2O2 (a toxic side product of aerobic metabolism), and mounting an effective immune response.  In spite of the many and very different functions accomplished by heme-dependent enzymes, each of them relies on this organometallic molecule to accomplish the job.  Clearly, the protein structure surrounding the heme group is what dictates the unique catalytic abilities of each heme-dependent enzyme.

KatG dimer (ribbons and surface)The Goodwin laboratory is using a group of bacterial enzymes called catalase-peroxidases to shed light on a poorly understood but very important aspect of the heme enzyme structure/function equation.  Using these enzymes, we are demonstrating that structural components quite distant from the active site heme have a critical role in directing and fine-tuning the catalytic capabilities of heme enzymes.  Not only does our research answer fundamental questions about the nature of catalysis in biological systems, but it also provides specific insight that is foundational for technological advances through enzyme engineering.  The ability to engineer new enzymes for unique functions holds great promise for addressing urgent concerns that are global in their scope and impact (e.g., contamination of the environment by toxic pollutants).

Our research also has implications for and applications toward substantial biomedical concerns, including antibiotic resistance and bacterial virulence.  Catalase-peroxidase from Mycobacterium tuberculosis has been exploited for the activation of the front-line antitubercular agent isoniazid to its antibiotic form.  Interestingly, the increasing prevelance of isoniazid resistant M. tuberculosis is strongly tied (over 70% of resistant strains) to mutations that compromise the ability of catalase-peroxidase to catalyze activation. Furthermore, a group of catalase-peroxidases have been identified as potential virulence factors in pathogens such as Escherichia coli strain O157:H7 and Yersinia pestis, both of which are recognized as high priority threats as agents of bioterrorism.  Nevertheless, how these enzymes may operate as virulence factors has not been illuminated.  Clearly, there are important benefits to be derived from understanding the structure and function of the catalase-peroxidases.



Selected Publications

  • Njuma, O.J.; Davis, I.; Ndontsa, E.N.; Krewall, J.R.; Liu, A.; Goodwin, D.C. “Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron-hole hopping within the enzyme” J. Biol. Chem. 2017, (in press)

  • Kudalkar, S.N.; Njuma, O.J.; Li, Y.; Muldowney, M.; Fuanta, N.R.; Goodwin, D.C. "A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: Control of active site water and ferric enzyme reactivity" Biochemistry 201554, 1648.

  • Simithy, J.; Gill, G.; Wang, Y.; Goodwin, D.C.; Calderón, A.I. "Development of an ESI-LC-MS based assay for kinetic evaluation of M. tuberculosis shikimate kinase" Anal. Chem. 201587, 2129.

  • Huang, J.; Smith, F., Panizzi, J.R.; Goodwin, D.C.; Panizzi, P. "Inactivation of myeloperoxidase by benzoic acid hydrazide" Arch. Biochem. Biophys2015570, 14.

  • McCarty, S.E.; Schellenberger, A.; Goodwin, D.C.; Fuanta, N.R.; Tekwani, B.L.; Calderón, A.I. "Plasmodium falciparum thioredoxin reductase (PfTrxR) and its role as a target for new antimalarial discovery" Molecules201520, 11459.

  • Njuma, O.J.; Ndontsa, E.N.; Goodwin, D.C.  "Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG" Arch. Biochem. Biophys. 2014544, 27.

  • Wang, Y.; Goodwin D.C.  "Integral role of the I'-helix in the function of the "inactive" C-terminal domain of catalase-peroxidase (KatG)" Biochim. Biophys. Acta 20131834, 362.

  • Kudalkar, S.N.; Campbell, R.A.; Li, Y.; Varnado, C.L.; Prescott, C.; Goodwin, D.C.  "Enhancing the peroxidatic activity of KatG by deletion mutagenesis" J. Inorg. Biochem. 2012116, 106.

  • Ndontsa, E.N.; Moore, R.L.; Goodwin, D.C.  "Stimulation of KatG catalase activity by peroxidatic electron donors"  Arch. Biochem. Biophys. 2012105, 215.







Last updated: 10/31/2017