Filip Pawłowski
Department of Chemistry and Biochemistry
Assistant Research Professor

Research Areas: Physical

Office: 115 Extension Hall

Phone: (334) 844-7920

Email: flp0008@auburn.edu

Website


Education
Aarhus University, Department of Chemistry, Aarhus, Denmark
2004
Nicolas Copernicus University, Department of Chemistry, Torun, Poland
1999


Professional Employment
Assistant Research Professor, Department of Chemistry and Biochemistry, Auburn University
2017 - present
Post-doctoral Researcher, Department of Chemistry, Aarhus University
2014 - 2017
Assistant Professor, Institute of Physics, Kazimierz Wielki University
2005 - 2016
Institute Deputy Director, Institute of Physics, Kazimierz Wielki University
2010 - 2014
Assistant Research Professor, Quantum Chemistry Laboratory, Faculty of Chemistry, University of Warsaw
2009 - 2010
Post-doctoral Research Fellow, Department of Chemistry, University of Oslo
2004 - 2006
PhD student, Department of Chemistry, The Faculty of Science, University of Aarhus (current name: Faculty of Natural Sciences, Aarhus University)
2001 - 2004


Honors and Awards
CO-PI of “A New Generation of Self-Energies for Interpreting Ionization Experiments” – $472,666 (submitted to NSF, tracking number: 2154294). Pending
2022–2025
PI of "Molecular Response Properties from Novel Cluster-Perturbation Theory on Exascale Platforms” – $1,951,094 (submitted to DOE, tracking number: 0000267494). Pending.
2022–2025
24 CO-PI of “Many-Body Theory of Molecular Anions” – $449,950 (submitted to NSF, tracking number: 2102153). Declined.
2021–2024
PI of "High-Accuracy Ground- and Excited-State Energies and Molecular Properties from Novel Cluster-Perturbation Theory on Exascale Platforms” – $3,065,838 (submitted to DOE, tracking number: 0000257796). Declined.
2021–2025
PI of “Coupled-cluster singles-and-doubles quality excitation energies for arge molecular systems” – 4,500,000 core hours allocation project (the rule of thumb is: 1 core hour ≈ $1) awarded by Oak Ridge Leadership Comput-ing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, within Director’s Discretion grant. Funded.
2018–2019
Co-PI in a Center For Accelerated Application Readiness (CAAR) partnership between Oak Ridge Leadership Computing Facility (OLCF) and Aarhus Uni-versity. Only 13 groups all over the World have been chosen to provide their scientific software at OLCF for the benefit of a broad research community. Funded.
2015–2017
Co-PI of “Theoretical studies of the resonant excitation energy transfer in the model systems and DNA-templated Helical Cyanine Dye Aggregates” project funded by Polish National Science Center (project type: OPUS, generally available for a wide range of applicants; 149,730 PLN ≈ $40,000). Funded.
2012–2015
PI on a prestigious Individual Grant Homing awarded by Foundation for Polish Science to only 15 young researchers in Poland every year at that time (72,000 PLN ≈ $18,000). Funded.
2008–2011


Selected Publications

Research Expertise in Quantum-Chemistry Electronic-Structure Method Development, Implementation and Applications

  • Development of a new generation of electron propagator, quasi-particle models that go beyond the standard OVGF, G0W0 or P3+ approximations. The novel models take inspiration in the developments of cluster perturbation theory (see below). Benchmarks of the novel electron propagator models against a large set of vertical ionization energies (obtained from nearly full configuration-interaction calculations) show that the new models have accuracy surpassing that of the standard models and make the latter models obsolete [see J. Chem. Phys. 155, 204107 (2021)]. This opens new avenues for research in double-Rydberg anions, solvated electron precursors, photo-electron spectra, electrochemistry, etc.
  • Development of electron propagator methods to encompass complex orbitals, generalized
    Hartree-Fock reference state, and screened-nuclear-spin-orbit approximation. Initial application of the resulting code (implemented in the development version of Gaussian) has shown a great promise for highly accurate predictions of relativistic ionization potentials and associated splittings [see Mol. Phys. 118, e1700314 (2020)], which are important, among others, in astrochemistry or molecular spectroscopy.
  • Application of electron propagator methods to characterization of new class of molecular entities, solvated electron precursors, with Aufbau rules (1s, 1p, 1d, 2s, 1f, 2p, 2d) that differ from their familiar hydrogenic counterparts and resemble those of jellium or nuclear-shell models [see
    J. Phys. Chem. A 124, 505 (2020) and J. Phys. Chem. Lett. 9, 84 (2018)], and to predictions on double-Rydberg anions [see J. Chem. Phys. 154, 234304 (2021)] and atmospheric gases [see J. Phys. Chem. A 125, 3664 (2021)].
  • Development of a novel cluster perturbation theory, which is a generalization of coupled-cluster perturbation theory, where simple orbital energy differences are replaced by a Jacobian matrix of a reference space thus accelerating the convergence of perturbative corrections toward the target space. Importantly, the novel cluster perturbation theory has allowed for a perturbative, non-iterative determination of molecular response properties, including excitation energies. Cluster perturbation theory is capable of delivering the accuracy of coupled-cluster methods at a fraction of their cost and thus yields new, highly accurate models with prospects of applications to large molecular systems, of importance in contemporary science and technology. [see J. Chem. Phys. 150, 134108 (2019) for the first article in the series of five articles on this subject].
  • New formulation of response function theory [J. Chem. Phys. 142, 114109 (2015)] based on recasting the time-dependent Schrödinger equation into a Hermitian eigenvalue problem in the composite Hilbert space. This has allowed for addressing inadequacies of previous response theory formulations and brought the definition of molecular properties and their determination on par for static and time-periodic perturbations. It also extended the applicability of response function theory to new classes of wave function models described in the previous and the next points. Response function theory is pivotal for an accurate prediction of non-linear optical properties of matter, and hence design of, for example, optically-active materials, which are, among others, important in radiation therapy of cancer or in design of anti-laser shields.Development and implementation of a new coupled cluster–configuration interaction (CC-CI) model [J. Chem. Phys. 144, 024102 (2016) and J. Chem. Phys. 142, 114109 (2015)], where the unperturbed system is exponentially parametrized and its time evolution is linearly parametrized. The CC-CI molecular properties are identical to those determined in equation-of-motion coupled-cluster
    (EOM-CC) model and therefore CC-CI offers an alternative, time-dependent route for deriving EOM-CC. In addition, CC-CI has allowed for showing how static molecular properties can be obtained from finite-field EOM-CC energy calculations. Importantly, in CC-CI molecular response properties of an arbitrary order (e.g., high-harmonic generation or multi-photon absorption) may be determined straightforwardly, contrary to the standard formulation of EOM-CC. This is, again, important in, among others, the filed of the linear and non-linear optical processes.
  • Theoretical development and practical, efficient implementation of CC3 response function theory, which can determine non-linear optical properties and molecular energies to an accuracy higher than experiment. The CC3 response functions and their residues have been developed through cubic response and implemented in the Dalton program package, http://daltonprogram.org/authors/, and applications of this implementation to highly accurate predictions of molecular response and transition properties have been performed. This has, among others, induced a novel high-precision experiment on the Cotton-Mouton effect in neon, allowed for benchmarking of lower members of coupled-cluster hierarchies and density-functional theory functionals, and made it possible to carry out high-accuracy electronic-structure calculations for predicting prospects of molecular cooling [see the list of publications for articles describing methodological aspects and applications of CC3 response function theory]. The CC3 articles pertaining to benchmarking and the molecular cooling application are well cited reflecting that this CC3 response function theory development and implementation has filled in a niche in the electronic-structure theory. The CC3 response function theory implementation is made available in the Dalton program package for the benefit of a broad scientific community. In fact, the CC3 response function theory as implemented in Dalton has become an important tool used by various independent research groups for producing new reference databases and thus systematically benchmarking other methods of lower accuracy [see, e.g.,
    D. Kánnár and P. G. Szalay, J. Chem. Theory Comput. 10, 3757 (2014)]. Notably, the CC3 response function theory implementation in Dalton is the only existing implementation with such a wide variety of molecular properties available (other implementations do not go beyond linear or quadratic response, and they do not offer residues of higher response functions).

  1. F. Pawłowski and J. V. Ortiz, Ionization Energies and Dyson Orbitals of the Iso-electronic SO2, O3, and S3 Molecules from Electron Propagator Calculations, J. Phys. Chem. A 125, 3664, 2021.
  2. E. Opoku, F. Pawłowski and J. V. Ortiz, A New Generation of Diagonal Self-Energies for the Calculation of Electron Removal Energies, J. Chem. Phys. 155, 204107, 2021.
  3. E. Opoku, F. Pawłowski and J. V. Ortiz, Electron binding energies and Dyson orbitals of OnH2n+1+,0,− clusters: Double Rydberg anions, Rydberg radicals, and micro-solvated hydronium cations, J. Chem. Phys. 154, 234304, 2021.
  4. F. Pawłowski and J. V. Ortiz, Relativistic electron detachment energies and spin-orbit splittings from quasiparticle electron propagator calculations, Mol. Phys. 118, e1700314, 2020.
  5. I. R. Ariyarathna, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Aufbau Principle for Diffuse Electrons of Double-Shell Metal Ammonia Complexes: The Case of M(NH3)4@12NH3, M = Li, Be+, B2+, J. Phys. Chem. A, 124, 505-512, 2020.
  6. F. Pawłowski, J. Olsen, and P. Jørgensen, Cluster perturbation theory: I. Theoretical foundation for a coupled cluster target state and ground-state energies, J. Chem. Phys., 150, 134108, 2019.
  7. F. Pawłowski, J. Olse, and P. Jørgensen, Cluster perturbation theory: II. Excitation energies for a coupled cluster target state, J. Chem. Phys., 150, 134109, 2019.
  8. P. Baudin, F. Pawłowski, D. Bykov, D. Liakh, K. Kristensen, J. Olsen, and P. Jørgensen, luster perturbation theory: III. Perturbation series for coupled cluster singles and doubles excitation energies, J. Chem. Phys., 150, 134110, 2019.
  9. F. Pawłowski, J. Olsen, and P. Jørgensen, Cluster perturbation theory: IV. Convergence of cluster perturbation series for energies and molecular properties, J. Chem. Phys., 150, 134111, 2019.
  10. F. Pawłowski, J. Olsen, and P. Jørgensen, Cluster perturbation theory: V. Theoretical foundation for cluster linear target states, J. Chem. Phys., 150, 134112, 2019.
  11. N. M. S. Almeida, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Transition-metal solvated electron precursors: Diffuse and 3d electrons in V(NH3)60,±, Phys. Chem. Chem. Phys., 21, 7090-7097, 2019.
  1. M. Díaz-Tinoco, H. H. Corzo, F. Pawłowski, and J. V. Ortiz,, Do Dyson Orbitals resemble canonical Hartree–Fock orbitals?, Mol. Phys., 117, 2275-2283, 2019.
  2. I. R. Ariyarathna, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors, Phys. Chem. Chem. Phys., 20, 24186-24191, 2018.
  3. I. R. Ariyarathna, S. N. Khan, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Aufbau rules for solvated electron precursors, Be(NH3)40,± complexes and beyond, J. Phys. Chem. Lett., 9, 84-88, 2018.
  4. T. Kjærgaard, P. Baudin, D Bykov, J. J. Eriksen, P. Ettenhuber, K. Kristensen, J. Larkin, D. Liakh, F. Pawłowski, A. Vose, Y. M. Wang, and P. Jørgensen, Massively parallel and linearscaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires, Comput. Phys. Commun., 212, 152-160, 2017.
  5. S. Coriani, F. Pawłowski, J. Olsen, and P. Jørgensen, Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective, J. Chem. Phys., 144, 024102, 2016.
  6. F. Pawłowski, J. Olsen, and P. Jørgensen, Molecular response properties from a Hermitian eigenvalue equation for a time-periodic Hamiltonian, J. Chem. Phys., 142, 114109, 2015.
  7. A. Baranowska-Łączkowska, B. Fernández, A. Rizzo, and F. Pawłowski, Applicability of medium-size basis sets in calculations of molecular dynamic polarisabilities, Mol. Phys., 113, 1786, 2015.
  8. K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. Ch. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, Ch. Neiss, Ch. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawłowski, T.B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, The Dalton quantum chemistry program system, WIREs Comput. Mol. Sci., 4, 269, 2014.
  9. A. Baranowska-Łączkowska, J. Chmielewska, F. Pawłowski, and A. Rizzo, Applicability of medium-size basis sets in calculation of electric dipole dynamic polarisabilities and first hyperpolarisabilities of non-interacting molecules, Mol. Phys., 111, 1462, 2013.
  10. A. Baranowska-Łączkowska, W. Bartkowiak, R. W. Góra, F. Pawłowski, and R. Zaleśny, On the performance of long-range-corrected density functional theory and reduced-size polarized LPol-n basis sets in computations of electric dipole (hyper)polarizabilities of π-conjugated molecules, J. Comput. Chem., 34, 819, 2013.
  11. S. Amaran, R. Kosloff, M. Tomza, W. Skomorowski, F. Pawłowski, R. Moszyński, L. Rybak, L. Levin, Z. Amitay, J. M. Berglund, D. M. Reich, C. Koch, Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions, J. Chem. Phys., 139, 164124, 2013.
  12. W. Skomorowski, F. Pawłowski, C. Koch, and R. Moszyński, Rovibrational dynamics of the strontium molecule in the A 1Σ𝑢+, c 3Πu, and a 3Σ𝑢+ manifold from state-of-the-art ab initiocalculations, J. Chem. Phys., 136, 194306, 2012.
  13. M. Tomza, F. Pawłowski, M. Jeziorska, C. Koch, and R. Moszyński, Formation of ultracold SrYb molecules in an optical lattice by photoassociation spectroscopy: theoretical prospects, Phys. Chem. Chem. Phys., 13, 18893, 2011.
  14. W. Skomorowski, F. Pawłowski, T. Korona, R. Moszyński, S. Żuchowski, and J. M. Hutson, Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations, J. Chem. Phys., 134, 114109, 2011.
  15. M. Krych, W. Skomorowski, F. Pawłowski, R. Moszyński, and Z. Idziaszek, Sympathetic cooling of the Ba+ ion by collisions with ultracold Rb atoms: Theoretical prospects, Phys. Rev. A, 83, 32723, 2011.
  16. S. Reine, A. Krapp, M. F. Iozzi, V. Bakken, T. Helgaker, F. Pawłowski, Sałek, An efficient density-functional-theory force evaluation for large molecular systems, J. Chem. Phys., 133, 044102, 2010.
  17. I. G. Cuesta, J. S. Marín, A. S. de Merás, F. Pawłowski, and Lazzeretti, Assessment of the CTOCD-DZ method in a hierarchy of coupled cluster methods, Phys. Chem. Chem. Phys., 12, 6163, 2010
  18. R. Send, D. Sundholm, M. Johansson, and F. Pawłowski, Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases, J. Chem. Theory Comput., 5, 240, 2009.
  19. Sałek, S. Høst, L. Thøgersen, Jørgensen, Manninen, J. Olsen, B. Jansík, S. Reine, F. Pawłowski, E. Tellgren, T. Helgaker, S. Coriani, Linear-scaling implementation of molecular electronic self-consistent field theory, J. Chem. Phys., 126, 114110, 2007.
  20. S. Coriani, S. Høst, B. Jansík, L. Thøgersen, J. Olsen, Jørgensen, S. Reine, F. Pawłowski, T. Helgaker, Sałek, Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory, J. Chem. Phys., 126, 154108, 2007.
  21. M. Pecul, F. Pawłowski, Jørgensen, A. Köhn, and C. Hättig, High-order correlation effects on dynamic hyperpolarizabilities and their geometric derivatives: A comparison with density functional results, J. Chem. Phys., 124, 114101, 2006.
  22. M. J. Paterson, O. Christiansen, F. Pawłowski, Jørgensen, C. Hättig, T. Helgaker, Sałek, Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory, J. Chem. Phys., 124, 054322, 2006.
  23. O. Christiansen, S. Coriani, J. Gauss, C. Hättig, Jørgensen, F. Pawłowski, A. Rizzo, M. G. Papadopoulos, A. J. Sadlej, J. Leszczynski, Accurate Nonlinear Optical Properties for Small Molecules, in Non-Linear Optical Properties of Matter, M. G. Papadopoulos, A. J. Sadlej, andJ. Leszczynski, Eds. Springer Netherlands, 2006, pp. 51–99.
  24. F. Pawłowski, Jørgensen, and C. Hättig, The second hyperpolarizability of the N2 molecule calculated using the approximate coupled cluster triples model CC3, Chem. Phys. Lett., 413, 272, 2005.
  25. F. Pawłowski, Jørgensen, and C. Hättig, Cauchy Moments of Ne, Ar, and Kr Atoms Calculated Using the Approximate Coupled Cluster Triples Model CC3, Adv. Quantum Chem., 48, 21, 2005.
  26. J. Lohilahti, H. Mattila, V.-M. Horneman, and F. Pawłowski, FT-FIR-spectrum and the ground state constants of D213CO, J. Mol. Spectroscopy, 234, 279, 2005.
  27. J. Kongsted, T. B. Pedersen, M. Strange, A. Osted, A. E. Hansen, K. V. Mikkelsen, F. Pawłowski, Jørgensen, C. Hättig, Coupled cluster calculations of the optical rotation of Spropylene oxide in gas phase and solution, Chem. Phys. Lett., 401, 385, 2005.
  28. S. Høst, Jørgensen, A. Köhn, F. Pawłowski, W. Klopper, and C. Hättig, Frequencydependent hyperpolarizabilities of the Ne, Ar, and Kr atoms using the approximate coupled cluster triples model CC3, J. Chem. Phys., 123, 094303, 2005.
  29. A. Rizzo, M. Kállay, J. Gauss, F. Pawłowski, Jørgensen, and C. Hättig, The Cotton-Mouton effect of neon and argon: A benchmark study using highly correlated coupled cluster wave functions, J. Chem. Phys., 121, 9461, 2004.
  30. F. Pawłowski, Jørgensen, and C. Hättig, The hyperpolarizability of the Ne atom in the approximate coupled cluster triples model CC3, Chem. Phys. Lett., 391, 27, 2004.
  31. F. Pawłowski, Jørgensen, and C. Hättig, Gauge invariance of oscillator strengths in the approximate coupled cluster triples model CC3, Chem. Phys. Lett., 389, 413, 2004.
  32. F. Pawłowski, A. Halkier, Jørgensen, K. L. Bak, T. Helgaker, and W. Klopper, Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations, J. Chem. Phys., 118, 2539, 2003.
  33. R. W. Larsen, F. Pawłowski, F. Hegelund, Jørgensen, J. Gauss, and B. Nelander, The equilibrium structure of trans-glyoxal from experimental rotational constants and calculated vibration–rotation interaction constants, Phys. Chem. Chem. Phys., 5, 5031, 2003.
  34. K. Hald, F. Pawłowski, Jørgensen, and C. Hättig, Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3, J. Chem. Phys., 118, 1292, 2003.
  35. S. Raj, H. C. Padhi, Palit, D. K. Basa, M. Polasik, and F. Pawłowski, Relative K x-ray intensity studies of the valence electronic structure of 3d transition metals, Phys. Rev. B, 65, 193105, 2002.
  36. F. Pawłowski, Jørgensen, J. Olsen, F. Hegelund, T. Helgaker, J. Gauss, K. L. Bak, J. F. Stanton, Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants, J. Chem. Phys., 116, 6482, 2002.
  37. F. Pawłowski, M. Polasik, S. Raj, H. C. Padhi, and D. K. Basa, Valence electronic structure of Ti, Cr, Fe and Co in some alloys from Kβ-to-Kα X-ray intensity ratio studies, Nucl. Instr. And Meth. in Phys. Res. B, 195, 367, 2002.
  38. D. K. Basa, S. Raj, H. C. Padhi, M. Polasik, and F. Pawłowski, Studies on the valence electronic structure of Fe and Ni in FexNi1−x alloys, Pramana–J Phys, 58, 783, 2002.
  39. S. Raj, H. C. Padhi, Raychaudhury, A. K. Nigam, R. Pinto, M. Polasik, F. Pawłowski, D. K. Basa, Valence electronic structure of Mn in undoped and doped lanthanum manganites from relative K X-ray intensity studies, Nucl. Instr. and Meth. in Phys. Res. B, 174, 344, 2001.
  40. S. Raj, H. C. Padhi, M. Polasik, F. Pawłowski, and D. K. Basa, Kβ-to-Kα x-ray intensity ratio studies of the valence electronic structure of Fe and Ni in FexNi1−x alloys, Phys. Rev. B, 63, 73109, 2001.
  41. F. Pawłowski, M. Polasik, S. Raj, and H. C. Padhi, Kβ / Kα X-ray intensity ratio studies on the valence electronic states of 3d-transition metals in some of their compounds, Acta Phys. Pol. B, 31, 495, 2000.
  42. K. Słabkowska, F. Pawłowski, and M. Polasik, Effect of L- and M-shell ionization on the K X-ray spectra parameters of sulphur, Acta Phys. Pol. B, 31, 507, 2000.
  43. S. Raj, H. C. Padhi, M. Polasik, F. Pawłowski, and D. K. Basa, Valence electronic structure of Fe and Ni in FexNi1−x alloys from relative K X-ray intensity studies, Solid State Comm., 116, 563, 2000.
  44. U. Majewska, J. Braziewicz, D. Banas, M. Jaskola, T. Czyzewski, W. Kretschmer, K. Słabkowska, F. Pawłowski, M. Polasik, Interpretation of K X-ray spectra from highly ionized sulphur projectiles passing through thin carbon foils, Acta Phys. Pol. B, 31, 511, 2000.
  45. S. Raj, H. C. Padhi, D. K. Basa, M. Polasik, and F. Pawłowski, Kβ-to-Kα X-ray intensity ratio studies on the changes of valence electronic structures of Ti, V, Cr, and Co in their disilicide compounds, Nucl. Instr. and Meth. in Phys. Res. B, 152, 417, 1999






Last updated: 11/29/2023