Ryan Range
Department of Biological Sciences
Associate Professor

Office: 128 Rouse Life Sciences Bldg.

Address: 101 Life Sciences Bldg.
Auburn University, AL 36849

Phone: (334) 844-8713

Fax: (334) 844-1645

Email: range@auburn.edu


Postdoctoral Fellow - National Institutes of Health
Postdoctoral Fellow - Sorbonne Universities/Université de Pierre and Marie Curie
Ph.D. - Duke University
B.A. - University of Texas at Austin

Research and Teaching Interests

Research in our lab focuses on one of the fundamental questions in evolutionary anddevelopmental biology - how signaling transduction pathways control the gene regulatory networks that specify and pattern territories along the major embryonic axes during early development. We are particularly interested in both the early regulatory mechanism(s) that activate the anterior neuroectoderm and the role of a Wnt signaling network we identified that appears to specify and pattern the anterior-posterior axis in a variety of deuterostome embryos (vertebrates, urochordates, cephalochordates, hemichordates and echinoderms). We use a combination of molecular manipulations, high-throughput genome-wide assays, gene regulatory network analysis and classical embryology to study the evolution of these fundamental developmental mechanisms inechinoderm (sea urchin) and hemichordate (acorn worm) embryos. These animals and vertebrates share a relatively recent common ancestor. Thus, our studies may lead to the identification of core regulatory processes that specify and pattern vertebrate embryos, including humans, along the anterior-posterior axis.

Selected Publications

  1. Molina MD, Quirin M, Haillot E, Range R, de Crozé N, Rouel M, Jimenez F, Chessel A and Lepage T. (in press) MAPK and GSK3/ß-TRCP-mediated degradation of Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genetics. 

  2. Khadka A, Martinez-Bartolomé M, Snyder S, and Range RC. A novel gene’s role in an ancient mechanism: secreted Frizzled-related protein 1 is a critical component in the Wnt signaling network governing anterior-posterior neuroectoderm patterning in sea urchin embryos. EvoDevo. 9: 1.

  3. Range RC , Martinez-BartoloméM, and Burr SD. 2017. The power of simplicity: sea urchin embryos as in vivo developmental models for studying complex cell-to-cell signaling network interactions. J Vis Exp. e55113-e55113.

  4. Range RC and Wei Z. 2016. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development. 143: 1523-1533.

  5. Range RC. 2014. Specification and positioning of the anterior neuroectoderm in deuterostome embryos. Genesis. 52: 222-234.

  6. Range RC, Angerer RC, and Angerer LA. Integration of canonical and non-canonical Wnt signaling patterns the neuroectoderm along the anterior-posterior axis of the sea urchin embryo. PLoS Biology. 11:e1001467. 

  7. Wei Z, Range R, Angerer R, and Angerer L. 2012. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling. Development139: 1662-1669.

  8. Sethi AJ, Wikramanayake RM, Angerer RC, Range RC, and Angerer LA. 2012. Sequential signaling crosstalk regulates endomesoderm segrgation in sea urchin embryos. Science. 335: 590-593.

  9. Range R and Lepage T. 2011. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specificatio in the sea urchin embryo. Developmental Biology17: 1487-1498.

  10. Croce J, Range R, Wu S, Miranda E, Lhomond G, Chieh-fu Peng J, Lepage T and McClay, DR. Wnt 6 activates endoderm in the sea urchin gene regulatory network. Development. 138: 3297-3306.

  11. Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, and Lepage T. 2010. Gene regulatory network analysis of ectoderm specification in an echinoderm reveals ancestral regulatory circuits regulating mouth formation and neural induction. PLoS Genetics. 6: e1001259.

  12. Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development134: 3649-3664.

Google Scholar Page


Undergraduate Graduate

Last updated: 10/05/2021