Hölder Type Inequalities for Non-symmetric Non-square Matrices

Thomas H. Pate Mathematics Department Auburn University Auburn, AL 36849

February 4, 2013

Suppose m, n, and k are positive integers, and let $\langle \cdot, \cdot \rangle$ denote standard inner product on the spaces \mathbb{R}^p , p>0. We show that if D is an $m\times n$ non-negative real matrix, and u and v are non-negative unit vectors in \mathbb{R}^n and \mathbb{R}^m , respectively, then

$$\langle (DD^t)^k Du, v \rangle \ge \langle Du, v \rangle^{2k+1},$$
 (1)

with equality if and only if $\langle (DD^t)^k Du, v \rangle = 0$, or there exists $\alpha > 0$ such that $Du = \alpha v$ and $D^t v = \alpha u$. This inequality extends to non-symmetric non-square matrices a 1965 result of Blakley and Roy which asserts that if D is a non-negative $n \times n$ symmetric matrix, and $u \in \mathbb{R}^n$ is a non-negative unit vector, then

$$\langle D^k u, u \rangle \ge \langle D u, u \rangle^k, \tag{2}$$

with equality, when $k \geq 2$, if and only if $\langle D^k u, u \rangle = 0$, or there exists $\alpha > 0$ such that $Du = \alpha u$. The generality of the inequality (1) derives not only from the fact that D is not assumed to be symmetric or square, but from the fact that we admit two unit vectors u and v instead of the single unit vector u appearing in the inequality (2) of Blakley and Roy. We apply our result to verify the conjecture of A. Sidorenko in the non-symmetric case provided that the underlying graph is a path.