1. Suppose G_1 is a 3-regular connected simple graph on n vertices.
 a. Find an example of G_1 that has a cut-edge and a 1-factor.
 b. Find an example of G_1 that has a cut-edge and no 1-factor. (Hint: Tutte’s Theorem with $|S| = 1$ may help you see the structure of such a graph.)
 c. Suppose that G_1 has a partition of its edges into sets of size 3, each element of which induces a path of length 3.
 i. In terms of n, how many paths are induced by this partition?
 ii. Show that G_1 has a 1-factor. (Hint: use (i), and consider choosing the middle edge in each path.)

2. Suppose G_2 is a 3-regular connected simple graph on n vertices that has a 1-factor.
 a. Find an example of G_2 for which $\chi'(G_2) = 4$.
 b. Show that G_2 has a 2-factor.
 c. Show that G_2 has a partition of its edges into sets of size 3, each element of which induces a path of length 3. (Hint: Direct the edges in a suitable 2-factor to form directed cycles, and heed the suggestion in (1c(ii)).)

3. Let G_3 be a 2x-regular simple graph.
 a. Does G_3 necessarily have an Euler tour? Why or why not?
 b. Show that the edges of G_3 can be directed so that at each vertex v in the resulting directed graph D_3, $d^+(v) = d^-(v)$.
 c. Form a bipartite graph B_3 on the vertex set $V(G_3) \times \{1,2\}$ by joining $(v,1)$ to $(w,2)$ if and only if there is an edge in D_3 directed from v to w.
 i. Show that B_3 has a 1-factorization.
 ii. Use this to show that G_3 has a 2-factorization.

4. A subgraph of a graph is said to be an odd factor if it is both spanning and all its vertices have odd degree.
 a. By counting the number of edges in G in terms of the degrees of its vertices, show that the number of vertices of odd degree in G is even.
 b. Let T be a tree with an even number of vertices. If e is an edge in T then e is said to be an even edge if when deleted the two remaining components each have an even number of vertices, and is said to be an odd edge otherwise. Show that:
 i. Every odd factor of T must contain every odd edge of T, and
 ii. Every odd factor of T contains no even edges of T.
 (Hint: Use 4a.)
 c. Find necessary and sufficient conditions in terms of n for a tree T tree on n vertices to have an odd factor.