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Abstract. We consider the problem of a decision-maker searching for information on multi-
ple alternatives when information is learned on all alternatives simultaneously. The decision-
maker has a running cost of searching for information, and has to decide when to stop
searching for information and choose one alternative. The expected payoff of each alterna-
tive evolves as a diffusion process when information is being learned. After establishing the
well-posedness of the equation, we show that the optimal boundary where search is stopped
(free boundary) is star-shaped, and present an asymptotic characterization of the value
function and the free boundary. We prove that the distance between the free boundary and
each point on the diagonal is logarithmic in the number of alternatives.
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1. Introduction

In this paper we study the problem of parallel search in continuous time, which relies
on the analysis of a partial differential equation (PDE) in the unbounded domain Rd. In
several situations a decision-maker (DM) has to decide how long to gain information on
several alternatives simultaneously at a cost before stopping to make an adoption decision.
An important aspect considered here, is that the DM gains information on all alternatives
at the same time and cannot choose which alternative to gain information on—which we call
parallel search. This can be, for instance, the case of a consumer trying to decide among
several products in a product category and passively learning about the product category, or
browsing through a web site that compares several products side by side. Another interesting
application is a financial option based on several assets, where at the time of exercising the
option, the investor decides which asset to take.

The idea goes as follows. If all the alternatives have a relatively low expected payoff,
the DM may decide to stop the search, and not choose any of the alternatives. If two or
more alternatives have a similar and sufficiently high expected payoff, the DM may decide
to continue to search for information until finding out which alternative may be the best.
If the expected payoff of the best alternative is clearly higher than that of the second best
alternative, the DM may decide to stop the search process and choose the best alternative.
To implement the preceding idea, consider Bx = (Bx1

1 (t), . . . , Bxd
d (t))t≥0, a d-dimensional

Brownian motion starting at x = (x1, . . . , xd). Each component of this Brownian motion
could be the value of the alternative if the process is stopped. In the consumer learning
application, this would be the value of that product at the time when the consumer makes
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the purchase decision. In the financial option application, this would be the value of the asset
when the option is exercised. Let T be a suitable set of stopping times with respect to the
natural filtration of Bx. Our goal is to study the following optimal stopping problem:

u(x) := sup
τ∈T

E
[
max

{
Bx1

1 (τ), . . . , Bxd
d (τ), 0

}
− cτ

]
, (1)

where c > 0 is the cost per unit time, considered as the cost of processing information
when learning about different alternatives. We refer to Peskir and Shiryaev [36] for general
background on optimal stopping problems.

Traditional research of optimal stopping problems generally fits into two categories: (i)
Find the closed-form solution to the optimal stopping problem, see e.g. [1, 19, 21, 22, 36]
and [43, Chapter 8]. These exactly solvable optimal stopping problems are often in low
dimensions, namely for d = 1 or 2. (ii) Characterize the optimal stopping problem as a
certain solution to a PDE, and study the regularity and convexity of the solution, see e.g.
[2, 3, 12, 13, 35, 38]. The optimal stopping problem (1) does not have a closed-form solution.
But it can be shown that it is the unique viscosity solution to the corresponding Bellman
PDE. Now the question is: what can we say about this optimal stopping problem other
than it is the solution to some PDE? The purpose of this paper is to explore the geometric
properties of the particular optimal stopping problem (1), especially in the high dimensional
regime as d→∞.

The analysis includes two parts: identifying the optimal stopping problem as the unique
viscosity solution to the Bellman PDE (stochastic analysis), and studying the geometric
properties of this PDE (analysis of PDE).

• Stochastic analysis: the approach to identify the optimal stopping problem (1) as the
unique solution to the Bellman PDE (Theorem 2) is standard. Roughly speaking,
we first show that the value function u is a viscosity solution to the corresponding
Bellman PDE, and then we complete the argument by proving that this PDE has
only one solution. But even in this routine part, there are some subtleties. In
most existing literature, optimal stopping problems are considered for a fixed finite
time horizon, or with an exponential discount factor (see e.g. [3, 20, 38, 39]). Our
problem (1) is slightly different from these standard setups. In particular, the set
T of stopping times should be properly defined so that the resulting value function
u is indeed a viscosity solution to the Bellman PDE (Proposition 1). Moreover,
a large volume of literature deals with bounded solutions to Bellman PDEs (see
e.g. [15, 36]), and unbounded solutions are only considered for optimal stopping
problems with an exponential discount factor (see e.g. [20, 38]). We prove by a
comparison principle that under some assumptions, the Bellman PDE of a general
optimal stopping problem without any discount factor has a unique viscosity solution
that has sub-quadratic growth (Theorem 1). This result seems to be novel, see
Remark 3.

• Analysis of PDE: the main contribution of this paper is to explore geometric prop-
erties of the optimal stopping problem (1) using the Bellman PDE. One important
ingredient of the problem is that there is a free boundary where the process is opti-
mal to stop, and this boundary is determined by the solution to the PDE. We prove
some geometric properties of the free boundary: it is star-shaped with respect to the
origin (Theorem 3); it is close to a columnal surface when all xi’s are large positive
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(Proposition 3). Though it is not possible to derive a closed-form expression for the
value function or the free boundary, we study the asymptotics of the value function as
well as the free boundary when all xi’s are large positive. For d = 2, we provide fine
estimates of the distance from the free boundary to the line x1 = x2 as x1, x2 →∞.
More interestingly, in the high dimensional setting where d is large, we show that

C
√

ln d ≤ distance from the free boundary to {x1 = · · · = xd} ≤ Cδ(ln d)δ

as x1, . . . , xd →∞ for any δ > 1 (Theorem 4 and Theorem 5). The logarithmic scale
is highly non-trivial, and relies on fine analysis of the Bellman PDE. Note that there
is a gap between the lower bound and the upper bound. The question of the precise
asymptotic distance as the dimension d→∞ remains open.

To the best of our knowledge, this is one of the few results concerning the asymptotic
geometry of the optimal stopping problem in dimension d ≥ 2. To prove the results, we
rely heavily on the PDE machinery: viscosity solutions and the comparison principle. The
Bellman PDE, also known as the obstacle problem, is widely studied (see e.g. [7, 8, 17,
37]). While previous works focused mostly on the local regularity of the free boundary, we
study asymptotic properties of the free boundary as the dimension d increases to infinity
with unbounded solutions and unbounded free boundaries. Since for many decision making
problems the state process is high dimensional in the real-world application (see Section 2.1),
we hope that this work may trigger further developments of optimal stopping problems in
unbounded domains and in high dimensions.

To conclude the introduction, we provide a few references on the search theory. There is
some literature on the case of learning about a single alternative in comparison to an outside
option, see [5, 18, 33, 41]. The case with a single alternative can be traced back to the discrete
costly sequential sampling in [46]. When there is more than one uncertain alternative the
problem becomes more complex, as choosing one alternative means giving up potential high
payoffs from other alternatives about which the decision maker could also learn more. This
paper can then be seen as extending this literature to allow for more than one alternative,
which requires the solution to a PDE. Another possibility, considered in [28], is that the
DM can choose to search for information on one alternative at a time with alternatives
having independent values. That simplifies the analysis because in each region in which one
alternative is searched, the value function satisfies an ordinary differential equation on the
state of that alternative, keeping the states of the other alternatives fixed. Here, the value
function does not satisfy that property as the states of all alternatives move simultaneously.
Consequently, the value function is determined by a partial differential equation (with free
boundaries) on the state of any alternative. [9] considers which type of information to collect
in a Poisson-type model, when the decision maker has to choose between two alternatives,
with one and only one alternative having a high payoff. See also [23, 29, 34]. For problems
where the DM gets rewards while learning, see [4, 30]. The literature on financial options
based on multiple assets (rainbow options) is also related to this paper, see e.g. [6, 26, 42, 45].

Organization of the paper: We present the problem in Section 2, and characterize the
optimal strategy by establishing the existence and uniqueness of the solution to the corre-
sponding PDE. Section 3 shows that the optimal solution is star-shaped. Section 4 considers
asymptotic results of the solution. We show that in general dimensions and in the region



4 T.TONY KE, WENPIN TANG, J. MIGUEL VILLAS-BOAS, AND YUMING PAUL ZHANG

where all xi are large, the free boundary is close to a columnal surface, and the distance from
the free boundary to each point of x1 = . . . = xd > 0 is logarithmic in d.

2. The problem setup and the PDE

2.1. Motivating examples. Consider a consumer and d products. For each i = 1, . . . , d,
the utility Ui of product i is the sum of the utility derived from each attribute of the product

Ui = xi +

T∑
t=1

ait,

with xi the consumer’s initial expected utility, and ait the utility of attribute t of product
i which is uncertain to the consumer before search. It is also assumed that ait are i.i.d.
across t and i, and without loss of generality, Eait = 0. There is an outside option which is
worth zero. Each time by paying a search cost c, the consumer checks one attribute ait for
all products i = 1, . . . , d. The consumer decides when to stop searching and upon stopping
which product to buy so as to maximize the expected utility. After checking t attributes, the
consumer’s conditional expected utility of product i is

Xi(t) = EtUi = xi +

t∑
s=1

ais.

It is easily seen that (Xi(t), t = 0, 1, . . .) is a random walk which scales to Brownian motion
(Bxi

i (t), t ≥ 0) in the limit. The problem of the consumer is to decide when to stop the
process, and then choose the best alternative.

Another example is concerned with Bayesian learning. Assume that the true value of the

alternatives X̂(t) follows the dynamics dX̂(t) = dB(t), where (B(t), t ≥ 0) is a d-dimensional

Brownian motion, and that the signal S(t) of X̂(t) is a d-dimension vector governed by

dS(t) = X̂(t)dt+ y dB̃(t),

where (B̃(t), t ≥ 0) is a d-dimensional Brownian motion independent of (B(t), t ≥ 0), and y
is a diagonal matrix, with general element on the diagonal yii. Also assume that the prior of

X̂(0) is a normal with mean X̂(0) and variance-covariance ρ̂(0)2, with ρ̂(0) being a diagonal

matrix, with general element in the diagonal ρ̂ii(0). Then the posterior mean X(t) of X̂(t)
follows

Xi(t) = ρ̂ii(t)
2/yii dBi(t) for 1 ≤ i ≤ d,

where (B(t), t ≥ 0) is a d-dimensional Brownian motion, and dρ̂ii(t)
2/dt = 1 − ρ̂ii(t)4/y2

ii

for 1 ≤ i ≤ d. As t → ∞, we get ρ̂(t)2 → y. So if ρ̂(0)2 = y, we have dXii(t) = dBi(t) for
1 ≤ i ≤ d, and the analysis that follows would be done on the process (X(t), t ≥ 0). In both
problems, it boils down to solving the optimal stopping problem (1).

2.2. General framework and viscosity solutions. We start with the general framework
of the optimal stopping problem (1). Let Ω ⊂ Rd be an open domain, and ∂Ω be its boundary
(then ∂Ω = ∅ if Ω = Rd) and Ω := Ω ∪ ∂Ω. Consider the following stochastic differential
equation (SDE):

dXx(t) = b(Xx(t))dt+ σ(Xx(t))dB(t), Xx(0) = x ∈ Ω, (2)
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where (B(t), t ≥ 0) is a standard d-dimensional Brownian motion starting from 0, and
b : Rd → Rd and σ : Rd → Rd×d satisfy the Lipschitz condition. That is, there exists C > 0
such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y|, x, y ∈ Rd × Rd. (3)

It is well known that under this condition, the SDE (2) has a strong solution which is
pathwise unique. See e.g. [27, Section 5.2] for background and further developments of the
strong solution to SDEs. In the context of parallel search, the vector Xx(t) has as each
element i the expected utility obtained if the DM were to decide to stop the search process
at time t and choose alternative i. Moreover, let L be the infinitesimal generator of the SDE
(2). That is,

Lh(x) =
d∑
i=1

bi(x)
∂h

∂xi
(x) +

1

2

d∑
i,j=1

(σ(x)σ(x)T )ij
∂2h

∂xi∂xj
(x),

for any suitably smooth test function h : Rn → R.

Let TΩ := inf{t > 0 : Xx(t) /∈ Ω} be the exit time of (Xx(t), t ≥ 0) from Ω, and let

Jx(τ) := E
[∫ τ∧TΩ

0
f(Xx(s))ds+ g(Xx(τ ∧ TΩ))

]
, (4)

where τ is a stopping time, and f, g are suitably smooth reward functions, e.g. continu-
ous functions with polynomial growth, or simply Lipschitz continuous functions. We are
interested in the value function

u(x) = sup
τ∈T

Jx(τ), (5)

where T is a suitable set of stopping times. Heuristics from dynamic programming suggest
that the value function u “solve” the following Bellman PDE:

min{−Lu− f, u− g} = 0, x ∈ Ω, (6)

with the boundary condition
u = g, x ∈ ∂Ω. (7)

Equations (6)–(7) are known as an obstacle problem, or a variational inequality, see e.g.
[16, 31]. There are two regimes:

−Lu = f when u > g, and − Lu ≥ f when u = g.

The set {x ∈ Ω : u(x) = g(x)} is called the contact set, or coincidence set.

It was shown in [3, Chapter 3] that if the value function u defined by (5) is sufficiently
smooth (e.g. of class C2) and some additional conditions on b(·), σ(·), f(·), g(·) are satisfied,
then u is characterized as the unique solution to the variational inequality (6)–(7). However,
the value function u is not necessarily smooth enough for the variational inequality to be
defined in the classical sense, see e.g. [13, 44]. Hence, we need a weaker notion of viscosity
solutions to characterize the value function u. Below we state the definition of viscosity
solutions, and we refer to [10, 11, 24, 25] for this notion.

Definition 1. Let u be a continuous function on Ω and x0 ∈ Ω.

(1) We say that −Lu ≤ f at x0 in the viscosity sense if for any ϕ ∈ C2(Ω) which touches
u at x0 from above, we have −(Lϕ)(x0) ≤ f(x0). We call u a subsolution to (6) if
−Lu ≤ f in the viscosity sense at all points of Ω where u− g > 0.
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(2) We say that −Lu ≥ f at x0 in the viscosity sense if for any ϕ ∈ C2(Ω) which touches
u at x0 from below, we have −(Lϕ)(x0) ≥ f(x0). We call u a supersolution to (6) if
u− g ≥ 0 in Ω, and −Lu ≥ f in the viscosity sense in Ω.

(3) We call u a viscosity solution to (6) if and only if u is both a subsolution and a
supersolution to (6). We call u a viscosity solution to (6)–(7) if and only if u is a
viscosity solution to (6), and u satisfies (7) at all boundary points.

The connection between the value function of the optimal stopping problem (5) and viscos-
ity solutions to the variational inequality (6)–(7) was established by Øksendal and Reikvam
[35]. Their result is recorded in the following lemma.

Lemma 1. Assume that b(·) and σ(·) satisfy the Lipschitz condition (3). Also assume that

(i) The boundary ∂Ω is regular for the process (Xx(t), t ≥ 0) in the sense that TΩ =
inf{t > 0 : Xx(t) /∈ Ω} = 0 almost surely.

(ii) f(·) is a continuous function on Ω, and E
∫ τ∧TΩ

0 |f(Xx(s))|ds <∞ for all x ∈ Ω and
τ stopping times.

(iii) g(·) is a continuous function on Ω, and the family {g(Xx(τ)), τ stopping time and τ ≤
TΩ} is uniformly integrable for all x ∈ Ω.

(iv) The value function u is continuous on Ω.

Then u is a viscosity solution to the variational inequality (6)–(7).

Note that Lemma 1 holds for both bounded and unbounded domains. For our purposes,
we take Ω = Rd. As mentioned in the introduction, the optimal stopping problem in an
unbounded domain has been considered either for a fixed finite time horizon, or/and with an
exponential discount factor [3, 20]. Here we treat this problem in a slightly different manner

by letting T := {τ stopping time : Ee3C2τ < ∞}, where C is given by (3) so that the value
function may well be defined. The following proposition gives simple sufficient conditions on
b(·), σ(·), f(·), g(·) for Lemma 1 to hold, and provides an estimate of the value function u.

Proposition 1. Assume that b(·), σ(·) satisfy the Lipschitz condition (3), and are bounded
so there exist K1,K2 > 0 such that

d∑
i=1

sup
x∈Rd

|bi(x)| < K1 and max
i,j

sup
x∈Rd

|σij(x)| < K2.

Also assume that f(·) is bounded and Lipschitz continuous, and g(·) is nonnegative and
Lipschitz continuous so there exists a > 0 such that

0 ≤ g(x) ≤ a

(
1 +

d∑
i=1

|xi|

)
for all x ∈ Rd.

Let u be the value function defined by (5), with Ω = Rd and T := {τ stopping time : Ee3C2τ <
∞}, where C is the Lipschitz constant given by (3). Then u is a viscosity solution to the
Bellman PDE (6). Furthermore, if there exists c > K1 such that supx∈Rd f(x) ≤ −c, then
we have for some γ > 0 (independent of d),

g(x) ≤ u(x) ≤ a
d∑
i=1

|xi|+ γd4 for all x ∈ Rd. (8)
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Proof. The first part of the proposition is a consequence of Lemma 1, and we need to check
all the conditions therein. For Ω = Rd, the condition (i) is automatically satisfied. Since f
is bounded and Eτ <∞, we have

E
∫ τ∧TΩ

0
|f(Xx(s))|ds ≤ sup

x∈Rd
|f(x)| · Eτ <∞.

Combined with the fact that f is Lipschitz continuous, we verify the condition (ii). For the
condition (iii), note that

g(Xx(τ)) ≤ a

(
1 +

d∑
i=1

|Xxi
i (τ)|

)

≤ a

1 +
d∑
i=1

|xi|+
d∑
i=1

∣∣∣∣∣∣
∫ τ

0
bi(X

x(s))ds+

d∑
j=1

∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣∣∣


≤ a

1 +

d∑
i=1

|xi|+
d∑
i=1

∫ τ

0
|bi(Xx(s))|ds+

d∑
i=1

d∑
j=1

∣∣∣∣∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣
 .

(9)

Therefore, we have

g2(Xx(τ)) ≤ A

(1 +
d∑
i=1

|xi|

)2

+ τ
d∑
i=1

sup
x∈Rd

b2i (x) +
d∑
i=1

d∑
j=1

∣∣∣∣∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣2
 ,

for some A > 0, which implies that

Eg2(Xx(τ)) ≤ A

(1 +

d∑
i=1

|xi|

)2

+ Eτ
d∑
i=1

sup
x∈Rd

b2i (x) +

d∑
i=1

d∑
j=1

E
∣∣∣∣∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣2


≤ A

(1 +
d∑
i=1

|xi|

)2

+ Eτ
d∑
i=1

sup
x∈Rd

b2i (x) + Eτ
d∑
i=1

d∑
j=1

sup
x∈Rd

σ2
ij(x)

 <∞.
This proves the uniform integrability of the family {g(Xx(τ)), τ stopping time and Ee3C2τ <
∞}. Finally, by the Lipschitz continuity of f, g, there exists M > 0 such that for x, y ∈ Rd,

Jx(τ)− Jy(τ) ≤M
(
E
∫ τ

0
|Xx(s)−Xy(s)|ds+ E|Xx(τ)−Xy(τ)|

)
.

By a classical Grönwall argument, we have E|Xx(s) − Xy(s)| ≤ e3C2s|x − y| (see e.g. [32]

or [15, Chapter II, Theorem 10.1]). Since Ee3C2τ < ∞, the value function u is Lipschitz
continuous, and hence the condition (iv).

Now we prove the second part of the proposition. By taking τ = 0, we get u(x) ≥ g(x).
By (9), we have

Eg(Xx(τ)) ≤ a

1 +

d∑
i=1

|xi|+ E

(
d∑
i=1

∫ τ

0
|bi(Xx(s))|ds

)
+

d∑
i=1

d∑
j=1

E
∣∣∣∣∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣
 .
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Note that

E

(
d∑
i=1

∫ τ

0
|bi(Xx(s))|ds

)
≤ K1Eτ,

and according to the Burkholder-Davis-Gundy inequality (see [40, Chapter IV]), there exists
L > 0 such that for any 1 ≤ i, j ≤ n,

E
∣∣∣∣∫ τ

0
σij(X

x(s))dBj(s)

∣∣∣∣ ≤ LE
[(∫ τ

0
σ2
ij(X

x(s))ds

) 1
2

]
≤ LK2

√
Eτ .

Since supx∈Rd f(x) ≤ −c with c > K1, we get

u(x) ≤ a

[
1 +

d∑
i=1

|xi|+ sup
τ∈T

{
(K1 − c)Eτ + Ld2K2

√
Eτ
}]
≤ a

(
1 +

d∑
i=1

|xi|+
L2d4K2

2

4(c−K1)

)
,

which yields (8). �

Remark 1. Proposition 1 shows that under suitable conditions on b(·), σ(·), f(·), g(·), the
value function u is a viscosity solution to the variational inequality (6), and grows at most

linearly as |x| → ∞. The condition Ee3C2τ <∞ for stopping times is to assure the (Lipschitz)
continuity of the value function. This is reminiscent of the optimal stopping problem with an
exponential discount factor whose exponent is assumed to be sufficiently large, see e.g. [20].
Also note that neither Lemma 1 nor Proposition 1 is meant to be optimal, and it is possible
that the value function u is a viscosity solution to the variational inequality under weaker
conditions on b(·), σ(·), f(·), g(·). Our ultimate goal is to study the geometry properties of
the optimal stopping problem (1), and Proposition 1 is adequate for this purpose. Finding
minimal conditions to characterize a general optimal stopping problem by the variational
inequality is interesting on its own, but we will not pursue this direction.

Lemma 1 or Proposition 1 gives one direction of the program: the value function is a
viscosity solution to the variational inequality. To fully characterize the value function, it
requires to prove the converse; that is, the variational inequality has a unique viscosity
solution which is at most of linear growth. Under the assumptions of Proposition 1, it
is well known [20, 38] that for the optimal stopping problem with an exponential discount
factor, the associated variational inequality has a unique viscosity solution which is uniformly
continuous, or at most of linear growth. However, these results do not imply directly the
uniqueness of the solution to the variational inequality (6). In the next subsection, we will
show that under fairly general assumptions, the variational inequality of the optimal stopping
problem (5) has a unique viscosity solution which has sub-quadratic growth.

2.3. Uniqueness of the PDE solution. In this subsection, we prove that the PDE (6)–
(7) has a unique viscosity solution among all functions that have sub-quadratic growth, i.e.
lim|x|→∞ |u(x)|/|x|2 = 0, under the assumption that supx∈Ω |b(x)||x| < ∞. This is stronger
than the required uniqueness of the viscosity solution that has at most linear growth. We
employ the viscosity solution approach.

Theorem 1 (Comparison principle). Let Ω ⊆ Rd be open. Let the assumptions in Proposition
1 except c > K1 hold, and further assume that supx∈Ω |b(x)||x| < ∞. Let u1 and u2 be
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respectively a subsolution and a supersolution to (6) in Ω. If

lim sup
|x|→∞,x∈Ω

max{u1(x),−u2(x)}
|x|2

≤ 0, (10)

(with the convention sup∅ = −∞), and u2 ≥ u1 on ∂Ω, then we have u2 ≥ u1 in Ω.

Proof. Assume by contradiction that for some x′ ∈ Ω, we have δ′ := u1(x′) − u2(x′) > 0.
For any ε ∈ (0, 1), (10) yields that u1(x) − ε|x|2 and −u2(x) − ε

2 |x|
2 converge to −∞ as

(Ω 3)x→∞. Therefore, we can take ε > 0 to be small enough such that for any κ ∈ (1
2 , 1),

δ := sup
x∈Ω

u1(x)− (1− εκ)u2(x)− 2ε|x|2 ≥ u1(x′)− (1− εκ)u2(x′)− 2ε |x′|2

≥ 1

2
(u1(x′)− u2(x′)) =

δ′

2
.

(11)

Write uε2 := (1− εκ)u2. By the assumption that f ≤ −c in Rd, and that u2 is a supersolution
to (6), we obtain

− Luε2 ≥ (1− εκ)f ≥ f + cεκ and uε2 ≥ (1− εκ)g in Ω (12)

(in the viscosity sense).

Now for a fixed ε and for any α ≥ 1, define Φα : Ω× Ω→ R by

Φα(x, y) := u1(x)− uε2(y)− ε(|x|2 + |y|2)− α|x− y|2.
Using (10), u1 and u2 are continuous, and u2 ≥ u1 on ∂Ω, we can find xα, yα ∈ Ω such that

Φα(xα, yα) = sup
(x,y)∈Ω2

Φα(x, y) ≥ sup
x∈Ω

u1(x)− uε2(x)− 2ε|x|2 ≥ δ′

2
, (13)

where the last inequality is due to (11). Since (10) yields that xα, yα are uniformly bounded
for all α ≥ 1, it is clear that |xα − yα| → 0 as α→∞. Moreover, it follows that

|xα − yα|+ α|xα − yα|2 → 0 as α→∞. (14)

Now, due to (12) and that u1 is a subsolution to (6), the Crandall-Ishii lemma [10, Theorem
3.2] yields that there are symmetric d× d-matrices Xα, Yα satisfying the following:

− 6α

(
I 0
0 I

)
≤
(
Xα 0
0 −Yα

)
≤ 6α

(
I −I
−I I

)
, (15)

and

min

{
−1

2
Tr(σ(xα)σ(xα)TXα)− b(xα) · pα − f(xα), u1(xα)− g(xα)

}
≤ 0

≤ min

{
−1

2
Tr(σ(yα)σ(yα)TYα)− b(yα) · qα − f(yα)− cεκ, uε2(yα)− (1− εκ)g(yα)

}
,

(16)
where

pα := 2α(xα − yα) + 2εxα, qα := 2α(xα − yα)− 2εyα. (17)

First if u1(xα) ≤ g(xα), then (12), (13), the definition of Φα, and uε2(yα) ≥ (1 − εκ)g(yα)
yield

g(xα)− (1− εκ)g(yα)− ε(|xα|2 + |yα|2) ≥ Φα(xα, yα) ≥ δ′

2
. (18)
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Using (14), g(x) ≤ a(1 +
∑d

i=1 |xi|), and g is Lipschitz continuous, we get the right-hand side
of the above is no more than

Lip(g)|xα − yα|+ εκa

(
1 +

d∑
i=1

|(yα)i|

)
− ε|yα|2 ≤ Lip(g)|xα − yα|+ Caε

2κ−1,

due to εκs − εs2 ≤ 1
4ε

2κ−1 for all s ≥ 0. However notice that δ′ > 0 is independent of

ε, α. Therefore, if taking ε > 0 such that Caε
2κ−1 < δ′

4 (since κ ∈ (1
2 , 1)) and then α to be

sufficiently large, we get a contradiction from (18).

Next if u1(xα) > g(xα), by (16), we have

− 1

2
Tr(σ(xα)σ(xα)TXα)− b(xα) · pα − f(xα) ≤ 0. (19)

Multiplying the rightmost inequality in (15) by the following nonnegative symmetric matrix(
σ(xα)σ(xα)T σ(yα)σ(xα)T

σ(xα)σ(yα)T σ(yα)σ(yα)T

)
and taking traces yields

Tr(σ(xα)σ(xα)TXα)− Tr(σ(yα)σ(yα)TYα) ≤ 6αTr((σ(xα)− σ(yα))(σ(xα)T − σ(yα)T )).

Recall that σ is Lipschitz continuous, and so we get for some C > 0,

Tr(σ(xα)σ(xα)TXα)− Tr(σ(yα)σ(yα)TYα) ≤ Cα|xα − yα|2. (20)

Using |b(x)||x| ≤ C0 for some C0 > 0 by the assumption, the Lipschitz continuity of b and f ,
and (17) yield for some C > 0 (independent of ε, α) that

f(xα)− f(yα) ≤ C|xα − yα|,
b(xα) · pα − b(yα) · qα ≤ 2α(b(xα)− b(yα)) · (xα − yα) + 2εb(xα) · xα + 2εb(yα) · yα

≤ Cα|xα − yα|2 + 4εC0.

(21)

It then follows from (16), (19), (20), and (21) that

cεκ ≤ 1

2
Tr(σ(xα)σ(xα)TXα) + b(xα) · pα + f(xα)

− 1

2
Tr(σ(yα)σ(yα)TYα)− b(yα) · qα − f(yα)

≤ C
(
α|xα − yα|2 + |xα − yα|

)
+ 4C0ε.

(22)

However, if we take ε > 0 such that ε1−κ ≤ c
8C0

(which can be done since κ < 1), and then

α to be large enough, we get a contradiction by (14). The conclusion follows. �

Remark 2. If the condition (10) and supx∈Ω |b(x)||x| <∞ are replaced by

lim sup
|x|→∞,x∈Ω

max{u1(x),−u2(x)}
|x|β

<∞ and sup
x∈Ω
|b(x)||x|γ <∞ (23)

for some β ∈ [1, 2) and γ ∈ (β2 , 1), then the conclusion of the theorem still holds. To see this,
we need to modify the proof after (20). We use (23) and (13) to get for some C > 0,

ε(|xα|2 + |yα|2) ≤ u1(xα)− uε2(yα) ≤ C(|xα|β + |yα|β + 1),
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and so there exists a possibly different C > 0 such that for all ε ∈ (0, 1) and α > 0,

ε(|xα|1−γ + |yα|1−γ) ≤ Cε
1−β+γ

2−β + Cε ≤ Cε
1−β+γ

2−β

where we used 1−β+γ
2−β < 1 by γ < 1. Then (23) and the Lipschitz continuity of b yield

b(xα) · pα − b(yα) · qα ≤ 2αLip(b)|xα − yα|2 + 2ε(|b(xα)||xα|+ |b(yα)||yα|)

≤ Cα|xα − yα|2 + Cε
1−β+γ

2−β .

Using this in place of the second estimate in (21), (22) can be replaced by

cεκ ≤ C
(
α|xα − yα|2 + |xα − yα|

)
+ Cε

1−β+γ
2−β .

Since 1−β+γ
2−β > 1

2 by γ > β
2 , if taking κ ∈ (1

2 ,
1−β+γ

2−β ), then we get a contradiction as before

by taking ε to be sufficiently small and then α to be large.

Remark 3. Consider the optimal stopping problem with an exponential discount factor. If
the operator is given by

Lu(x) = −ρ(x)u(x) +
d∑
i=1

bi(x)
∂u

∂xi
(x) +

1

2

d∑
i,j=1

(σ(x)σ(x)T )ij
∂2u

∂xi∂xj
(x),

with ρ(·) Lipschitz continuous and infx∈Rd ρ(x) > 0, then the comparison principle holds
without the condition that supx∈Ω |b(x)||x| <∞. See e.g. [38] for details.

With this theorem, we are able to compare sub and supersolutions in Rd. The following
theorem provides a complete characterization of the optimal stopping problem (5) under
gerenal conditions.

Theorem 2. Let the assumptions in Proposition 1 hold, and assume that supx∈Ω |b(x)||x| <
∞. Then the value function u from Proposition 1 is the the unique viscosity solution to
the Bellman PDE (6) with Ω = Rd among all functions that have sub-quadratic growth at
infinity. Moreover, there exists γ > 0 independent of d such that g(x) ≤ u(x) ≤ g(x) + γd4

for all x ∈ Rd.

Proof. Proposition 1 implies that the value function u is a viscosity solution to the PDE
(6) which has at most linear growth. Then Theorem 1 yields that u is the unique viscosity
solution to (6) among all functions satisfying lim|x|→∞ |u(x)|/|x|2 = 0. �

Once the value function u is determined, then we construct an optimal strategy τ∗ by
Jx(τ∗) = u(x). To be more precise, starting at a position x ∈ {u > g}, the process will
continue until it enters the contact set:

τ∗ = inf{t > 0 : Bx(t) ∈ {u = g}}.

3. Star-shapedness of the Free Boundary

From now on, we specialize to the optimal stopping problem (1) with Ω = Rd, b = 0,
σ = Id, and

f(x) = −c and g(x) = max{x1, . . . , xd, 0}.
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The corresponding variational inequality is

min

{
−1

2
∆u+ c, u− g

}
= 0, (24)

where ∆ is the Laplacian operator
∑d

i=1 ∂
2/∂x2

i . By Theorem 2, the value function u of the
problem (1) is the unique viscosity solution to the Bellman PDE (6) among all functions
that have at most linear growth at infinity. The equation (24) is the focus of analysis in the
remaining of the paper.

The free boundary of u is defined as Γ(u) := ∂{x |u(x) > g(x)}. Several regularity results
of Γ(u) can be found in [8]. In this paper, we are interested in the global geometric property
of Γ(u). In this section we prove the star-shapedness.

Let S ⊆ Rd. We say that S is star-shaped if there exists a point z ∈ S such that for each
point s ∈ S the line segment connecting s and z lies entirely within S. We say that the free
boundary Γ(u) is star-shaped with respect to the origin if the set {u > g} is star-shaped with
z = 0. The star-shapedness property of a set rules out holes in the set.

Theorem 3. Let u be a solution to (24) in Rd. The free boundary Γ(u) is star-shaped with
respect to the origin.

Proof. To prove that the set {u > g} is star-shaped with respect to the origin, we only need
to show that if u(x) = g(x) for some x ∈ Rd, then u(tx) = g(tx) holds for all t ≥ 1.

Let v(x) := 1
tu(tx). We first show that v is a subsolution to (24). In fact, for any x ∈ Rd,

if v(x) > g(x) then
u(tx) > tg(x) = tmax{x1, . . . , xd, 0} = g(tx).

Thus, using that u is a solution to (24) yields

− 1

2
(∆u)(tx) ≤ −c in the viscosity sense. (25)

To show that −1
2∆v(x) ≤ −c in the viscosity sense, take any ϕ ∈ C2 that touches v at x from

above. Then ϕt(·) := tϕ(·/t) touches u at tx from above. It follows from (25) that

−1

2
(∆ϕt)(tx) = − 1

2t
∆ϕ(x) ≤ −c,

which implies −1
2∆ϕ(x) ≤ −tc ≤ −c. Therefore −1

2∆v(x) ≤ −c in the viscosity sense. So
we conclude that v is a subsolution, and it follows from the comparison principle that v ≤ u.
Now take x ∈ Rd such that u(x) = g(x). From the order of u and v, we get

u(tx) ≤ tu(x) = tg(x) = g(tx).

On the other hand, u(tx) ≥ g(tx) by definition, so we must have u(tx) = g(tx). �

Figure 1 shows the continuation and stopping regions, as well as the free boundary sep-
arating them in the case of d = 2. The figure illustrates the star-shapedness of the free
boundaries.

As shown by Figure 1, the optimal search strategy is quite intuitive—roughly speaking,
the DM should stop searching and adopt alternative i if and only if xi is relatively high
compared with xj and the outside option of 0, and she should stop searching and adopt the
outside option when both x1 and x2 are relatively low. When xj is relatively low, the DM
will continue to search on the two alternatives if and only if xi is near 0, so as to make a clear
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Adopt 2

Adopt 1

Parallel Search

Take

Outside

Option

x1

x2

Figure 1. Optimal parallel search strategy in two dimensions.

distinction between alternative i and the outside option. When both x1 and x2 are relatively
high, the DM will continue to search if and only if x1 and x2 are close to each other, so as to
to make a clear distinction between the two alternatives 1 and 2.

4. Asymptotics

In this section, we study the asymptotics of the free boundary. We provide a detailed
analysis for the case with d = 2. For general d ≥ 2, we show that the distance from the free
boundary to each point of x1 = . . . = xd > 0 is logarithmic in d, and the free boundary is
close to a columnal surface in the region where all xi are equally large.

4.1. Dimension of d = 2. Writing x = (x1, x2), the PDE (24) specializes to

min

{
−1

2
∆u+ c, u−max{x1, x2, 0}

}
= 0. (26)

The PDE (26) does not have an explicit solution, so it is natural to ask about the properties
of the solution, in particular those of free boundaries. There are three interesting regimes of
asymptotic behavior:

(1) x1 → 0 and x2 → −∞,
(2) x1 → −∞ and x2 → 0,
(3) x1 = x2 →∞.

The cases (1) and (2) boil down to the search problem of one alternative, since the other
alternative has large negative value and thus loses the competition to its counterpart. A
classical smooth-pasting technique [28] shows that the distance of the free boundaries to
x-axis (resp. y-axis) at −∞ is 1

4c , as illustrated in Figure 1. The case (3) is subtle, since the
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values of two products are close so there is a competitive search. One interesting question is
to determine the distance from the free boundary to the line x1 = x2 at infinity.

We first prove a lower bound on the free boundary Γ(u) in the region x1 + x2 ≥ 0 by the
following lemma.

Lemma 2 (Lower bound of the free boundary). Let

ηc (x1, x2) :=


x1 + x2

2
+
c|x1 − x2|2

2
+

1

8c
for |x1 − x2| ≤ 1

2c

x1 + x2

2
+
|x1 − x2|

2
for |x1 − x2| > 1

2c .
(27)

Then ηc is a subsolution to (26), and so u ≥ ηc in R2. In particular, we have

Γ(u) ∩ {x1 + x2 ≥ 0} ⊆
{
|x1 − x2| ≥

1

2c

}
.

Proof. It is direct to check that ηc satisfies (in the sense of viscosity)

min

{
−1

2
∆ηc + c, ηc −max{x1, x2}

}
= 0 in R2.

Thus ηc is a subsolution to (26) and the comparison principle yields u ≥ ηc in R2. Notice that
ηc = max{x1, x2} = g whenever |x1−x2| ≥ 1

2c and x1+x2 ≥ 0. Therefore, Γ(u)∩{x1+x2 ≥ 0}
lies inside {|x1 − x2| ≥ 1

2c}. �

The last conclusion of Lemma 2 can be viewed as a “lower bound” of Γ(u). To obtain an
“upper bound”, we need the following technical lemma.

Lemma 3. For any ε ∈ (0, c], let

ϕε(x1, x2) :=
1

4c
max{1−

√
2cε(x1 + x2), 0}2 + ηc−ε(x1, x2).

Then we have u(x1, x2) ≤ ϕε(x1, x2) for all x1, x2 such that x1 + x2 ≥ 0.

Proof. For any θ > 0, define

ψθ(t) :=


0 for t ≤ − 1

4θ

θ

(
t+

1

4θ

)2

for t ∈ (− 1
4θ ,

1
4θ )

t for t ≥ 1
4θ ,

(28)

which is a mollification of max{t, 0}. Then Ψ(x1, x2) := ψc/2(x1)+ψc/2(x2) satisfies ∆Ψ ≤ 2c
and g ≤ Ψ in the viscosity sense. Therefore, Ψ is a supersolution to (26) and so Ψ ≥ u. Note
that ψc/2(t) ≤ max{t, 0}+ 1

8c , and so

g(x1, x2) ≤ u(x1, x2) ≤ max {x1, 0}+ max {x2, 0}+
1

4c
.

Now we compare ϕε with u in the half plane x1 + x2 ≥ 0. On the boundary (x1 + x2 = 0),

ϕε(x1, x2) =
1

4c
+ ηc−ε(x1, x2) ≥ 1

4c
+ g(x1, x2) ≥ u(x1, x2).

It is not hard to see that ϕε ∈ C1 and ϕε(x1, x2) ≥ g(x1, x2) for all x1 + x2 ≥ 0. Moreover

if |x1 − x2| ≤ 1
2(c−ε) , direct computation yields ∆ϕε ≤ (2

√
cε)2

2c + 2(c − ε) ≤ 2c, and if
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|x1 − x2| ≥ 1
2(c−ε) , we again get ∆ϕε ≤ 2ε ≤ 2c in the viscosity sense. Finally, since both u

and ϕε have linear growth at infinity, applying Theorem 1 with Ω := {x1 + x2 > 0} yields
u ≤ ϕε in {x1 + x2 ≥ 0}. �

Lemmas 2 and 3 yield u(x1, x2) → ηc(x1, x2) as x1 + x2 → ∞. Based on this we can
obtain a quantitative description about the convergence of Γ(u) to Γ(ηc) = {|x1 − x2| = 1

2c}
as x1 + x2 → ∞. We denote the Hausdorff distance between the two free boundaries in the
region where x1 + x2 ≥ T as

dH(T ) := max

{
sup

x∈Γ(u) &x1+x2≥T
d(x,Γ(ηc)), sup

x∈Γ(ηc) &x1+x2≥T
d(x,Γ(u))

}
.

Proposition 2 (Upper bound of the free boundary). For the 2-dimension problem, we have

dH(T ) ≤ (2
√

2c3T 2)−1 for all T ≥ c−1.

Proof. Lemma 3 yields for all x1 +x2 ≥ 0 that u (x1, x2) ≤ ϕε(x1, x2). Thus if x1 +x2 ≥ 1√
2cε

,

we have u ≤ ϕε = ηc−ε. This, combining with u ≥ ηc by Lemma 2, shows if x1 + x2 ≥ 1√
2cε

,

u(x1, x2) ≥ max{x1, x2, 0} = g(x1, x2) if |x1 − x2| ≥
1

2c
;

u(x1, x2) ≥ c|x1 − x2|2

2
+

1

8c
+
x1 + x2

2
> g(x1, x2) if |x1 − x2| <

1

2c
;

u(x1, x2) ≤ g(x1, x2) if |x1 − x2| ≥
1

2(c− ε)
.

Hence for those (x1, x2) we have

u(x1, x2) > g(x1, x2) if |x1 − x2| <
1

2c
,

u(x1, x2) = g(x1, x2) if |x1 − x2| ≥
1

2(c− ε)
,

which implies that the coordinates of Γ(u) satisfies |x1 − x2| ∈ ( 1
2c ,

1
2(c−ε)) whenever T :=

x1 + x2 ≥ 1√
2cε

. Now take ε := 1
2cT 2 . Then for T ≥ c−1 (so ε ≤ c

2), we conclude

dH(T ) ≤ 1√
2

(
1

2(c− ε)
− 1

2c

)
=

ε

2
√

2c(c− ε)
≤ ε√

2c2
=

1

2
√

2c3T 2
.

�

As for the limit ηc(x1 +x2, x1−x2), the distance of the free boundary to the line of x1 = x2

is 1
23/2c

. Note that 1
23/2c

> 1
4c which is the distance of the free boundaries to x or y-axis at

−∞. This means that the search region is larger in case of competition. In other words,
people have larger tolerance for search if two products are as good as each other.
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4.2. General dimension. Now we study the asymptotic properties of the free boundary in
the general dimension d. We provide an “upper bound” and a “lower bound” of the distance
between the free boundary and each point on the positive diagonal x1 = x2 = . . . = xd > 0.
The two estimates show that such distance is logarithmic in d.

For the upper bound, we will show that the free boundary can not be too far away from
the set where g is not smooth i.e.

N(0) :=
{
x ∈ Rd |xi = xj = max{x1, . . . , xd} > 0 for some i 6= j,

or xi = max{x1, . . . , xd} = 0 for some i
}
.

We denote the d-dimensional cube centered at the origin with side length 2r as

Rr :=
{
x ∈ Rd |xi ∈ (−r, r) for all i

}
.

For any x ∈ Rd, denote Rr(x) := x + Rr. We write N(r) := Nr(N(0)) as the Rr-
neighbourhood of N(0). It turns out that using this Rr-neighbourhood is more convenient.
The following theorem presents the first main result of this section.

Theorem 4. Let d ≥ 2, and u be the solution to (24) in Rd. For any δ > 1, there exists
Cδ > 0 depending only on δ such that u(x) = g(x) for x /∈ N(c−1Cδ(ln d)δ). This implies
that Γ(u) ⊆ N(c−1Cδ(ln d)δ).

Proof. The proof is based on a barrier argument, and we use a mollification of g as the
barrier. Let α := 1

δ−1 > 0. Consider a smooth symmetric modifier ϕ : R→ [0,∞) as

ϕ(r) :=

{
cαe
− 1

(1−r2)α if |r| ≤ 1,
0 if |r| > 1,

and the numerical constant cα := (
∫
R e
− 1

(1−r2)α dr)−1 ensures normalization. For some h > 0

to be determined, set ϕh(r) := hϕ(hr), and then Φh(x) := Πd
i=1ϕh(xi). We claim that

gh := Φh ∗ g =

∫
Rd

Φh(x− y)g(y)dy (29)

is a supersolution to (24) if h is small enough. Since gh is smooth, it suffices to show that
gh ≥ g and ∆gh ≤ 2c in Rd in the classical sense.

Note that Φh ∗ xi = xi for each i ∈ {1, . . . , d} (since Φh is symmetric in xi-direction), and
g = max{x1, . . . , xd, 0}. Therefore we have gh = Φh ∗ g ≥ g. Next to compute ∆gh, since
∆gh = ∇Φh ∗ ∇g, and |∇g| ≤ 1, we obtain

∆gh(x) ≤
∫
Rd

max
{ ∣∣ϕ′h(xi)

∣∣∏
j 6=i

ϕh(xj), 1 ≤ i ≤ d
}
dx

= h

∫
[−1,1]d

max
{ ∣∣ϕ′(xi)∣∣∏

j 6=i
ϕ(xj), 1 ≤ i ≤ d

}
dx =: hA.

(30)

Note that for any ε ∈ (0, 1), if r ∈ [−1 + ε, 1− ε], direct computation yields∣∣ϕ′(r)∣∣ =
2α|r|

(1− r2)α+1
cαe
− 1

(1−r2)α ≤ 2αε−α−1ϕ(r).
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Hence, by using the symmetry of ϕ and
∫

[−1,1] ϕ(r)dr = 1, we obtain

A ≤
∫

[−1+ε,1−ε]d
max

{ ∣∣ϕ′(xi)∣∣∏
j 6=i

ϕ(xj), 1 ≤ i ≤ d
}
dx

+ 2d

∫ −1+ε

−1
ϕ′(x1)dx1

∫
[−1,1]d−1

∏
2≤i≤d

ϕ(xi)dx2...dxd

≤ 2αε−α−1

∫
[−1,1]d

d∏
i=1

ϕ(xi)dx+ 2dϕ(−1 + ε)

∫
[−1,1]d−1

∏
2≤i≤d

ϕ(xi)dx2...dxd

≤ 2αε−α−1 + 2dcαe
− 1

(2ε)α .

Now picking ε := 1
2(ln d)−

1
α yields A ≤ Cα(ln d)

1+α
α = Cα(ln d)δ for some Cα > 0 depending

only on α. It follows from (30) that ∆gh ≤ 2c if we pick h := 2c
Cα(ln d)δ

. Thus, with this choice

of h, we conclude that gh is a supersolution and so the comparison principle yields gh ≥ u.

Now for any x /∈ N(h−1) with h = 2c
Cα(ln d)δ

, we have gh(x) = g(x) because g(y) = yi for

some i ∈ {1, . . . , d} for all y ∈ R1/h(x), and Φh is supported in R1/h. Hence outside N(h−1),
we must have gh = g ≥ u. However u ≥ g by the equation, and so we get u = g for x /∈
N(h−1), which implies the conclusion with Cδ := Cα

2 . �

Since the ray {x1 = x2 = . . . = xd > 0} ⊆ N(0), the theorem implies that for any point on
the ray (say x0 = (a, . . . , a) for some a > 0), Γ(u) can not be more than ∼ Rδ := c−1Cδ(ln d)δ

away from it. Actually, we can take x := (a + 2Rδ, a, . . . , a), and then clearly x ∈ N(Rδ)
c.

Thus according to Theorem 4, u(x) = g(x) and so there must be a free boundary point
that resides on the line segment connecting x and x0 (since u(x0) > g(x0) by Theorem
5 below). Therefore the distance from x to Γ(u) is smaller than

√
2Rδ for d ≥ 2 (since∣∣x− (a+ 2Rδ

d , . . . , a+ 2Rδ
d )
∣∣ = 2Rδ

√
1− 1/d).

Below we show the counterpart of Theorem 4 and conclude that the distance between Γ(u)
and each point on the ray x1 = . . . = xd > 0 is logarithmic in d. For each r > 0, we denote
the Rr-neighbourhood of the ray as

N0(r) := Rr({x ∈ Rd |x1 = x2 = . . . = xd > 0}).

Theorem 5. Let u be the solution to (24) in Rd. If d is sufficiently large, we have u > g in

N0(1
3

√
ln d). This implies that for these d, Γ(u) ⊆ (N0(1

3

√
ln d))c.

Proof. Fix any a > 0, and then any x ∈ R√ln d/3((a, . . . , a)) (hence |xi − a| <
√

ln d/3). To

prove the theorem, it suffices to show that u(x) > g(x) if d is sufficiently large (independent of
a, x). It is well-known [14, Exercise 3.2.3] that for Z1, . . . , Zd i.i.d. N (0, 1), E [max1≤i≤d Zi] ∼√

2 ln d as d→∞. This implies that for all d large enough,

E
[
max

(
Bx1

1 (1), . . . , Bxd
d (1), 0

)]
≥ E [max (B1(1), . . . , Bd(1))] + min{x1, . . . , xd}

≥ 2

3

√
ln d+ a.
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Now, further assuming that d > exp(9c2), we obtain

u(x) ≥ E
[
max

(
Bx1

1 (1), . . . , Bxd
d (1), 0

)]
− c > a+

1

3

√
ln d ≥ g(x).

This concludes the proof. �

Now we are going to show that, for each d ≥ 1, as
∑d

i=1 xi →∞, Γ(u) is close to a columnal
surface, which is the free boundary of the following problem. Let ρd := max{x1, x2, . . . , xd},
and consider

min

{
−1

2
∆wd + c, wd − ρd

}
= 0 in Rd. (31)

Clearly we have u ≥ wd due to g ≥ ρd. When d = 1, 2, it is direct to check that

w1(·) = ψc(·) and w2(·, ·) = ηc (·, ·) ,
where ψc is given by (28) and ηc is given by (27).

We write the positive x1, . . . , xd directions as e1, . . . , ed respectively, and then

τd :=

∑d
i=1 ei√
d

, Hτd := {x ∈ Rd |x · τd = 0}. (32)

The following lemma shows that Γ(wd) (the set ∂{wd > ρd}) is a columnal surface.

Lemma 4. wd(x)−
∑d

i=1 xi/d is a constant function in τd-direction. Therefore Γ(wd) is the
surface of one infinitely long columnar with τd as its longitudinal axis.

Proof. We use the cylindrical coordinates. For each x ∈ Rd, write x := t(x)τd + y(x), where

t(x) := x · τd, and y(x) ∈ Hτd . Then v(x) := wd(x)− t(x)√
d

solves

min

{
−1

2
∆v + c, v −

(
ρd(x)− t(x)√

d

)}
= 0 in Rd. (33)

Notice that shifts in the τd-direction preserve the value of (ρd(x) − t(x)√
d

). Therefore by

uniqueness of solutions to (33), we have v(x) = v(x+ sτd) for all s ∈ R.

To prove the second claim, take any x ∈ Rd, and let y = y(x), t = t(x) be as before. We
have wd(y) = ρd(y) if and only if wd(y) + t√

d
= ρd(y) + t√

d
, which is then equivalent to

(writing y = (y1, y2, . . . , yd))

wd(x) = max{y1, y2, . . . , yd}+
t√
d

= max{x1, x2, . . . , xd} = ρd(x).

This implies that Γ(wd) = {y + tτd | y ∈ Γ(wd) ∩Hτd , t ∈ R}. �

Finally, we show that Γ(u) can be arbitrarily close to Γ(wd) (in Hausdorff distance) in a

R-neighbourhood of the ray {x1 = . . . = xd > 0} for any R ≥ 1 when
∑d

i=1 xi is large.

Proposition 3. There exists a universal constant γ > 0 such that the following holds for all
d ≥ 2. For any ε ∈ (0, 1), and R ≥ 1,

max

 sup

x∈Γ(u) &
∑d
i=1 xi≥

γ ln d
c

√
d
ε

|x−(x·τd)τd|≤R

d(x,Γ(wd)), sup

x∈Γ(wd) &
∑d
i=1 xi≥

γ ln d
c

√
d
ε

|x−(x·τd)τd|≤R

d(x,Γ(u))

 ≤ Rε.
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Proof. We start with proving an upper bound of u−g, which improves the estimate in (8) for
special equations. Let C2 be from Theorem 4 with δ = 2, and then let gh with h := c

C2(ln d)2

be from (29). Then it follows from the proof of the theorem that gh ≥ u. Since gh = Φh ∗ g
where Φh is a modifier supported in R1/h, the definitions of g and Φh yield for all x ∈ Rd,

|gh(x)− g(x)| ≤ sup
y∈R1/h(x)

|g(x)− g(y)| ≤ h−1.

Thus, we get

u(x)− g(x) ≤ gh − g ≤ h−1 = c−1C2(ln d)2 for all x ∈ Rd. (34)

Now for any ε ∈ (0, 1), define wεd := (1− ε)−1wd((1− ε)x), which then solves

min

{
−1

2
∆wεd + (1− ε)c, wεd − ρd

}
= 0

(recall ρd = max{x1, x2, . . . , xd}). Next we slightly perturb wεd as

ψεd(x) := h−1
(

max
{

1− T−1
ε

√
d x · τd, 0

})2
+ wεd(x),

and we claim that ψεd is a supersolution to (24) in the half hyperplane D :=
{∑d

j=1 xj > 0
}

.

Indeed, using (34) and wεd ≥ ρd = g on D, we obtain

ψεd(x) = h−1 + wεd(x) ≥ h−1 + g(x) ≥ u(x) for any x ∈ ∂D = Hτd .

Taking Tε :=
√

d
cεh = ln d

c

√
C2d
ε , then ∆wεd ≤ 2(1− ε)c in D (in the viscosity sense) yields

∆ψεd(x) ≤ 2dh−1T−2
ε + 2(1− ε)c = 2c in D.

Thus ψεd is a supersolution, and then Theorem 1 with Ω := D yields ψεd ≥ u in D. In

particular, if x · τd
√
d ≥ Tε (i.e.

∑d
i=1 xi ≥ Tε), we have ψεd = wεd ≥ u ≥ wd. Writing

Γ(wεd) := ∂{wεd > g} as before, we obtain that Γ(u) lies between Γ(wd) and Γ(wεd) in {x ∈
Rd |

∑d
i=1 xi ≥ Tε}.

Therefore it remains to estimate the distance between Γ(wd) and Γ(wεd). By Lemma 4, it
suffices to compare them on Hτd . From the definition of wεd, for any R ≥ 1, the Hausdorff
distance between Γ(wd) ∩Hτd ∩ {|x| < R} and Γ(wεd) ∩Hτd ∩ {|x| < R} is bounded by Rε.
This finishes the proof. �
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