CM Sepharose Fast Flow
DEAE Sepharose Fast Flow
Q Sepharose Fast Flow
SP Sepharose Fast Flow
Table of contents

1. Preparing the gel 4
2. Assembling the column 4
3. Packing the column 5
4. Equilibration 6
5. Sample preparation 6
6. Operating flow rates 7
7. Binding 7
8. Elution 8
9. Regeneration 9
10. Cleaning-in-place (CIP) 9
11. Sanitization 10
12. Storage 10
 Appendix A 11
 Appendix B 12
 Appendix C 14
13. Ordering information 17
CM Sepharose™ Fast Flow, DEAE Sepharose Fast Flow, Q Sepharose Fast Flow and SP Sepharose Fast Flow are ion exchange chromatography media with excellent flow properties and high capacity for biomolecules.

The instructions that follow are based upon packing Sepharose Fast Flow ion exchange media in the recommended XK 16/20 Column. To modify these instructions for columns of different dimensions, refer to Appendix A.

Detailed information on the technique of ion exchange can be found in the handbook “Ion Exchange Chromatography and Chromatofocusing: Principles and Methods” from GE Healthcare.

Material needed

Sepharose Fast Flow ion exchange media
Column XK 16/20
Pump (HiLoad™ Pump P-50 or High Precision Pump P-500)
Gradient mixer
Injection valve (LV-3 or LV-4)
Graduated cylinder or beaker
Vacuum flask and pump
5 ml syringe
Glass rod
Packing buffer

The packing buffer should be the same as the binding buffer. See Tables 2 and 3 in Appendix C for buffer recommendations.
High viscosity buffers should not be used during packing. If such buffers are required for the separation, equilibrate the column in the high viscosity buffer at a reduced flow rate when packing is completed.

1. Preparing the gel
 1. Equilibrate all material to room temperature.
 2. Sepharose Fast Flow ion exchange media are supplied preswollen in 20% ethanol. Decant the ethanol solution and replace it with packing buffer to a total volume of 32.5 ml (75% settled gel: 25% buffer).
 3. Degas the slurry under vacuum.

2. Assembling the column
 1. Details of the column parts can be found in the instructions supplied with the column. Before packing ensure that all parts, particularly the nets, net fasteners and glass tube, are clean and intact.
 2. Connect the column bottom end piece to a pump or syringe. Submerge the end piece in buffer and fill it using the pump or syringe. Ensure that there are no air bubbles trapped under the net. Close the tubing with a stopper and mount the end piece on the column.
 3. Flush the column with buffer, leaving a few ml at the bottom. Mount the column vertically on a laboratory stand.
3. Packing the column

The instructions that follow are for packing Sepharose Fast Flow ion exchange media in the recommended XK 16/20 Column. To modify these instructions for columns of different dimensions, refer to Appendix A.

1. Pour the gel slurry into the column in one continuous motion. Pouring down a glass rod held against the wall of the column helps prevent the introduction of air bubbles. Fill the remainder of the column with buffer.

2. Wet the column adaptor by submerging the plunger end in buffer, and drawing buffer through with a syringe or pump. Ensure that all bubbles have been removed. Disconnect the pump or syringe. Insert the adaptor into the top of the column at an angle, taking care not to trap air under the net. Tighten the adaptor O-ring to give a sliding seal on the column wall.

3. Fit a syringe barrel to the sample application valve and connect the valve between the adaptor and the pump. With the valve in the sample application position, slide the adaptor down into the column. This will displace all air in the tubing as far as the sample appliction valve. Switch the valve a few times to remove any trapped bubbles. Continue inserting the adaptor until it reaches the gel slurry. Tighten the O-ring and lock the adaptor in position.
4. Open the bottom outlet of the column and start the pump. Pack the gel at a flow rate of 12–14 ml/min. Pack at this flow rate until the bed height is constant (normally 4 to 5 minutes).

Note: Ideally, Fast Flow media are packed at a constant pressure of 0.2 MPa (2 bar) for a 16 mm diameter column.

5. Stop the pump, close the column outlet, loosen the adaptor O-ring to give a sliding seal and re-position the adaptor on the surface of the gel bed. Press the adaptor into the surface of the gel an additional 1–2 mm. Lock the adaptor in position, open the column outlet and start the pump at the column packing flow rate.

If the bed continues to pack, repeat step 5. When the gel bed is stable, the column is packed equilibrated and ready for use. If required, the quality of packing can be checked using the testing procedure described in Appendix B.

4. **Equilibration**

To equilibrate, pump approximately 100 ml of start buffer through the column at a flow rate of 8–10 ml/min. The column is fully equilibrated when the pH and/or conductivity of the effluent is the same as the start buffer.

5. **Sample Preparation**

The amount of sample that can be applied to the column depends on the available capacity of the ion exchanger and the
degree of resolution required. For best resolution it is usually not advisable to exceed 10–20% of the available capacity. See Table 1 in Appendix C for capacity guidelines.

The sample should be dissolved in start buffer. Alternatively the sample may be transferred to start buffer by dialysis or by buffer exchange using a HiTrap™ Desalting or a PD-10 disposable gel filtration column. The viscosity of the sample should not exceed that of the buffer. For normal aqueous buffer systems, this corresponds to a protein concentration of approximately 50 mg/ml.

Before application the sample should be centrifuged or filtered through a 0.45 μm filter to remove any particulate matter.

6. Operating flow rates

The flow rate used for sample binding and subsequent elution will depend on the degree of resolution required, but is normally within the range 10–15 ml/min (300–450 cm/h). The lower the flow rate, the better the resolution.

7. Binding

The most common procedure in ion exchange is to bind the molecules of interest, while allowing contaminants to pass through the column. In some cases, however, it may be more useful to bind the contaminants and allow the molecules of interest to pass.
For efficient binding, the ionic strength of the starting buffer must be low. The pH should be at least one pH unit different from the isoelectric point (pI) of the molecules to be bound and within 0.5 pH units of the selected buffer salt’s pKa.

Note: For DEAE and Q Sepharose Fast Flow, the starting buffer must be at least one pH unit above the pI of the molecule to be bound. For CM and SP Sepharose Fast Flow, the starting buffer must be at least one pH unit below the pI of the molecule to be bound. Recommended buffers for different pH’s can be found in Appendix C, Tables 2 and 3.

8. Elution

A linear gradient of increasing sodium chloride concentration is the most commonly used elution method in ion exchange. A suggested gradient is from start buffer containing no NaCl to start buffer containing 0.5 M NaCl over a volume of 400 ml. Increase the salt concentration if the substance of interest is not eluted in the gradient.

Linear pH gradients and stepwise salt concentration and pH gradients may be useful in some circumstances. For further information please refer to “Ion Exchange Chromatography and Chromatofocusing, Principles and Methods”.
9. Regeneration

Regeneration is normally performed by washing with a high ionic strength buffer (e.g. start buffer containing 1–2 M NaCl) and/or changing pH, followed by re-equilibrating in starting buffer. Regeneration can be carried out at flow rates of 8–10 ml/min. Monitor the UV absorbance during regeneration to determine when bound substances have been completely washed out of the column.

In some applications, substances such as denatured proteins or lipids do not elute in the regeneration procedure. These can be removed by cleaning-in-place procedures.

10. Cleaning-in-place (CIP)

Remove ionically bound proteins by washing the column at 1–1.5 ml/min in a reversed flow direction with 10 ml of a 2 M NaCl solution, contact time 10–15 minutes.

Remove precipitated proteins, hydrophobically bound proteins and lipoproteins by washing the column in a reversed flow direction with 100 ml 1 M NaOH solution at a flow rate of 1.2–1.4 ml/min.

Remove strongly hydrophobically bound proteins, lipoproteins and lipids by washing the column in a reversed flow direction with 80 ml of 70% ethanol or 30% isopropanol at a flow rate of 1.2–1.4 ml/min. Apply increasing concentration gradients to avoid air bubble formation, when using high concentrations of organic solvents.
After cleaning the column, equilibrate with approximately 100 ml of start buffer before use.

11. Sanitization

Sanitization reduces microbial contamination of the gel bed to a minimum.

Wash the column in the reversed flow direction for 30–60 minutes with 0.5–1 M NaOH, at a flow rate of 1.2–1.4 ml/min. Re-equilibrate the column with approximately 100 ml sterile start buffer.

12. Storage

Unopened media can be stored at +4 °C to +30 °C. Used Q, DEAE and CM Sepharose Fast Flow media and columns filled with these media should be stored in 20% ethanol at +4 °C. Used SP Sepharose Fast Flow media and columns filled with this media should be stored in 20% ethanol and 0.2 M sodium acetate at +4 °C.
Appendix A

Converting to columns of different dimensions

Flow rates

Flow rates quoted in this instruction are for an XK 16/20 column. To convert flow rates for columns of different dimensions:

1. Divide the volumetric flow rates (ml/min) quoted by a factor of 2 (the cross-sectional area in cm² of the XK 16/20) to give the linear flow rate in cm/min.

2. Maintain the same linear flow rate and calculate the new volumetric flow rate according to the cross-sectional area of the specific column to be used.

\[
\text{Linear flow rate} = \frac{\text{Volumetric flow rate}}{\text{Column cross-sectional area}}
\]

Volumes

Volumes (buffers, gradients, etc.) quoted in this instruction are for an XK 16/20 column that has a bed volume of 20 ml (bed height × cross-sectional area). To convert volumes for columns of different dimensions, increase or decrease in proportion to the new column bed volume.

\[
\text{New volume} = \text{Old volume} \times \frac{\text{New bed volume}}{\text{Old bed volume}}
\]
Appendix B;
Testing the packed column

To check the efficiency of the column packing, determine the theoretical plate number and peak symmetry. If the column is packed according to the instructions described above typical values should be:

Efficiency: \(N > 3,000 \) theoretical plates per meter
Peak symmetry: \(A_S = 0.80 - 1.50 \)

Solutions required

20\% (v/v) ethanol in distilled water
Sample: acetone 0.2\% (v/v) in 20\% ethanol

1. Establish a flow rate of 4 ml/min (i.e., a linear flow rate of 120 cm/hour) through the packed XK 16/20 column with 20\% ethanol. Set the monitor at 280 nm at an absorbance of 1.0 AUFS for a 10 mm path length cell. Run the chart recorder at a minimum of 10 cm/min. Zero the monitor and chart recorder.

2. Inject 200 \(\mu l \) acetone (100 \(\mu l \) per cm\(^2\) cross-sectional area) onto the column at a flow rate of 4 ml/min (linear flow rate of 120 cm/hour). Record the absorbance from the time of injection until the acetone peak has been detected and the monitor signal has returned to baseline. If the chart recorder tracing of the acetone peak is not at least 70\% of the full scale chart deflection, increase the sensitivity of the monitor setting accordingly and re-run.

p. 12
3. Calculate the column efficiency (plate number).

Referring to the figure below, calculate the column efficiency (N) as follows:

\[N = 5.54 \left(\frac{V_e}{W_{1/2}} \right)^2 \times (1000/L) \]

Referring to the figure below, calculate the symmetry factor \(A_s \) by the formula:

\[A_s = \frac{b}{a} \]

Column: BPG 300
Media: Sepharose 6 Fast Flow
Bed height: 57.5 cm
Bed volume: 40.6 litres
Eluent: Distilled water
Sample: 1.05 litres (1% acetone)
Flow rate: 19 cm/h
\(W_{1/2} = 0.9 \)
HETP = 0.024 cm
a: 0.90
b: 0.85
\(A_f = 0.94 \)

4. **Troubleshooting.** If the efficiency is low (i.e., \(N < 3,000 \) plates per meter), repeat column packing step 5, and re-test the column.
If the peak tails badly (i.e., \(A_s > 1.3 \)), repeat column packing step 5, and re-test the column.
If the peak fronts badly (i.e., \(A_s < 0.7 \)), empty the gel from the column, re-pack the column, and re-test.
Appendix C

Tables

Table 1. Gel characteristics

<table>
<thead>
<tr>
<th>Type of exchanger</th>
<th>CM</th>
<th>diethylaminoethyl</th>
<th>DEAE</th>
<th>sulphopropyl</th>
<th>SP</th>
<th>quaternary amine</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>carboxymethyl</td>
<td>weak cation</td>
<td></td>
<td>weak anion</td>
<td>strong cation</td>
<td>strong anion</td>
<td></td>
</tr>
<tr>
<td>Total ionic capacity:</td>
<td>CM 0.09–0.13 mmol/ml gel</td>
<td>DEAE 0.11–0.16 mmol/ml gel</td>
<td>SP 0.18–0.25 mmol/ml gel</td>
<td>Q 0.18–0.25 mmol/ml gel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available capacity:</td>
<td>IgG (W 160 000)</td>
<td>15 mg/ml</td>
<td>Bovine COHb (Mw 69 000)</td>
<td>30 mg/ml</td>
<td>Ribonuclease (Mw 13 700)</td>
<td>50 mg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thyroglobulin (Mw 669 000)</td>
<td>3.1 mg/ml</td>
<td>HSA (Mw 68 0000)</td>
<td>110 mg/ml</td>
<td>a-lactalbumin (Mw 14 300)</td>
<td>100 mg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEAE Ribonuclease (Mw 13 700)</td>
<td>70 mg/ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP Thyroglobulin (Mw 669 000)</td>
<td>3 mg/ml</td>
<td>HSA (Mw 68 0000)</td>
<td>120 mg/ml</td>
<td>x-lactalbumin (Mw 14 300)</td>
<td>110 mg/ml</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bead structure: 6% highly cross-linked agarose
Bead size range: 45–165 μm
Mean particle size: 90 μm
Max. flow rate (XK 16/20): 25 ml/min
Max. linear flow rate: 750 cm/hour
Max. operating pressure: 0.3 MPa (3 bar, 42 psi)
pH working range:
<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>DEAE</th>
<th>SP</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6–10</td>
<td>2–9</td>
<td>4–13</td>
<td>2–12</td>
</tr>
</tbody>
</table>
pH stability*:
| | long term | short term |
| CM | 4–13 | 2–14 |
| DEAE | 3–12 | 1–14 |
| SP | 4–13 | 3–14 |
| Q | 2–12 | 1–14 |
Chemical stability: All commonly used aqueous buffers, 1.0 M NaOH, 8 M Urea, 8 M guanidine hydrochloride, 70% ethanol (tested at 40 °C for 7 days).
Physical stability: Negligible volume variation due to changes in pH or ionic strength.
Autoclavable: With counter-ions (CM & SP: Na⁺; DEAE & Q: Cl⁻) at 121 °C, pH 7 for 30 min.

* pH stability, long term refers to the pH interval where the gel is stable over a long period of time without adverse effects on its subsequent chromatographic performance.

pH stability, short term refers to the pH interval for re-generation, cleaning-in-place and sanitization procedures. All ranges given are estimates based on our knowledge and experience.
Table 2. Suggested buffers for use with DEAE Sepharose Fast Flow and Q Sepharose Fast Flow.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Counter ion</th>
<th>Concentration</th>
<th>pKa (25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-methylpiperazine</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>4.8</td>
</tr>
<tr>
<td>piperazine</td>
<td>Cl⁻, HCOO⁻</td>
<td>20 mM</td>
<td>5.7</td>
</tr>
<tr>
<td>L-histidine</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>6.0</td>
</tr>
<tr>
<td>bis-Tris</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>6.5</td>
</tr>
<tr>
<td>bis-Tris propane</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>6.8</td>
</tr>
<tr>
<td>triethanolamine</td>
<td>Cl⁻, CH₃COO⁻</td>
<td>20 mM</td>
<td>7.8</td>
</tr>
<tr>
<td>Tris</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>8.1</td>
</tr>
<tr>
<td>N-methyldiethanolamine</td>
<td>SO₄²⁻, Cl⁻, CH₃COO⁻</td>
<td>50 mM</td>
<td>8.5</td>
</tr>
<tr>
<td>diethanolamine</td>
<td>Cl⁻</td>
<td>20 mM at pH 8.4</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 mM at pH 8.8</td>
<td></td>
</tr>
<tr>
<td>1,3-diaminopropane</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>8.6</td>
</tr>
<tr>
<td>ethanolamine</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>9.5</td>
</tr>
<tr>
<td>piperazine</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>9.7</td>
</tr>
<tr>
<td>1,3-diaminopropane</td>
<td>Cl⁻</td>
<td>20 mM</td>
<td>10.5</td>
</tr>
</tbody>
</table>
Table 3. Suggested buffers for use with CM Sepharose Fast Flow and SP Sepharose Fast Flow.

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Counter ion</th>
<th>Concentration</th>
<th>pKa (25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate</td>
<td>Na(^+), Li(^+)</td>
<td>20 mM</td>
<td>3.1</td>
</tr>
<tr>
<td>Acetate</td>
<td>Na(^+), Li(^+)</td>
<td>50 mM</td>
<td>4.8</td>
</tr>
<tr>
<td>Malonate</td>
<td>Na(^+), Li(^+)</td>
<td>50 mM</td>
<td>5.7</td>
</tr>
<tr>
<td>Phosphate</td>
<td>Na(^+)</td>
<td>50 mM</td>
<td>7.2</td>
</tr>
<tr>
<td>BICINE</td>
<td>Na(^+)</td>
<td>50 mM</td>
<td>8.4</td>
</tr>
</tbody>
</table>

13. Ordering Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Pack size</th>
<th>Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM Sepharose Fast Flow</td>
<td>25 ml</td>
<td>17-0719-10</td>
</tr>
<tr>
<td>DEAE Sepharose Fast Flow</td>
<td>25 ml</td>
<td>17-0709-10</td>
</tr>
<tr>
<td>SP Sepharose Fast Flow</td>
<td>25 ml</td>
<td>17-0729-10</td>
</tr>
<tr>
<td>Q Sepharose Fast Flow</td>
<td>25 ml</td>
<td>17-0510-10</td>
</tr>
</tbody>
</table>
Related Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column XK 16/20</td>
<td>18-8773-01</td>
</tr>
<tr>
<td>Valve LV-3</td>
<td>19-0016-01</td>
</tr>
<tr>
<td>Valve LV-4</td>
<td>19-0017-01</td>
</tr>
<tr>
<td>HiLoad Pump P-50</td>
<td>19-1992-01</td>
</tr>
<tr>
<td>High Precision Pump P-500</td>
<td>18-1003-65</td>
</tr>
<tr>
<td>HiTrap Desalting column 5×5 ml</td>
<td>17-1408-01</td>
</tr>
<tr>
<td>Disposable Columns PD-10 30</td>
<td>17-0851-01</td>
</tr>
<tr>
<td>Gradient Mixer GM-1, 110V</td>
<td>19-0495-01</td>
</tr>
<tr>
<td>Gradient Mixer GM-1, 220V</td>
<td>19-0485-01</td>
</tr>
<tr>
<td>Ion Exchange Chromatography and Chromatofocusing: Principles and Methods</td>
<td>11-0004-21</td>
</tr>
<tr>
<td>Column Packing, The Movie</td>
<td>18-1165-33</td>
</tr>
</tbody>
</table>
www.gehealthcare.com/protein-purification
www.gehealthcare.com

GE Healthcare Bio-Sciences AB
Björkgatan 30
751 84 Uppsala
Sweden

GE Healthcare Europe GmbH
Munzinger Strasse 5
D-79111 Freiburg
Germany

GE Healthcare UK Ltd.
Amersham Place
Little Chalfont
Buckinghamshire, HP7 9NA
UK

GE Healthcare Bio-Sciences Corp.
800 Centennial Avenue
P.O. Box 1327
Piscataway, NJ 08855-1327
USA

GE Healthcare Bio-Sciences KK
Sanken Bldg.
3-25-1, Hyakunincho
Shinjuku-ku, Tokyo 169-0073
Japan

Sepharose, HiTrap, HiLoad, and Drop Design are trademarks of GE Healthcare companies. GE, imagination at work and GE monogram are trademarks of General Electric Company.

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. GE Healthcare reserves the right, subject to any regulatory and contractual approval, if required, to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your local GE Healthcare representative for the most current information.

© 2006 General Electric Company – All rights reserved.

GE Healthcare AB, a General Electric Company.