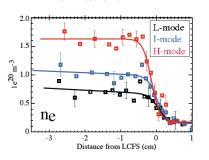
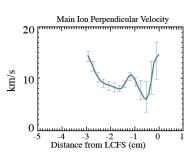
Two-Dimensional Magnetohydrodynamic Simulations of Time-Dependent Poloidal Flow.

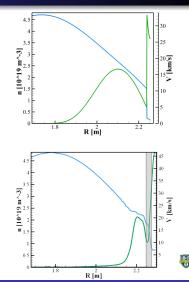
L. Guazzotto R. Betti


University of Rochester and Laboratory for Laser Energetics


2010 International Sherwood Fusion Theory Conference Seattle, WA, April 19-21 2010

Motivation: Experimental Measurements Show Poloidal Flows of Tens km/s Near the Edge Pedestal.

 Poloidal flows in tokamaks are receiving an increasing attention, as newer and better flow measurements enhance the amount of available experimental information.¹



¹Figures courtesy of R. McDermott

Motivation: MHD Equilibrium Theory Predicts the Formation of a Pedestal in the Presence of Transonic Poloidal Flows

- When the poloidal velocity is transonic with respect to the poloidal sound speed $(C_{sp} \equiv C_s B_p/B)$, at equilibrium a discontinuity/pedestal is present at the transonic surface^a.
- This discontinuity is a contact discontinuity, NOT a shock.

 $a_{
m R.}$ Betti and J. P. Freidberg, Phys. Plasmas **7**, 2439 (2000)

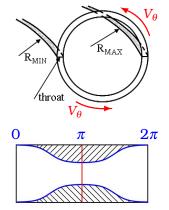
Motivation: MHD Equilibrium Theory Predicts the Formation of a Pedestal in the Presence of Transonic Poloidal Flows

- Equilibrium calculations confirm the prediction of theory²
- Using time-dependent simulations, we want to verify that the transonic equilibrium is dynamically accessible.

Transonic

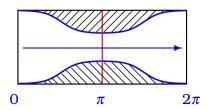
Density profile in a transonic equilibrium.

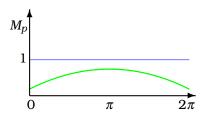
²L. Guazzotto, R. Betti, J. Manickam and S. Kaye, Phys. Plasmas, **11**, 604 (2004)

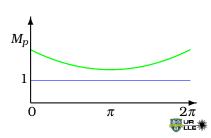

Outline

- Time-dependent ideal MHD simulations in the presence of transonic poloidal flow are presented.
- Time-dependent (SIM2D) and equilibrium (FLOW) results are compared and found in qualitative agreement.
- Calculations use the ideal MHD model:
 - Transients show the formation of shocks, which are likely not physical;
 - The shock-less steady state is believed to be accurate.
- The steady-state has contact discontinuities / pedestals.

The Magnetic Field Creates a De Laval Nozzle for the Poloidal Flow

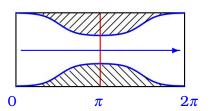

- In ideal MHD, the plasma cannot flow across magnetic surfaces.
- Due to toroidal geometry, in a tokamak the flow area between any two nested magnetic surfaces varies with the poloidal angle.
- For the poloidal flow, nested magnetic surfaces act as a de Laval nozzle.

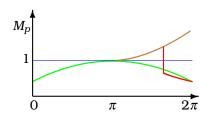




Flow Characteristics Are Determined by Nozzle Geometry.

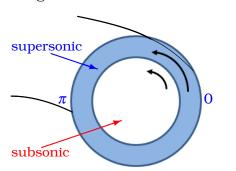
On a magnetic surface, Mach number profiles are determined by 1-D gasdynamics.

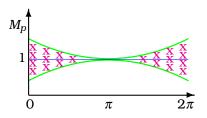


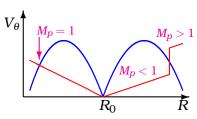


Flow Characteristics Are Determined by Nozzle Geometry.

Periodicity conditions require the formation of shocks if the flow switches to a different regime on a magnetic surface.




The traditional subsupersonic flow of de Laval nozzles is not allowed at steady state.



Flow Characteristics Are Determined by Nozzle Geometry.

Radial discontinuities are present at steady state, due to the θ -dependent prohibited region for the Mach number.

For Transonic Flows, the Mach Number Discontinuity Causes a Density Discontinuity.

- If the poloidal flow is transonic, Mach numbers are **radially** discontinuous.
- Similarly, other physical quantities (e.g. density, poloidal velocity) are also discontinuous.
- Detailed analysis shows that:

$$rac{\delta
ho}{
ho} \sim K_1(\Psi) \cos \left(rac{ heta}{2}
ight) \qquad rac{\delta T}{T} \sim (\gamma-1) K_2(\Psi) \cos \left(rac{ heta}{2}
ight)$$

• In the isothermal case $(\gamma = 1)$, there is no temperature discontinuity!

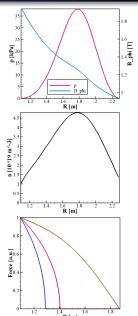
SIM2D Simulations Are Based on the ideal MHD Model.

We solve the standard ideal-MHD model time-dependent equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{V}) = 0, \qquad \text{(Continuity)}$$

$$\frac{\partial \rho \underline{V}}{\partial t} + \nabla \cdot (\rho \underline{V} \underline{V} - \underline{B} \underline{B} + P \underline{I}) = 0, \qquad \text{(Momentum)}$$

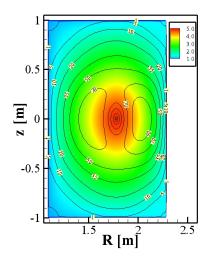
$$\frac{\partial \underline{B}}{\partial t} = \nabla \times (\underline{V} \times \underline{B}), \qquad \text{(Faraday's Law)}$$


$$\frac{\partial \mathscr{E}}{\partial t} + \nabla \cdot [(\mathscr{E} + P) \underline{V} - \underline{B} (\underline{V} \cdot \underline{B})] = 0. \qquad \text{(Energy)}$$

$$P \equiv p + rac{B^2}{2}, \qquad \mathscr{E} = rac{p}{\gamma - 1} +
ho rac{V^2}{2} + rac{B^2}{2}.$$
 (Definitions)

The equations are written in conservative form to capture the shocks.

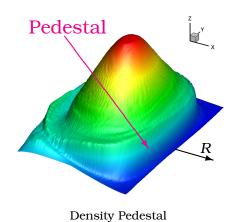
Initial and Boundary Conditions


- The initial conditions are assigned using an equilibrium calculated with FLOW
- The equilibrium can be static or have <u>subsonic</u> flow.
- A momentum source is turned on at t = 0.

Initial and Boundary Conditions (Continued)

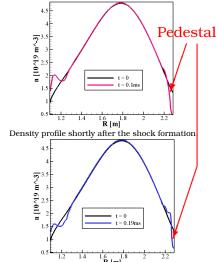
- The boundary of the computational domain corresponds to the plasma edge (no vacuum region).
- Rigid-wall boundary conditions are used at the (superconductive) wall.
- Initial poloidal sound speed is small at the plasma/computational edge.

Poloidal sound speed [km/s] (lines) and density $\lceil 10^{19} m^{-3} \rceil$ (colormap)


Poloidal Shocks Form Due to Poloidal Flow

- A shock is observed at the transonic surface.
- The shock travels in the poloidal direction from the outboard to the inboard part of the plasma.
- The shock vanishes at the inner midplane, where the flow is sonic.
- The shock is an MHD feature.

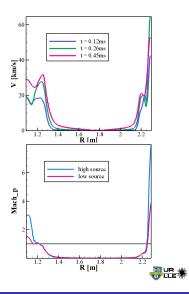
Simulations Show that Density Pedestals Form due to Poloidal Flow



Density Pedestal

Density Profiles Develop a Pedestal Structure.

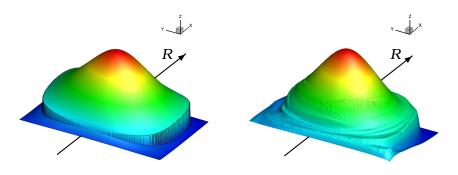
- A subsonic equilibrium is perturbed by turning on a poloidal momentum source.
- Momentum is inserted with a source localized at the plasma edge.
- After the flow becomes supersonic $(V_{\theta} > C_{sp})$ a shock forms and travels in the poloidal direction.
- Pedestal formation corresponds to a strong steepening of the density profile.



Density profile after the flow has completed a poloidal revolution.

Velocity and Pressure Profiles Are Also Discontinuous.

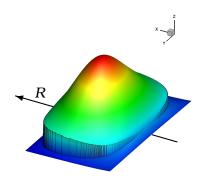
- The velocity profile is discontinuous across the transonic surface.
- Profiles are smooth at the inboard side, sharply discontinuous at the outboard side of the plasma.
- The pressure profile also develops a pedestal structure.
 Since the edge pressure is small, its pedestal is not as visible as the density pedestal.

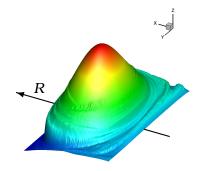


Time-Dependent Simulations Show an MHD Pedestal Formation

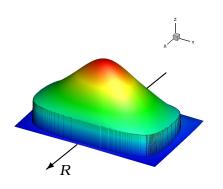
- Time-dependent simulations only reach an approximate steady state.
- At near-steady state, the pedestal structure is clearly visible.

Transonic

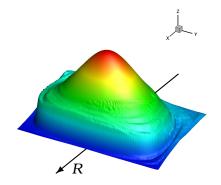



FLOW equilibrium

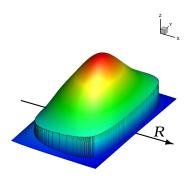
SIM2D quasi-steady state



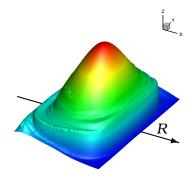
FLOW equilibrium



SIM2D quasi-steady state

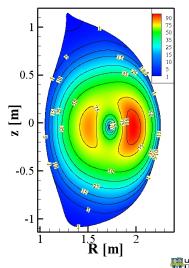


FLOW equilibrium



SIM2D quasi-steady state

FLOW equilibrium



SIM2D quasi-steady state

Small Velocities Are Sufficient to Create Transonic Flows.

- The poloidal sound speed $C_{\rm sp} = C_{\rm s} B_{\rm p}/B$ is small at the edge:
 - \bigcirc C_s is small because temperature is low.
 - $\bigcirc B_p << B$
- FLOW transonic equilibrium results show vanishing C_{sp} at the edge.

Conclusions

- Time-dependent ideal-MHD simulations show the formation of transient shocks when the poloidal flow becomes supersonic ($V_{\theta} > C_{sp}$).
- Shocks move along flux surfaces and vanish.
- The steady-state solution is shock-free. Radial contact discontinuities (pedestals) develop at steady-state.
- Results are in agreement with the predictions of theory.

Can the MHD Pedestal Be Related to the Observed Edge Pedestal and L-H Transition?

Possible scenario of edge pedestal formation:

- A momentum source makes the poloidal flow transonic (with respect to the poloidal sound speed)³.
- 2 An MHD transonic *density* pedestal forms on short time scales ($\sim 2\pi a/C_{sp} \sim ms$):
 - The MHD pedestal is modulated in the poloidal angle.
 - No temperature pedestal is formed (unless $\gamma \neq 1$).
 - The velocity shear is large (∞ in ideal MHD) across the MHD pedestal.
- Oue to velocity shear turbulence suppression, a temperature pedestal develops on longer transport time scales. The density pedestal is also modified on longer time scales.

 $^{^{3}}$ e.g., K. C. Shaing and E. C. Crume, *Phys. Rev. Lett.*, **63** 2369 (1989)