Publications of Dr.  Filip Pawłowski

2024

68.
E. Opoku, F. Pawłowski, J.V. Ortiz, New-Generation Electron-Propagator Methods for Vertical Electron Detachment Energies of Molecular Anions: Benchmarks and Applications to Model Green-Fluorescent-Protein Chromophores, Phys. Chem. Chem. Phys. 26, 9915-9930 (2024). Selected as 2024 PCCP HOT Article DOI: 10.1039/d4cp00441h
67.
E. Opoku, F. Pawłowski, J.V. Ortiz, New-Generation Electron-Propagator Methods for Molecular Electron-Binding Energies, J. Phys. Chem. A 128, 1399-1416 (2024). DOI: 10.1021/acs.jpca.3c08455
66.
E. Opoku, F. Pawłowski, J.V. Ortiz, New-Generation Electron-Propagator Methods for Calculations of Electron Affinities and Ionization Energies: Tests on Organic Photovoltaic Molecules, J. Chem. Theory Comput. 20, 290-306 (2024). DOI: 10.1021/acs.jctc.3c00954

2023

65.
E. Opoku, F. Pawłowski, J.V. Ortiz, A New Generation of Non-diagonal, Renormalized Self-Energies for Calculation of Electron Removal Energies, J. Chem. Phys. 159, 124109 (2023). DOI: 10.1063/5.0168779
64.
H. H. Corzo, A. Hillers-Bendtsen, A. Barnes, A. Y. Zamani, F. Pawłowski, J. Olsen, P. Jorgensen, K. V. Mikkelsen, D. Bykov, Coupled cluster theory on modern heterogeneous supercomputers, Frontiers in Chemistry 11, (2023). DOI: 10.3389/fchem.2023.1154526
63.
H. H. Corzo, A. Hillers-Bendtsen, A. Barnes, A. Y. Zamani, F. Pawłowski, J. Olsen, P. Jorgensen, K. V. Mikkelsen, D. Bykov, Corrigendum: Coupled cluster theory on modern heterogeneous supercomputers, Frontiers in Chemistry 11, (2023). DOI: 10.3389/fchem.2023.1256510
62.
E. Opoku, F. Pawłowski, J.V. Ortiz, Correction to “Electron-Propagator Self-Energies versus Improved GW100 Vertical Ionization Energies”, J. Chem. Theory Comput. 19, 5648-5648 (2023). DOI: 10.1021/acs.jctc.3c00756
61.
E. Opoku, F. Pawłowski, J.V. Ortiz, Erratum: “A new generation of diagonal self-energies for the calculation of electron removal energies” [J. Chem. Phys 155, 204107 (2021)], J. Chem. Phys. 159, 069901 (2023). DOI: 10.1063/5.0167154
60.
M. Díaz-Tinoco, F. Pawłowski, J.V. Ortiz, Dyson orbitals and chemical bonding, in Chemical Reactivity : Volume 1: Theories and Principles (eds. Kaya, S., von Szentpaly, L., Serdaroglu, G., and Guo, L.), 27-64, Amsterdam, Elsevier, 2023. link
59.
E. Opoku, F. Pawłowski, J.V. Ortiz, Electron Propagator Theory of Vertical Electron Detachment Energies of Anions: Benchmarks and Applications to Nucleotides, J. Phys. Chem. A 127, 1085 (2023). DOI: 10.1021/acs.jpca.2c08372

2022

58.
E. Opoku, F. Pawłowski, J.V. Ortiz, Electron Propagator Self-Energies versus Improved GW100 Vertical Ionization Energies, J. Chem. Theory Comput. 18, 4927 (2022). DOI: 10.1021/acs.jctc.2c00502
57.
E. Opoku, F. Pawłowski, J.V. Ortiz, Double Rydberg anions, Rydberg radicals and micro-solvated cations with ammonium-water kernels, Phys. Chem. Chem. Phys. 24, 18347 (2022). DOI: 10.1039/D2CP02570A

2021

56.
E. Opoku, F. Pawłowski, J.V. Ortiz, A New Generation of Diagonal Self-Energies for the Calculation of Electron Removal Energies, J. Chem. Phys. 155, 204107 (2021). DOI: 10.1063/5.0070849
55.
F. Pawłowski and J.V. Ortiz, Ionization Energies and Dyson Orbitals of the Iso-electronic SO2, O3, and S3 Molecules from Electron Propagator Calculations, J. Phys. Chem. A 125, 3664 (2021). DOI: 10.1021/acs.jpca.1c01759
54.
E. Opoku, F. Pawłowski, J.V. Ortiz, Electron binding energies and Dyson orbitals of OnH2n+1+,0,− clusters: Double Rydberg anions, Rydberg radicals, and micro-solvated hydronium cations, J. Chem. Phys. 154, 234304 (2021). DOI: 10.1063/5.0053297

2020

53.
F. Pawłowski and J.V. Ortiz, Relativistic electron detachment energies and spin-orbit splittings from quasiparticle electron propagator calculations, Mol. Phys. 118, e1700314 (2020). DOI: 10.1080/00268976.2019.1700314
52.
I.R. Ariyarathna, F. Pawłowski, J.V. Ortiz, and E. Miliordos, Aufbau Principle for Diffuse Electrons of Double-Shell Metal Ammonia Complexes: The Case of M(NH3)4@12NH3, M = Li, Be+, B2+, J. Phys. Chem. A 124, 505-512 (2020). DOI: 10.1021/acs.jpca.9b07734

2019

51.
F. Pawłowski, J. Olsen and P. Jørgensen, Cluster perturbation theory. I. Theoretical foundation for a coupled cluster target state and ground-state energies, J. Chem. Phys. 150, 134108 (2019). DOI: 10.1063/1.5004037
50.
F. Pawłowski, J. Olsen and P. Jørgensen, Cluster perturbation theory. II. Excitation energies for a coupled cluster target state, J. Chem. Phys. 150, 134109 (2019). DOI: 10.1063/1.5053167
49.
P. Baudin, F. Pawłowski, D. Bykov, D. Liakh, K. Kristensen, J. Olsen, and P. Jørgensen, Cluster perturbation theory. III. Perturbation series for coupled cluster singles and doubles excitation energies, J. Chem. Phys. 150, 134110 (2019). DOI: 10.1063/1.5046935
48.
F. Pawłowski, J. Olsen and P. Jørgensen, Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties, J. Chem. Phys. 150, 134111 (2019). DOI: 10.1063/1.5053622
47.
F. Pawłowski, J. Olsen and P. Jørgensen, Cluster perturbation theory. V. Theoretical foundation for cluster linear target states, J. Chem. Phys. 150, 134112 (2019). DOI: 10.1063/1.5053627
46.
N. M. S. Almeida, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Transition-metal solvated-electron precursors: Diffuse and 3d electrons in V(NH3)60,±, Phys. Chem. Chem. Phys. 21 ,7090-7097 (2019). DOI: 10.1039/C8CP07420H
45.
M. Díaz-Tinoco, H. H. Corzo, F. Pawłowski, and J. V. Ortiz, Do Dyson Orbitals resemble canonical Hartree–Fock orbitals?, Mol. Phys. 117, 2275-2283 (2019). DOI: 10.1080/00268976.2018.1535142

2018

44.
I. R. Ariyarathna, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors, Phys. Chem. Chem. Phys. 20, 24186–24191 (2018). DOI: 10.1039/C8CP05497E
43.
I. R. Ariyarathna, S. N. Khan, F. Pawłowski, J. V. Ortiz, and E. Miliordos, Aufbau Rules for Solvated Electron Precursors: Be(NH3)40,± Complexes and Beyond, J. Phys. Chem. Lett. 9, 84–88 (2018). DOI: 10.1021/acs.jpclett.7b03000

2017

42.
T. Kjærgaard, P. Baudin, D. Bykov, J. J. Eriksen, P. Ettenhuber, K. Kristensen, J. Larkin, D. Liakh, F. Pawłowski, A. Vose, Y. M. Wang, and P. Jørgensen, Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires, Computer Physics Communications 212, 152–160 (2017). DOI: 10.1016/j.cpc.2016.11.002

2016

41.
S. Coriani, F. Pawłowski, J. Olsen, and P. Jørgensen, Molecular response properties in equation of motion coupled cluster theory: A time-dependent perspective, The Journal of Chemical Physics 144, 024102 (2016). DOI: 10.1063/1.4939183

2015

40.
F. Pawłowski, J. Olsen, and P. Jørgensen, Molecular response properties from a Hermitian eigenvalue equation for a time-periodic Hamiltonian, The Journal of Chemical Physics 142, 114109 (2015). DOI: 10.1063/1.4913364
39.
A. Baranowska-Łączkowska, B. Fernández, A. Rizzo, and F. Pawłowski, Applicability of medium-size basis sets in calculations of molecular dynamic polarisabilities, Molecular Physics 113, 1786–1793 (2015). DOI: 10.1080/00268976.2015.1014004

2014

38.
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansík, H. J. A. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. V. Rybkin, P. Sałek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, The Dalton quantum chemistry program system, WIREs Comput Mol Sci 4, 269–284 (2014). DOI: 10.1002/wcms.1172

2013

37.
A. Baranowska-Łączkowska, J. Chmielewska, F. Pawłowski, and A. Rizzo, Applicability of medium-size basis sets in calculation of electric dipole dynamic polarisabilities and first hyperpolarisabilities of non-interacting molecules, Molecular Physics 111, 1462–1469 (2013). DOI: 10.1080/00268976.2013.788747
36.
A. Baranowska-Ła̧czkowska, W. Bartkowiak, R. W. Góra, F. Pawłowski, and R. Zaleśny, On the performance of long-range-corrected density functional theory and reduced-size polarized LPol-n basis sets in computations of electric dipole (hyper)polarizabilities of π-conjugated molecules, J. Comput. Chem. 34, 819–826 (2013). DOI: 10.1002/jcc.23197
35.
S. Amaran, R. Kosloff, M. Tomza, W. Skomorowski, F. Pawłowski, R. Moszynski, L. Rybak, L. Levin, Z. Amitay, J. M. Berglund, D. M. Reich, and C. P. Koch, Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions, The Journal of Chemical Physics 139, 164124 (2013). DOI: 10.1063/1.4826350

2012

34.
W. Skomorowski, F. Pawłowski, C. P. Koch, and R. Moszynski, Rovibrational dynamics of the strontium molecule in the AΣu+1, c3Πu, and aΣu+3 manifold from state-of-the-art ab initio calculations, The Journal of Chemical Physics 136, 194306 (2012). DOI: 10.1063/1.4713939

2011

33.
M. Tomza, F. Pawłowski, M. Jeziorska, C. P. Koch, and R. Moszynski, Formation of ultracold SrYb molecules in an optical lattice by photoassociation spectroscopy: theoretical prospects, Phys. Chem. Chem. Phys. 13, 18893–18904 (2011). DOI: 10.1039/C1CP21196J
32.
W. Skomorowski, F. Pawłowski, T. Korona, R. Moszynski, P. S. Żuchowski, and J. M. Hutson, Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations, The Journal of Chemical Physics 134, 114109 (2011). DOI: 10.1063/1.3563613
31.
M. Krych, W. Skomorowski, F. Pawłowski, R. Moszynski, and Z. Idziaszek, Sympathetic cooling of the Ba${}^{+}$ ion by collisions with ultracold Rb atoms: Theoretical prospects, Phys. Rev. A 83, 032723 (2011). DOI: 10.1103/PhysRevA.83.032723

2010

30.
S. Reine, A. Krapp, M. F. Iozzi, V. Bakken, T. Helgaker, F. Pawłowski, and P. Sałek, An efficient density-functional-theory force evaluation for large molecular systems, The Journal of Chemical Physics 133, 044102 (2010). DOI: 10.1063/1.3459061
29.
I. G. Cuesta, J. S. Marín, A. S. de Merás, F. Pawłowski, and P. Lazzeretti, Assessment of the CTOCD-DZ method in a hierarchy of coupled cluster methods, Phys. Chem. Chem. Phys. 12, 6163–6170 (2010). DOI: 10.1039/B925241J

2009

28.
R. Send, D. Sundholm, M. P. Johansson, and F. Pawłowski, Excited State Potential Energy Surfaces of Polyenes and Protonated Schiff Bases, J. Chem. Theory Comput. 5, 2401–2414 (2009). DOI: 10.1021/ct900240s

2007

27.
P. Sałek, S. Høst, L. Thøgersen, P. Jørgensen, P. Manninen, J. Olsen, B. Jansík, S. Reine, F. Pawłowski, E. Tellgren, T. Helgaker, and S. Coriani, Linear-scaling implementation of molecular electronic self-consistent field theory, The Journal of Chemical Physics 126, 114110 (2007). DOI: 10.1063/1.2464111
26.
S. Coriani, S. Høst, B. Jansík, L. Thøgersen, J. Olsen, P. Jørgensen, S. Reine, F. Pawłowski, T. Helgaker, and P. Sałek, Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory, The Journal of Chemical Physics 126, 154108 (2007). DOI: 10.1063/1.2715568

2006

25.
M. Pecul, F. Pawłowski, P. Jørgensen, A. Köhn, and C. Hättig, High-order correlation effects on dynamic hyperpolarizabilities and their geometric derivatives: A comparison with density functional results, The Journal of Chemical Physics 124, 114101 (2006). DOI: 10.1063/1.2173253
24.
M. J. Paterson, O. Christiansen, F. Pawłowski, P. Jørgensen, C. Hättig, T. Helgaker, and P. Sałek, Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory, The Journal of Chemical Physics 124, 054322 (2006). DOI: 10.1063/1.2163874
23.
O. Christiansen, S. Coriani, J. Gauss, C. Hättig, P. Jørgensen, F. Pawłowski, and A. Rizzo, Accurate Nonlinear Optical Properties for Small Molecules, in Non-Linear Optical Properties of Matter (eds. Papadopoulos, M. G., Sadlej, A. J. & Leszczynski, J.) 51–99 (Springer Netherlands, 2006). DOI: 10.1007/1-4020-4850-5_2

2005

22.
F. Pawłowski, P. Jørgensen, and C. Hättig, The second hyperpolarizability of the N2 molecule calculated using the approximate coupled cluster triples model CC3, Chemical Physics Letters 413, 272–279 (2005). DOI: 10.1016/j.cplett.2005.06.130
21.
F. Pawłowski, P. Jørgensen, and C. Hättig, Cauchy Moments of Ne, Ar, and Kr Atoms Calculated Using the Approximate Coupled Cluster Triples Model CC3, Advances in Quantum Chemistry 48, 9–21 (2005). DOI: 10.1016/S0065-3276(05)48002-8
20.
J. Lohilahti, H. Mattila, V.-M. Horneman, and F. Pawłowski, FT-FIR-spectrum and the ground state constants of D213CO, Journal of Molecular Spectroscopy 234, 279–285 (2005). DOI: 10.1016/j.jms.2005.09.015
19.
J. Kongsted, T. B. Pedersen, M. Strange, A. Osted, A. E. Hansen, K. V. Mikkelsen, F. Pawlowski, P. Jørgensen, and C. Hättig, Coupled cluster calculations of the optical rotation of S-propylene oxide in gas phase and solution, Chemical Physics Letters 401, 385–392 (2005). DOI: 10.1016/j.cplett.2004.11.082
18.
S. Høst, P. Jørgensen, A. Köhn, F. Pawłowski, W. Klopper, and C. Hättig, Frequency-dependent hyperpolarizabilities of the Ne, Ar, and Kr atoms using the approximate coupled cluster triples model CC3, The Journal of Chemical Physics 123, 094303 (2005). DOI: 10.1063/1.2008211

2004

17.
A. Rizzo, M. Kállay, J. Gauss, F. Pawłowski, P. Jørgensen, and C. Hättig, The Cotton-Mouton effect of neon and argon: A benchmark study using highly correlated coupled cluster wave functions, The Journal of Chemical Physics 121, 9461–9473 (2004). DOI: 10.1063/1.1805491
16.
F. Pawłowski, P. Jørgensen, and C. Hättig, The hyperpolarizability of the Ne atom in the approximate coupled cluster triples model CC3, Chemical Physics Letters 391, 27–32 (2004). DOI: 10.1016/j.cplett.2004.04.055
15.
F. Pawłowski, P. Jørgensen, and C. Hättig, Gauge invariance of oscillator strengths in the approximate coupled cluster triples model CC3, Chemical Physics Letters 389, 413–420 (2004). DOI: 10.1016/j.cplett.2004.03.126

2003

14.
K. Hald, F. Pawłowski, P. Jørgensen, and C. Hättig, Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3, The Journal of Chemical Physics 118, 1292–1300 (2003). DOI: 10.1063/1.1523905
13.
F. Pawłowski, A. Halkier, P. Jørgensen, K. L. Bak, T. Helgaker, and W. Klopper, Accuracy of spectroscopic constants of diatomic molecules from ab initio calculations, The Journal of Chemical Physics 118, 2539–2549 (2003). DOI: 10.1063/1.1533032
12.
R. W. Larsen, F. Pawłowski, F. Hegelund, P. Jørgensen, J. Gauss, and B. Nelander, The equilibrium structure of trans-glyoxal from experimental rotational constants and calculated vibration–rotation interaction constants, Phys. Chem. Chem. Phys. 5, 5031–5037 (2003). DOI: 10.1039/B310331E

2002

11.
S. Raj, H. C. Padhi, P. Palit, D. K. Basa, M. Polasik, and F. Pawłowski, Relative    \textit{K}  x-ray intensity studies of the valence electronic structure of $3d$ transition metals, Phys. Rev. B 65, 193105 (2002). DOI: 10.1103/PhysRevB.65.193105
10.
F. Pawłowski, P. Jørgensen, J. Olsen, F. Hegelund, T. Helgaker, J. Gauss, K. L. Bak, and J. F. Stanton, Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants, The Journal of Chemical Physics 116, 6482–6496 (2002). DOI: 10.1063/1.1459782
9.
F. Pawłowski, M. Polasik, S. Raj, H. C. Padhi, and D. K. Basa, Valence electronic structure of Ti, Cr, Fe and Co in some alloys from Kβ-to-Kα X-ray intensity ratio studies, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 195, 367–373 (2002). DOI: 10.1016/S0168-583X(02)01106-0
8.
D. K. Basa, S. Raj, H. C. Padhi, M. Polasik, and F. Pawlowski, Studies on the valence electronic structure of Fe and Ni in FexNi1−x alloys, Pramana - J Phys 58, 783–786 (2002). DOI: 10.1007/s12043-002-0171-8

2001

7.
S. Raj, H. C. Padhi, P. Raychaudhury, A. K. Nigam, R. Pinto, M. Polasik, F. Pawłowski, and D. K. Basa, Valence electronic structure of Mn in undoped and doped lanthanum manganites from relative K X-ray intensity studies, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 174, 344–350 (2001). DOI: 10.1016/S0168-583X(00)00587-5
6.
S. Raj, H. C. Padhi, M. Polasik, F. Pawłowski, and D. K. Basa, $K\ensuremath{\beta}-\mathrm{t}\mathrm{o}-K\ensuremath{\alpha}$ x-ray intensity ratio studies of the valence electronic structure of Fe and Ni in ${\mathrm{Fe}}_{x}{\mathrm{Ni}}_{1-x}$ alloys, Phys. Rev. B 63, 073109 (2001). DOI: 10.1103/PhysRevB.63.073109

2000

5.
K. Slabkowska, F. Pawlowski, and M. Polasik, Effect of L- and M-shell ionization on the K X-ray spectra parameters of sulphur, Acta Phys. Pol. B 31, 507–510 (2000).
4.
S. Raj, H. C. Padhi, M. Polasik, F. Pawłowski, and D. K. Basa, Valence electronic structure of Fe and Ni in FexNi1−x alloys from relative K X-ray intensity studies, Solid State Communications 116, 563–567 (2000). DOI: 10.1016/S0038-1098(00)00380-X
3.
F. Pawlowski, M. Polasik, S. Raj, and H. C. Padhi, K beta/K alpha X-ray intensity ratio studies on the valence electronic states of 3d-transition metals in some of their compounds, Acta Phys. Pol. B 31, 495–499 (2000).
2.
U. Majewska, J. Braziewicz, D. Banas, M. Jaskola, T. Czyzewski, W. Kretschmer, K. Slabkowska, F. Pawlowski, and M. Polasik, Interpretation of K X-ray spectra from highly ionized sulphur projectiles passing through thin carbon foils, Acta Phys. Pol. B 31, 511–516 (2000).

1999

1.
S. Raj, H. C. Padhi, D. K. Basa, M. Polasik, and F. Pawłowski, Kβ-to-Kα X-ray intensity ratio studies on the changes of valence electronic structures of Ti, V, Cr, and Co in their disilicide compounds, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 152, 417–424 (1999). DOI: 10.1016/S0168-583X(99)00225-6