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ROVIB is a manifold of routines calculating the energies and the wavefunctions
of the rovibrational levels of a diatomic molecule. Currently, only bound potential
energy curves can be used for the construction of the wavefunctions. The method
employed for the solution of the rovibrational Schrödinger equation is iterative and
based on the Numerov techique as described elsewhere.[1] The resulting energy
levels are utilised for the extraction of the rovibrational constants of the diatomic
molecule in question. Originally, the code was written in FORTRAN90, but a
graphics user interface (GUI) enviroment allows the simple manipulation of the
input and output data.
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1. Introduction

The Hamiltonian operator (in spherical polar coordinates) of two nuclei moving
in the field of the electrons surrounding them is
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Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ)

where L̂ is the operator of the angular momentum, depending on the zenith angle
θ and azimuthal angle ϕ of the bond vector, with respect to the laboratory frame of
reference. The variable r is the bond distance, and U(r) the potential energy due
to the electrons. Setting the wavefunction to be a product containing the spherical
harmonics, i.e.

(2) Ψ(r, θ, ϕ) = YJ,mJ (θ, ϕ)
Rv,J(r)

r

we finally obtain
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The effective potential inside the curly brackets will be written as GJ(r). Presently,
this radial equation is solved numerically. First we assume that at some point r0,
much smaller than the equilibrium bond length, Rv,J (r0) is practically zero, and
then we devide the r-space in small parts separated by a constant length, say δr. So,
we have the distances r1, r2, . . . , rn−1, rn, rn+1, . . . two consecutive of them differing
by δr, i.e. rn+1−rn = δr. Next, we expand the wavefunction at rn in Taylor series.
Keeping the terms up to δr4 in the Taylor expansion, and using equation 3 we
obtain
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where Rv,J
n = Rv,J(rn) and GJ

n = GJ(rn). In this way, if we knew the exact

energy value Ev,J , we would be able to calculate Rv,J
n+1 from Rv,J

n−1 and Rv,J
n . We

do know that at very small r distances the wavefunction nullifies. Arbitrarily we

set this point to be r0, and that at r1 the radial function Rv,J
1 to be 0.0001. The

latter value will be precisely determined upon normalizing the final wavefunction.
Conclusively, if we know the energy, we can readily get the wavefunction.

Now, assuming an energy value, we may construct the wavefunction, and observe
its shape. Setting energy equal to the equilibrium energy we get a non-integrable
function (see the black line of figure 1), while going towards the ground state
energy the resulting function resembles the well known Gaussian-like shape of the
wavefunction (see the dark and light gray lines of figure 1). Around the exact energy
the wavefunction at distances larger than the equilibrium, where it is expected to
vanish, reveals a strange behavior. At slightly lower (than the exact) energy in
this region suddenly turns to possitive infinity (dark grey line), whereas at slightly
larger energy it bears an additional node and then goes to negative infinity (light
grey line). Someone has to pinpoint the energy where this transition occurs, and
this energy will be the exact one. Increasing even more the energy, the additional
node moves to shorter distances and a second crest emerges (see the magenta and
red lines). Again, at energies close to the exact energy of the first excited state, the
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Figure 1. Eigenfunctions obtained at several energies ranging
from the equilibrium energy to a little higher than the first ex-
cited state of BH.

same strange behavior is observed. The closer we go towards the exact energy from
below, the longer the distance where the wavefunction turns to negative infinity
becomes (see cyan line). Similarly, the closer we go towards the exact energy from
above, the longer the distance where the additional node takes place becomes (see
blue line). Practically, the present code tries to find two energy values, one with
the additional node and one with the sudden turning point, that do not differ by a
certain ammount (the wanted accuracy level), and gives their average value.

Once we get the energy levels Ev,J , we can fit them in the energy expansion in
terms of

(
v + 1

2

)
and J(J +1), and obtain the corresponding spectroscopic param-

eters.
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The most common among them are c0,0 = Ee, c1,0 = ωe, c2,0 = −ωexe, c3,0 = ωeye,
c4,0 = ωeze, c0,1 = Be, c1,1 = −αe, c2,1 = γe, c3,1 = δe, c0,2 = De, and c1,2 = βe.

Alternatively, these constants may be estimated through the multiple derivatives
of the potential curve at re (Dunham analysis). The formulas employed in the
current code are
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The derivatives are calculated upon fitting a region of the curve into a polynomial.
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2. Installation

Installation of ROVIB is extremely easy. Just unzip all files and folders included
in the rovib.zip you are given in a folder of your convinience; create a new folder
under C:\Program Files, for instance. Then, if you wish you can create a shortcut on
your desktop: right click on rovib.exe → Send To → Desktop. The current version
works under WindowsXP ; the proper function under WindowsVista or Windows7
is not guaranteed.

3. GUI description

When you invoke the program, the following form will appear

Figure 2. Initial form appearing when the program is executed.

There are a lot of blanks to fill in, dictating the code what to do. The default
values for these blanks can be loaded by clicking on the button Load the default
values in the bottom left corner. Optionally, you may change the default values by
clicking on the Set as default button next to the former one.

First, we will describe the first column on the left starting from the General
options block. There, you can give the mass of the two atoms presented as A and
B, by either writing them in the white boxes, or by selecting the corresponding
isotope from the boxes right below them. If the isotope you want is absent in these
lists, you can add it by hand (see section 4). Then, you must declare in what units
the distances you give are. Energy values must always be in atomic units. Next,
you choose which method you would like to aplly (Numerov, Dunham, or both).
Finally, there are two ways for the code to solve the linear systems of equations
that arise; the first one is related to the IMSL library, and the second one is part
of ROVIB. Normally, there is no difference in the results between the two options.

We turn, now, to the Numerov analysis block. First you specify the region
to which equation 4 should be applied (Initial R(A-B) and Final R(A-B)). We
suggest that these two values must be equal to the first and last distance of the
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given potential energy curve. Initially the code evaluates the number of nodes at
energy equal to (v + 1/2)ωe obtained through the second derivative at re. If it
is lower than v, then it enhances the energy by, say, δE, whereas if it is more
than v + 1, then the energy is decreased. This is repeated until the code finds
two energies E1 (with v nodes) and E2 (with v + 1 nodes) revealing the strange
behavior described previously (see figure 1). After this point, it takes the average
energy value Eav of E1 and E2 and counts its nodes. Next, it replaces the energy
(E1 or E2) having the same number of nodes (compared to Eav) with Eav. This
iteration goes on until the difference between E1 and E2 is lower than Eacc. The
initial correction to the energy box corresponds to δE and generally must not be
changed from the default value of 0.01. A greater value may accelarate the initial
estimate of E1 and E2, but it decelerates the estimate of the exact energy, and
vice versa. The next box (Accuracy) is Eacc in a.u. (default = 10−7). This means
that the final energy will be ±Eacc away from the exact value. Maximum v and
maximum J are the maximum values for the corresponding quantum numbers of the
energy levels to be calulated. Number of points is related to the number of points
the region from Initial R(A-B) to Final R(A-B) should be devided (default=1000).
Then two options about the appearance of the wavefunctions and the calculation of
r0 = ⟨Ψ|r|Ψ⟩ for every energy level follow. Finally, if the box in front of Fit levels
is checked, the energy levels with v and J in the range specified in the boxes that
follow will be fitted to equation 5. The code keeps the terms with i, j determined
by the checked boxes right below. The buttons Select All, Default ..., and Deselect
All are related to the latter boxes.

The last block of this column is the Dunham analysis. Here you may specify the
region to be fitted in a polynomial, and the order of the polynomial. If the keep
degree fixed is not checked, the code will try to find which degree matches best.

Just above the chart, there are five buttons. By clicking the first one (Potential
. . . ) an additional box appears, where you must give the computed points of the
potential energy curve. These points will be fitted in splines, so that the final curve
will be constructed. Please do not leave blank lines, and each line must contain only
one r followed by its energy. In addition, the distances must be given in ascending
order, otherwise an error message will occur. By clicking the second one (Run)
the fortran code will be activated, and the rovibrational Schrödinger equation is
being solved. Note that the label of the Run button converts to Stop. Usually, the
whole proccess takes only a few seconds, and when the code finishes gracefully, a
message appears on your screen showing the total time. If your job continues for
more than a couple of minutes, then something is wrong with the parameters you
enetered, and the fortran code runs with no reason, or there is a bug in the code.
Anyhow, the fortran proccess must be terminated by clicking again the Run or Stop
button. If it does not work (and ROVIB slows down your PC), then you must kill
the rv.exe process through the windows task manager (not the rovib.exe one). The
next button rescales the chart, so that you can see the whole curve. This applies
when you have already zoomed in the chart (see below). The Graph . . . button
offers the chance to you to change the colors of the resulting graph, the ranges of
the axes, or their labels (see figure 3). This is done with the help of a new panel
emerging on your screen. The last button (print graph) prints the graph using the
default printer.
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The remaining objects on this form carry only results. After a successful calcu-
lation, you can see the fitted potential energy curve (in black), the energy levels,
and optionally the wavefunctions (in red). Upon dragging your mouse (with the
left click down) you may zoom in, while right click of your mouse shows a pop-up
menu with the following options: Print graph, Copy to clipboard, Properties, En-
able zoom, Enable position finder. The first one is equivalent to the corresponding
button. The second one copies the graph to clipboard, so that you can paste it to
some other program (like MSword). The third one does exactly what the button
Graph does. The last two options are interdependent, and they define what the left
click of your mouse to do. When the last option is enabled, then upon clicking on
the graph you get the (x,y) coordinates at the point clicked.

The last column provides all of the numerical results. There are four buttons,
with the use of which you can see the numerical values of rv,J = ⟨Ψv,J |r|Ψv,J ⟩, or
the wavefunctions at each r value, the accurate energy values, and the Dunham
polynomial function highlighted on the graph. The rest boxes show the spectro-
scopic results obtained from either the Numerov or the Dunham analysis.
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4. Advanced options

There are a couple of things that you can do aside from the GUI interface. After
a successful run, the FORTRAN code produces some txt files inside the folder
temp, under the folder where ROVIB is installed. There you can find all results,
including wavefunctions, energies, expectation values, in a format more appropriate
for further programing.

Also, in the installation folder you can find a file called amass.txt. This file
contains the entries for the isotopes to be shown in GUI. There you can add your
own entries, but it must be done in the appropriate way. Each atom’s isotopes must
be separated by some others’ with a blank line. Then, each entry must occupy two
lines: the first will be reflected in GUI, and the second is the mass corresponding
to this isotope. See the picture below.

Figure 3. A part of the file amass.txt.
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5. Example

In this section we cite an example based on the ground state X1Σ+ of 11BH.
The input parameters, and the final picture of ROVIB are shown in figure 4 (please
zoom in, if necessary).

Figure 4. Final picture of GUI after the calculation of the 22
vibrational energy levels of the ground state X1Σ+ of 11BH.

Presently, we perform a Numerov analysis, calculating the first 22 vibrational
levels (v = 0− 21) with J = 0− 4. If you ask higher v or J level to be found, there
will be an error message, indicating that the next level belongs to the continuum.
Next, we fit the levels with v = 0 − 6 and J = 0 − 4 into the energy expansion of
equation 5. At the same time, the points of the potential energy curve between 1.0
and 1.5 Å are fitted in the best possible polynomial, which seems to be of degree 13
(see Results from Dunham analysis). The spectroscopic parameters obtained from
both methods are in good agreement. Note that the values of the spectroscopic
constants depend (strongly sometimes) on the selected levels to be fitted, and the
terms kept in equation 5. So, someone must be careful when comparisons with the
experimental results are made. You must try to simulate the experimental data,
and use the same energy levels, and spectroscopic parameters, if possible.

However, the experimental spectral lines, and those predicted by a high level of
theory must be very close to each other. In our example we used aug-cc-pV5Z basis
sets centered on both atoms, applying the icMRCISD methodology, as implemented
in MOLPRO.[2] We used 44 different internuclear distances r ranging from 0.5 to
9.0 Å, but usually a much smaller number (around 20) is more than enough. Our
energy values are included in the MSexcel file BHexample.xls in the installation
folder, along with the resulting energies and predicted spectral lines, as compared
with the experimental ones. From Table 1 you can see the remarkable agreement
between theory and experiment, validating the power of ROVIB.
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Table 1. Results on 11BH at the aug-cc-pV5Z/MRCISD level of theory.

∆v J J → J + 1 J → J − 1
theory expt[3] theory expt[3]

0→1 0 2292.41 2292.02
1 2314.44 2313.96 2245.78 2245.60
2 2335.55 2335.01 2221.24 2221.17
3 2355.79 2355.15 2195.95 2195.98
4 2375.06 2374.35 2169.90 2170.04
5 2393.35 2392.58 2143.14 2143.39
6 2410.66 2409.82 2115.70 2116.06
7 2426.93 2426.04 2087.61 2088.09
8 2058.91 2059.49

1→2 0 2196.25 2195.79
1 2217.46 2216.92 2151.27 2151.01
2 2237.82 2237.19 2127.59 2127.42
3 2257.27 2256.55 2103.15 2103.08
4 2275.78 2274.99 2077.99 2078.01
5 2293.34 2292.48 2052.11 2052.24
6 2309.95 2308.99 2025.57 2025.80
7 2325.52 2324.50 1998.39 1998.73

2→3 2 2141.65 2141.58
3 2160.32 2160.17 2011.84 2012.33
4 2178.11 2177.87 1987.52 1988.11
5 2194.96 2194.63 1962.53 1963.20
6 2210.83 2210.43 1936.87 1937.62
7 2225.70 2225.25 1910.58 1911.43
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6. Known issues

We would like to bring to your attention the following issues

• Initial R(A-B) and Final R(A-B) must be inside the range of the given
energy calculations.

• The energy levels to be fitted must be a subtotal of the calculated energy
levels.

• The Open project . . . and Save project . . . buttons may not work properly,
and it will be fixed in later versions.
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