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Figure 5: (a) The exact Green’s function F(r, t) divided by its model asymptotics of Eq. (16) for large times in the case of
Lorentz line shape, (b) model asymptotics for large times, Eq. (16), divided by exact Green’s function F(r, t) in the case of

Doppler line shape
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However, the absolute values of Eq. (16) and the asymptotics of the exact Green’s function may differ by a
constant which amounts to a factor of unity for Doppler line shape and ~200 for Lorentz line shape.

It is possible to estimate analytically a constant by which Eq. (16) differs from Eq. (17), the asymptotics of
the exact Green’s function. For example, consider the Lorentz line shape. For this purpose we investigate Eq. (4)
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at small p. Expanding the imaginary exponent into a series and using an approximate form [5] of J(p) function at
small p,
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one has
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where � = k0r, P = p/k0,T = t/�.

The comparison of Eq. (19) with model asymptotic solution (16) at large times is shown in Figure 6.

Introducing a new variable 2 / 3Q T P in Eq. (19) and neglecting all terms except the first one in parentheses

in the integrand, we express the resulting equation in terms of the quasi-plateau (17), where for rfr(t) we use the
function inverse to the average time needed for a photon to pass the given distance. In the case of Lorentz line
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Thus, one can see that the constant by which Eq. (16) differs from the asymptotics of the exact Green’s function,
Eq. (17), appears to be close to 200 (cf. Figure 5 (a)).The large value of the constant may be explained by the longer

Figure 6: The Green function F(r, t) from Eq. (19) divided by its model asymptotics for large times, Eq. (16), for different
distances   k

0
r from the source. Time T

ñ
 is the average time needed for a photon to pass the given distance .

As it was already in Figure 4a, the ratio tends to a constant  200
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precursor to the excitation front of Eq. (8) in the case of the longer PDF tail that, in turn, stems from a wider wings
of the Lorentz line shape.

Thus, Eq. (17) for the asymptotics far behind the propagation front has essentially superdiffusive nature, similarly
to that of equations for the propagation front and for asymptotics far in advance of the propagation front.

5. IMPLICATIONS FOR SUPERDIFFUSION TRANSPORT ALGORITHMS

The revealed scaling laws for superdiffusion transport of resonance radiation in plasmas and gases suggest the following
implications for the algorithms of treating the superdiffusion transport far beyond the above physics problem.

All the scaling laws of Secs. 3 and 4 are closely related to the dominant contribution of the long-free-path
travels of the carriers of the excitation of the medium. Such a phenomenon is well known in mathematics and
various applied problems as the Lévy flights (see, e.g., [12-14]). The respective step-length probability distribution
function (PDF) has, at large distances, a power-law decay, rather than exponential one. It is the long-tailed PDF that
is responsible for the domination of the Lévy flights in many transport problems. The complexity of treating
simultaneously the diffusion-like evolution of excitation, which is transported in the central part of the spectral line
shape, with the essentially superdiffusion transport, which comes from the transport in the wings of the line shape,
has been recognized and already used in the quasi-steady-state problems (see Sec. 1). However, in the non-steady-
state problems of resonance radiation transport, and many other problems beyond this physics, the capabilities of
the scaling laws inherent to the Lévy flights-based transport are not exhausted. For instance, to simplify the treatment
of such problems the truncated PDF are used, which are substantiated by the reasonable arguments. However, as
seen from the resonance radiation transport, the truncation is not necessary and even may be incorrect. Despite the
model of complete redistribution (CRD) of photons over frequency within the spectral line shape, assumed in the
Biberman-Holstein equation, may be violated in the far wings of the line shape, the range of detuning from the rest-
frame transition frequency, where the CRD is applicable, is pretty broad, and an artificial truncation of the wings
may be an oversimplification of the problem, dictated by the difficulty of treating the superdiffusion.

The main implications of considerations of Secs. 2-4 may be formulated in terms of identifying the role of Lévy
flights and using the scaling laws in the computational algorithms. The general algorithm of solving the superdiffusion
transport problem may include the following steps.

• Identification of scaling laws for the propagation front by comparing the scaling law of Eq. (12) with exact
solutions of the transport equation in some particular cases.

• Identification of scaling laws for far in advance and far behind the propagation front by comparing the
scaling law of Eqs. (15) and (16) with exact solutions of the transport problem in some particular cases.

• Identification of the class of functions, which may interpolate between the asymptotics far in advance and
far behind the propagation front, and obey the law of propagation front. For instance, for the Biberman-
Holstein equation one could suggest the following interpolation, where the parameters of interpolation,
including the constant, should be considered as the free parameters to be found by comparing with the
available set of exact solutions:
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• Elaboration of the algorithm of mathematical identification of the free parameters of the above (or similar)
interpolation, using a set of a number of exact numerical solutions of the problem.

The latter algorithm should be implemented in a distributed computational environment. To this end, it has to
include the following procedures and obey the following conditions:

• all integration in equations must be implemented via open source procedure in ANSI C programming
language, e.g. GSL (GNU Scientific Library), https://www.gnu.org/software/gsl;



Scaling Laws of Biberman-Holstein Equation Green’s Function and Implications for Superdiffusion Transport Algorithms

International Review of Atomic and Molecular Physics, 6 (1), January-June 2015 41

• for the purpose of above integration procedure, all the discrete series of input data (either experimental or
phantom theoretical) should be processed by the smoothing routines, e.g. by GSL cubic spline;

• the problem of free parameters’ identification should be stated as a mathematical programming (optimization)
problem and formulated in terms of the AMPL modeling language (ampl.com).

All the components listed above may be implemented as web-services and deployed in the distributed computing
environment by means of the Everest programming toolkit [15], http://everest.distcomp.org. Special “distributed
enhancement” of the standard AMPL-translator, namely the AMPLX toolkit, http://gitlab.com/ssmir/amplx, is used
to integrate all these web-services together within the computing scenario also available as a composite web-
service. This service may be used by researchers to perform multivariant calculations. The computing infrastructure
of the Center for Distributed Computing, dcs.isa.ru, of Institute for Information Transmission Problems (Kharkevich
Institute), iitp.ru, is used for these purposes.

6. CONCLUSIONS

The revealed scaling laws of the Green’s function of the Biberman-Holstein equation for the resonance atomic
radiation transfer in an infinite medium suggest the possibility of using them in the computational algorithms of
superdiffusion transport in the transport problems far beyond the physics of radiative transfer. The latter hint is
suggested by the role of the long-free-path carriers which are identified in many mathematical and applied problems
as the Lévy flights. These scaling laws includes those for the propagation front and for asymptotic behavior far
behind and far in advance of the propagation front. These enabled us to formulate the possible computational
algorithm of treating the superdiffusive transport in a much broader framework.
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