

Electron-Impact Ionization of the W Atom

M. S. PINDZOLA¹, S. D. LOCH¹ AND J. P. COLGAN²

¹Department of Physics, Auburn University, Auburn, AL ²Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM

ABSTRACT: Electron-impact ionization cross sections for the ground configuration of the W atom are calculated using a combination of non-perturbative close-coupling and perturbative distorted-wave methods. Direct ionization of the 6s and 5d subshells leading to single ionization are presented. The results show a decrease in the cross section over previous calculations when more coupled channels are included and a furthur decrease when a polarization potential is included.

1. INTRODUCTION

Non-perturbative close-coupling and perturbative distorted-wave methods have been used to calculate direct ionization cross sections for both the W[1] atom and the W^+ [2] atomic ion. Tungsten is an important element for magnetically confined fusion experiments, being used as a wall material[3]. The ionization of neutral tungsten is a critical atomic process in diagnostics for gross erosion of tungsten plasma facing components[4].

In this paper we extend the non-perturbative close-coupling calculations for the W atom to include more coupled channels. We also examine the effects of the inclusion of a polarization potential in both the close-coupling and distorted-wave calculations, as was recently explored for the electron ionization of the Pb atom[5].

The rest of this paper is organized as follows. In Section 2 we give a brief review of the non-perturbative closecoupling and the perturbative distorted-wave methods used to calculate electron-impact ionization cross sections. In Section 3 we present our cross section results for the electron-impact ionization of the W atom. We conclude with a brief summary and future plans in Section 4. Unless otherwise stated, we will use atomic units.

2. THEORY

The non-perturbative close-coupling cross section is given by[6]:

$$\sigma_{ion}(n_0 l_0) = \frac{\pi w_0}{8(2l_0 + 1)E} \times \sum_{LS} (2L+1)(2S+1)P(n_0 l_0 LS) , \qquad (1)$$

where $P(n_0 l_0 LS)$ is the non-perturbative theory partial ionization probability.

The perturbative distorted-wave cross section is given by[7]:

$$\sigma_{ion}(n_0 l_0) = \frac{32w_0}{k_i^3} \int_0^{E/2} \frac{d(k_e^2/2)}{k_e k_f} \times \sum_{l_i l_e l_f} (2l_i + 1)(2l_e + 1)(2l_f + 1)S(n_0 l_0 k_i l_i \to k_e l_e k_f l_f) , \qquad (2)$$

where $S(n_0 l_0 k_{ii} \rightarrow k_e l_e k_{if})$ is the first order perturbation theory partial scattering probability. The bound and continuum orbitals are calculated in the Hartree-Fock Relativistic (HFR) approximation[8].

For both the non-perturbative close-coupling and the perturbative distorted-wave calculations we use a polarization potential given by:

$$V_{pol}(r) = -\frac{\alpha r^2}{2(r^2 + r_c^2)} , \qquad (2)$$

where $\alpha = 68.0$ and $r_c = 3.79815$ for W [9]. The polarization potential corresponds to the incoming electron polarizing the electron charge cloud.

3. RESULTS

3.1. Direct Ionization of the 6s subshell with no polarization potential

Non-perturbative close-coupling calculations for direct ionization of the 6s subshell of W using Eq.(1) with no polarization potential were made on a 480 × 480 point lattice with a mesh spacing of $\delta r = 0.20$ ranging from r = 0.0 to r = 96.00 for both sets of points. The non-perturbative close-coupling cross sections for direct ionization of the 6s subshell with no polarization potential are presented in Table 1. Perturbative distorted-wave calculations were used to topup the non-perturbative close-coupling calculations for l = 8-50.

We note that for L = 0.5 that the new calculations use 132 coupled channels that is larger than the 90 coupled channels used before for W[1]. We find that the new cross section for an incident energy of 20 eV and L = 0.5 is 194.84 Mb and thus 30% lower than the 276.90 Mb found before for W[1]. We also find that the new cross section for an incident energy of 30 eV and L = 0.5 is 140.53 Mb and thus 32% lower than the 207.70 Mb found before for W[1].

Both the non-perturbative close-coupling and the perturbative distorted-wave ionization cross sections for the 6s subshell of W are presented in Figure 1. We use simple analytical formulae to smoothly join the the 3 calculated non-perturbative close-coupling cross sections and to extend the results to higher energies. Numerical values for the perturbative distorted-wave and non-perturbative close-coupling cross sections are available on a fine energy mesh[10].

3.2. Direct Ionization of the 6s subshell with a polarization potential

Non-perturbative close-coupling calculations for direct ionization of the 6s subshell using Eq.(1) with the polarization potential of Eq.(3) were made on a 480 × 480 point lattice with a mesh spacing of $\delta r = 0.20$ ranging from r = 0.0 to r = 96.0 for both sets of points. The non-perturbative close-coupling cross sections for direct ionization of the 6s subshell with a polarization potential are presented in Table 2. Perturbative distorted-wave calculations with a polarization potential were used to topup the non-perturbative close-coupling calculations for l = 8 - 50.

We find that the cross section with a polarization potential for an incident energy of 20 eV and L = 0.5 is 183.56 Mb and thus 5.8% lower than the 194.84 Mb found above without a polarization potential. We also find that the cross section with a polarization potential for an incident energy of 30 eV and L = 0 - 5 is 131.76 Mb and thus 6.2% lower than the 140.53 Mb found above without a polarization potential.

Both the non-perturbative close-coupling and the perturbative distorted-wave ionization cross sections for the 6s subshell of W are presented in Figure 2. We use simple analytical formulae to smoothly join the 3 calculated non-

perturbative close-coupling cross sections and to extend the results to higher energies. Numerical values for the perturbative distorted-wave and non-perturbative close-coupling cross sections are available on a fine energy mesh[10].

3.3. Direct Ionization of the 5d subshell with no polarization potential

Non-perturbative close-coupling calculations for direct ionization of the 5d subshell of W using Eq.(1) with no polarization potential were made on a 480×480 point lattice with the same mesh as used before for the 6s subshell. The non-perturbative close-coupling cross sections for direct ionization of the 5d subshell with no polarization potential are presented in Table 3. Perturbative distorted-wave calculations were used to topup the non-perturbative close-coupling calculations for 1 = 8 - 50.

We note that for L = 0-5 that the new calculations use 527 coupled channels that is larger than the 341 coupled channels used before for W[1]. We find that the new cross section for an incident energy of 20 eV and L = 0-5 is 185.66 Mb and thus 26% lower than the 252.00 Mb found before for W[1]. We also find that the new cross section for an incident energy of 30 eV and L = 0 - 5 is 214.35 Mb and thus 24% lower than the 281.70 Mb found before for W[1].

Both the non-perturbative close-coupling and the perturbative distorted-wave cross sections for the 5d subshell of W are presented in Figure 3. We use simple analytical formulae to smoothly join the 3 calculated non-perturbative close-coupling cross sections and to extend the results to higher energies. Numerical values for the perturbative distorted-wave and non-perturbative close-coupling cross sections are available on a fine energy mesh[10].

3.4. Direct Ionization of the 5d subshell with a polarization potential

Non-perturbative close-coupling calculations for direct ionization of the 5d subshell of W using Eq.(1) with the polarization potential of Eq.(3) were made on a 480×480 point lattice with the mesh as used before for the 6s subshell.

We find that the cross section with a polarization potential for an incident energy of 20 eV and L = 0 - 5 is 181.66 Mb and thus 2.2% lower than the 185.66 Mb found above without a polarization potential. Since the change in the cross section is so small, we did not carry out any furthur non-perturbative close-coupling calculations for direct ionization of the 5d subshell of W with a polarization potential.

4. SUMMARY

Electron-impact ionization cross sections for the single ionization of the neutral W atom have been presented. The new L = 0.5 calculations for the 6s subshell used 47% more coupled channels than used before for the W[1] atom, lowering the cross section by around 30%. The addition of a polarization potential lowered the cross sections by an additional 6%. The overall perturbative distorted-wave and non-perturbative close-coupling calculations for the 6s subshell with and without a polarization potential were presented for energies ranging from threshold to 100 eV. The new L = 0.5 calculations for the 5d subshell used 55% more coupled channels than used before for the W[1] atom, lowering the cross section by around 25%. The addition of a polarization potential had only a small effect on the cross section. The overall perturbative distorted-wave and non-perturbative close-coupling calculations for the 5d subshell without a polarization potential were presented for energies ranging from threshold to 100 eV. The lowering the cross section by around 25%. The addition of a polarization potential had only a small effect on the cross section. The overall perturbative distorted-wave and non-perturbative close-coupling calculations for the 5d subshell without a polarization potential were presented for energies ranging from threshold to 100 eV. In the future we plan to carry out perturbative distorted-wave and non-perturbative close-coupling calculations for the outer subshells of other heavy atoms.

Acknowledgments

This work was supported in part by grants from the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC).

References

- [1] Pindzola M S, Loch S D, and Foster A R 2017 J. Phys. B 50 095201
- [2] Pindzola M S and Loch S D 2019 E. J. Phys. D 73 78
- [3] Matthews G F et al. 2011 Physics Scripta 145 014001
- [4] Nishijima D et al. 2009 Physics of Plasmas 16 122503
- [5] Pindzola M S and Colgan J P 2021 E. J. Phys. D 75 45
- [6] Pindzola M S, Robicheaux F, Loch S D, Berengut J C, Colgan J P, Foster M, Griffin D C, Ballance C P, Schultz D R, Minami T, Badnell N R, Witthoeft M C, Plante D R, Mitnik D M, Ludlow J A, and Kleiman U 2007 J. Phys. B 40 R39
- [7] Pindzola M S, Ballance C P, Ludlow J A, Loch S D, and Griffin D C 2010 J. Phys. B 43 025201
- [8] Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press)
- [9] Schwerdtfeger P and Nagle J K 2019 Molecular Physics 117 9-12, 1200

[10] email: lochstu@auburn.edu

Table 1. Non-perturbative close-coupling calculations for the ionization of the 6s subshell of W

Initial	L	Coupled	20 eV	30 eV	40 eV
Channel	Values	Channels			
6sks	0	9	1.99 Mb	1.90 Mb	$1.87 \mathrm{~Mb}$
6skp	1	16	10.24 Mb	7.37 Mb	5.76 Mb
6skd	2	22	$21.88 \mathrm{~Mb}$	$15.74 \mathrm{~Mb}$	$12.13 \mathrm{~Mb}$
6skf	3	26	34.77 Mb	$25.69 \mathrm{~Mb}$	20.27 Mb
6skg	4	29	$67.95 \mathrm{~Mb}$	$49.05 \mathrm{~Mb}$	34.21 Mb
6skh	5	30	$58.01 \mathrm{~Mb}$	$40.78 \mathrm{~Mb}$	28.88 Mb
6ski	6	30	55.82 Mb	48.38 Mb	36.88 Mb
6skj	7	28	49.55 Mb	$49.56 \mathrm{~Mb}$	40.03 Mb
		partial total	300.21 Mb	$238.47~\mathrm{Mb}$	$180.03~\mathrm{Mb}$
		topup	81.29 Mb	$130.89~\mathrm{Mb}$	151.63 Mb
		final total	$381.50 \mathrm{Mb}$	369.36 Mb	$331.66~\mathrm{Mb}$

Table 2. Non-perturbative close-coupling calculations with a polarization potential for the ionization of the 6s subshell of W

Initial	L	Coupled	20 eV	30 eV	40 eV
Channel	Values	Channels			
6sks	0	9	1.88 Mb	1.77 Mb	1.77 Mb
6skp	1	16	9.68 Mb	6.98 Mb	5.48 Mb
6skd	2	22	20.65 Mb	14.94 Mb	11.57 Mb
6skf	3	26	31.95 Mb	24.00 Mb	19.27 Mb
6skg	4	29	63.94 Mb	46.02 Mb	32.46 Mb
6skh	5	30	55.46 Mb	38.05 Mb	27.39 Mb
6ski	6	30	52.93 Mb	46.03 Mb	35.30 Mb
6skj	7	28	46.84 Mb	47.23 Mb	38.39 Mb
		partial total	283.33 Mb	225.02 Mb	171.63 Mb
		topup	79.63 Mb	123.36 Mb	$140.43 \mathrm{~Mb}$
		final total	362.96 Mb	348.38 Mb	312.06 Mb

lhannel	Values	Channels			
5dks	2	22	$5.59 \mathrm{~Mb}$	$5.40 { m ~Mb}$	4.90 Mb
5dkp	1	16	$5.05 { m Mb}$	$4.74 { m ~Mb}$	4.42 Mb
5dkp	2	14	$8.27 \mathrm{~Mb}$	$6.73 { m ~Mb}$	$5.42 { m ~Mb}$
5dkp	3	26	11.54 Mb	9.42 Mb	8.16 Mb
5dkd	0	9	$1.73 \mathrm{~Mb}$	1.77 Mb	1.77 Mb
5dkd	1	8	13.40 Mb	10.56 Mb	8.16 Mb
5dkd	2	22	8.68 Mb	7.30 Mb	6.17 Mb
5dkd	3	19	26.75 Mb	19.82 Mb	14.52 Mb
5dkd	4	29	18.86 Mb	14.64 Mb	12.00 Mb
5dkf	1	16	3.12 Mb	4.83 Mb	$5.43 \mathrm{~Mb}$
5dkf	2	14	4.50 Mb	8.48 Mb	9.73 Mb
5dkf	3	26	7.20 Mb	8.12 Mb	8.58 Mb
5dkf	4	22	7.37 Mb	14.70 Mb	17.81 Mb
5dkf	5	30	10.15 Mb	8.92 Mb	11.49 Mb
5dkg	2	22	2.09 Mb	2.52 Mb	3.03 Mb
5dkg	3	19	3.79 Mb	5.58 Mb	6.05 Mb
5dkg	4	29	5.11 Mb	7.69 Mb	8.16 Mb
5dkg	5	23	12.72 Mb	18.40 Mb	18.34 Mb
5dkg	6	30	13.02 Mb	22.15 Mb	23.84 Mb
5dkh	3	26	1.81 Mb	2.36 Mb	23.84 Mb 2.49 Mb
5dkh	4	20	1.78 Mb	2.90 Mb	3.47 Mb
5dkh	4 5	30	2.89 Mb	5.36 Mb	6.42 Mb
5dkh		24	3.66 Mb	7.74 Mb	9.75 Mb
5akn 5dkh	6 7	24 28	6.58 Mb	14.22 Mb	9.75 Mb 18.52 Mb
5dki	4	27	1.17 Mb	2.06 Mb	2.37 Mb
5dki	5	24	1.06 Mb	2.08 Mb	2.58 Mb
5dki	6	30	1.89 Mb	4.17 Mb	5.44 Mb
5dki	7	25	1.80 Mb	4.60 Mb	6.44 Mb
5dki	8	25	3.64 Mb	9.76 Mb	14.20 Mb
5dkj	5	28	0.78 Mb	1.69 Mb	2.21 Mb
5dkj	6	24	0.61 Mb	1.44 Mb	1.97 Mb
5dkj	7	28	1.16 Mb	3.02 Mb	4.35 Mb
5dkj	8	20	0.99 Mb	3.01 Mb	4.62 Mb
5dkj	9	20	1.97 Mb	6.54 Mb	10.64 Mb
		partial total	$200.73~\mathrm{Mb}$	$252.72~\mathrm{Mb}$	273.45 Mb
		topup	$16.75 \mathrm{~Mb}$	$57.23 { m ~Mb}$	$105.65 { m Mb}$
		final total	$217.48~\mathrm{Mb}$	309.95 Mb	$379.10 \mathrm{~Mb}$
1000		1 1	1 1		1
		1		£	
800	- 2 ⁻¹				200
	_				_
(q					
S 600					1
stio		1	-		-
Cross Section (Mb) 009					
8 400 0	- /	-			-
	- 1/		-		
200	_ /				
200	1				
					-

Table 3. Non-perturbative close-coupling calculations for the ionization of the 5d subshell of W

Figure 1. Electron-impact direct ionization of the 6s subshell of W. Dashed line (red): distorted-wave method, Solid squares (blue): non-perturbative close-coupling method (1.0 Mb = 1.0×10^{-18} cm²).

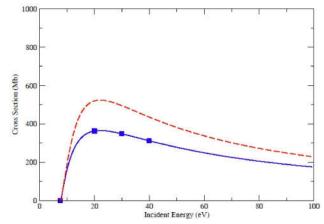


Figure 2. Electron-impact direct ionization of the 6s subshell of W. Dashed line (red): distorted-wave method with a polarization potential, Solid squares (blue): non-perturbative close-coupling method with a polarization potential (1.0 Mb = 1.0×10^{-18} cm²).

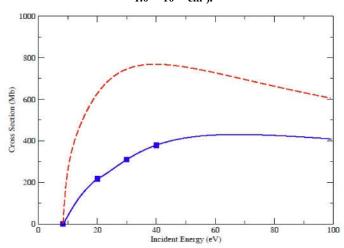


Figure 3. Electron-impact direct ionization of the 5d subshell of W. Dashed line (red): distorted-wave method, Solid squares (blue): non-perturbative close-coupling method (1.0 Mb = 1.0×10^{-18} cm²).