Matrix monotone functions, means, and the geometry of \mathbb{P}_n

Daryl Q. Granario

Department of Mathematics and Statistics, Auburn University

Abstract

Denote by \mathbb{H}_n the set of all *n*-by-*n* Hermitian matrices, and \mathbb{P}_n the set of all *n*-by-*n* positive definite matrices. For $A \in \mathbb{H}_n$, we write $A \ge 0$ if *A* is positive semidefinite. The Löwner partial order \le on \mathbb{H}_n is given by $A \le B$ if and only if $B - A \ge 0$. A function $f: (a, b) \to \mathbb{R}$ is said to be matrix monotone if $A \le B$ implies $f(A) \le f(B)$ for all $A, B \in \mathbb{P}_n$ with spectra contained in (a, b). We discuss major results in the theory of matrix monotone functions and its connection with special maps called matrix means (the Ando-Kubo Theorem). Finally, we look at the geometry of \mathbb{P}_n as developed by Bhatia.