On the Number of Perfect Matchings in a Graph

U. S. R. Murty, University of Waterloo

Abstract

Petersen (1891) showed that every 2-connected cubic graph has at least one perfect matching. Tutte (1947) established a characterization of graphs which possess a perfect matching, and strengthened Petersen's Theorem by showing that every edge in a 2 -connected cubic graph is contained in some perfect matching of the graph.

An edge e of a graph G is admissible if there is at least one perfect matching of G which contains it. A connected graph of order at least two is matching covered if every edge in it is admissible. Our interest here is in counting the number of perfect matchings in a graph. Clearly, in this context, we may restrict our attention to matching covered graphs.

We denote the number of perfect matchings in a graph G by $\Phi(G)$. In this talk I shall present a brief survey of what I know about this function Φ. There are intriguing unsolved problems related to the number of perfect matchings in bipartite matching covered graphs with minimum degree at least three (On the number of perfect matchings in a bipartite graph by Carvalho, Lucchesi and Murty; SIAM J. Disctrete Math, Volume 27 (2013), No. 2, pp 940-958).

