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This is a plug for my lecture notes

Algebraic curves from function fields,

a draft of the first part of which is posted at

www.auburn.edu/~leonada

The notes are about commutative algebra and algebraic
curves, maybe (algebraic surfaces) as well.

But I am, at best an algebra-ist, with interest in the
algebra that leads to algebraic-geometry codes.

I have spent the last several decades running examples of
various theoretical ideas using Computer Algebra Systems.
I do not use any topology, geometry, or analysis when
doing this.

This leads me, not surprisingly, to an algebraic theory of
the subjects with which I deal, unencumbered by any ideas
of topology, geometry, or analysis.
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Commutative algebra

X3Y + Y 3 +X ∈ F[X,Y ], F algebraically closed

Ideal
I := 〈X3Y + Y 3 +X〉 ⊂ R := F[X,Y ]

Affine variety

V := {(X,Y ) ∈ F
2 : X3Y + Y 3 +X = 0}

Quotient ring

A := F[X,Y ]/〈X3Y + Y 3 +X〉

Function field (or field of fractions)

K := F(X,Y )/〈X3Y + Y 3 +X〉 := {a/b : a, b ∈ A, b 6= 0}
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Homogenization

x3y + y3z + z3x

Ideal
I := 〈x3y + y3z + z3x〉 ⊂ R := F[x, y, z]

Projective variety

V := {(x : y : z) ∈ P
2(F) : x3y + y3z + z3x = 0}

Quotient ring

A := F[x, y, z]/〈x3y + y3z + z3x〉

Function field (or field of fractions)

K := F(x, y, z)/〈x3y + y3z + z3x〉 := {a/b : a, b ∈ A, b 6= 0}
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= 0

is a relation between two homogeneous, rational functions.

((x

z

))

= −2 · P − 1 ·Q+ 3 · R

((y

z

))

= −3 · P + 2 ·Q+ 1 ·R

are divisors describing that x/z and y/z are supposed to
have 3 zeros and 3 poles each.

This would seem to be a traditional approach in terms of
Riemann-Roch spaces and the Riemann-Roch theorem in
that these vector spaces are defined in terms of the
numbers of zeros and poles of rational functions.
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Riemann-Roch

There are divisors

D :=
∑

P

mP (D) · P, ((f)) =
∑

P

νP (f) · P

Riemann-Roch (vector) spaces

L(D) := {0} ∪ {f : νP (f) +mP (D) ≥ 0 for all P}

and the Riemann-Roch theorem

1 + deg(D) − dim(L(D)) ≤ g

with equality when 1 + deg(D) ≥ 2g, g the genus.
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g = 3, 1 + deg(7P ) = 8, dim(L(7P )) = 8− 3
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Example spaces

L(7P ) =

〈

1,
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z
,
xy

z2
,
y2

z2
,
x2y

z3

〉

g = 3, 1 + deg(7P ) = 8, dim(L(7P )) = 8− 3

L(5P + 4Q) =

〈

1,
x

z
,
y

z
,
x2

z2
,
xy

z2
,
x

y
,
x2

yz

〉

g = 3, 1 + deg(5P + 4Q) = 10, dim(L(5P + 4Q)) = 10− 3
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Laurent series expansions

For the Klein quartic example above,
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Laurent series expansions

For the Klein quartic example above,

y
z
= t−3

P u−1
P

x
z
= t−2

P u−1
P tP := x

y
uP := y2z

x3

y
z
= t2QuQ

x
z
= t−1

Q tQ := z
x

uQ := x2y
z3

y
z
= t1R

x
z
= t3RuR tR := y

z
uR := z2x

y3

The induced equations used to define the units are gotten from:

t−9
P u−4

P (1 + uP + t7Pu
3
P ) = 0

t−1
Q (1 + uQ + t7Qu

3
Q) = 0

t3R(1 + uR + t7Ru
3
R) = 0

by ignoring the terms outside the parentheses; not by defining
exceptional divisors and the like!
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P
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Exceptional divisors are moot at the function field level
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K = F (tP , uP ) /
〈

1 + uP + t7Pu
3
P

〉

.
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A possible nonsingular model

t3P t
3
Q + t2P + tQ = 0

t3Qt
3
R + t2Q + tR = 0

t3Rt
3
P + t2R + tP = 0

tP tQtR − 1 = 0

Leonard Function fields



A possible nonsingular model

t3P t
3
Q + t2P + tQ = 0

t3Qt
3
R + t2Q + tR = 0

t3Rt
3
P + t2R + tP = 0

tP tQtR − 1 = 0

t2P t
2
Q + t2P tR + tQtR = 0

t2Qt
2
R + t2QtP + tRtP = 0

t2Rt
2
P + t2RtQ + tP tQ = 0
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Why consider projective at all?

x3y + y3z + z3x = 0

is really shorthand for three affine equations:
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(x/y)3 + (z/y) + (z/y)3(x/y) = 0, y 6= 0
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Why consider projective at all?

x3y + y3z + z3x = 0

is really shorthand for three affine equations:

(x/z)3(y/z) + (y/z)3 + (x/z) = 0, z 6= 0

(x/y)3 + (z/y) + (z/y)3(x/y) = 0, y 6= 0

(y/x) + (y/x)3(z/x) + (z/x)3 = 0, x 6= 0

These in turn describe x/z and y/z being regular functions
except at P,Q where one or both have poles; x/y and z/y
being regular functions except at Q,R where one or both
have poles; and y/x and z/x being regular functions except
at P,R where one or both have poles.

These three are consistent with each other if all three
points P,Q,R are avoided.
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together distinguish points, whatever points are.
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are given to define either a function field or curve, in that
there may be multiple points, meaning points that aren’t
distinguished by their values relative to the defining
functions.
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functions.
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Coordinates

My first question is, what do you think coordinates are?

This is not a frivolous question, in that I think they should
mean ordered sets of values of coordinate functions that
together distinguish points, whatever points are.

This rules out the common choice of projective coordinates,
in that at best they represent quotients of values of
functions.

And it generally rules out the choice of the functions that
are given to define either a function field or curve, in that
there may be multiple points, meaning points that aren’t
distinguished by their values relative to the defining
functions.

One big question is why affine or projective coordinates,
but not rational coordinates?

And why isn’t choosing a set of coordinates that does
distinguish points paramount?
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Choices of coordinates

(x : y : z)(P ) = (0 : 1 : 0)
(x : y : z)(Q) = (1 : 0 : 0)
(x : y : z)(R) = (0 : 0 : 1)

.
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Choices of coordinates

(x : y : z)(P ) = (0 : 1 : 0)
(x : y : z)(Q) = (1 : 0 : 0)
(x : y : z)(R) = (0 : 0 : 1)

.

For f7/h := x2y/z3, f5/h := xy/z2 and f3/h := y/z,

(f5 : f3 : h)(P ) = (1 : 0 : 0)
(f5 : f3 : h)(Q) = (0 : 0 : 1) = (f5 : f3 : h)(R)

.
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Choices of coordinates

(x : y : z)(P ) = (0 : 1 : 0)
(x : y : z)(Q) = (1 : 0 : 0)
(x : y : z)(R) = (0 : 0 : 1)

.

For f7/h := x2y/z3, f5/h := xy/z2 and f3/h := y/z,

(f5 : f3 : h)(P ) = (1 : 0 : 0)
(f5 : f3 : h)(Q) = (0 : 0 : 1) = (f5 : f3 : h)(R)

.

(f7 : f5 : f3 : h)(P ) = (1 : 0 : 0 : 0)
(f7 : f5 : f3 : h)(Q) = (1 : 0 : 0 : 1)
(f7 : f5 : f3 : h)(R) = (0 : 0 : 0 : 1)

.
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Choices of coordinates

(x : y : z)(P ) = (0 : 1 : 0)
(x : y : z)(Q) = (1 : 0 : 0)
(x : y : z)(R) = (0 : 0 : 1)

.

For f7/h := x2y/z3, f5/h := xy/z2 and f3/h := y/z,

(f5 : f3 : h)(P ) = (1 : 0 : 0)
(f5 : f3 : h)(Q) = (0 : 0 : 1) = (f5 : f3 : h)(R)

.

(f7 : f5 : f3 : h)(P ) = (1 : 0 : 0 : 0)
(f7 : f5 : f3 : h)(Q) = (1 : 0 : 0 : 1)
(f7 : f5 : f3 : h)(R) = (0 : 0 : 0 : 1)

.

(f7, f5, f3)(P ) = ((1 : 0), (1 : 0), (1 : 0)) = (∞,∞,∞)
(f7, f5, f3)(Q) = ((1 : 1), (0 : 1), (0 : 1)) = (1, 0, 0)
(f7, f5, f3)(R) = ((0 : 1), (0 : 1), (0 : 1)) = (0, 0, 0)

.
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Points as ring isomorphisms, Laurent series

Define ring homomorphisms

π : F(x) → F((t))

with ker(π) = I to get induced ring isomorphisms

P : K = F(x)/I → F((t)).

P (f) :=
∑

j=νP (f)

fjt
j = tνP (f)uP,f(t)
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with ker(π) = I to get induced ring isomorphisms

P : K = F(x)/I → F((t)).

Define equivalence classes of such, by

P1 ≡ P2 iff νP1
(f) = νP2

(f) for all f ;

and call these equivalence classes of ring isomorphisms points.

P (f) :=
∑

j=νP (f)

fjt
j = tνP (f)uP,f(t)
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Points as ring isomorphisms, Laurent series

Define ring homomorphisms

π : F(x) → F((t))

with ker(π) = I to get induced ring isomorphisms

P : K = F(x)/I → F((t)).

Define equivalence classes of such, by

P1 ≡ P2 iff νP1
(f) = νP2

(f) for all f ;

and call these equivalence classes of ring isomorphisms points.

P (f) :=
∑

j=νP (f)

fjt
j = tνP (f)uP,f(t)

The trailing exponent νP (f) is called a valuation. The other
object independent of the representative, P , is the coordinate
value defined by f0 if νP (f) ≥ 0 and ∞ if νP (f) < 0.
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Harris Lecture 7 quote

Let X ⊂ A
n be an irreducible affine variety.
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can form its quotient field;

this is called the rational function field of X and is usually
denoted K(X); its elements are called rational functions on
X.
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can form its quotient field;
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One warning: a rational function f ∈ K(X) is written as a
quotient g/h where g and h ∈ A(X) are regular functions
on X;
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Harris Lecture 7 quote

Let X ⊂ A
n be an irreducible affine variety.

Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;

this is called the rational function field of X and is usually
denoted K(X); its elements are called rational functions on
X.

One warning: a rational function f ∈ K(X) is written as a
quotient g/h where g and h ∈ A(X) are regular functions
on X;

but despite its name, f itself is not a function on X;

even if we allow ∞ as a value at points where h = 0, we
cannot in general make sense of f at points where both g
and h vanish.
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Harris Lecture 7 quote

Let X ⊂ A
n be an irreducible affine variety.

Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;

this is called the rational function field of X and is usually
denoted K(X); its elements are called rational functions on
X.

One warning: a rational function f ∈ K(X) is written as a
quotient g/h where g and h ∈ A(X) are regular functions
on X;

but despite its name, f itself is not a function on X;

even if we allow ∞ as a value at points where h = 0, we
cannot in general make sense of f at points where both g
and h vanish.

We will see shortly in what sense we can deal with these
objects as maps.
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Another quote from Harris lecture 7

...a rational map, despite its name, is not a map, since it
may not be defined at some points of X.
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Another quote from Harris lecture 7

...a rational map, despite its name, is not a map, since it
may not be defined at some points of X.

But if a rational map is not a map, what sort of object is
it?
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Another quote from Harris lecture 7

...a rational map, despite its name, is not a map, since it
may not be defined at some points of X.

But if a rational map is not a map, what sort of object is
it?

Definition 7.3 Let X be an irreducible variety and Y any
variety. A rational map

φ : X −− → Y

is defined to be an equivalence class of pairs (U, γ) with
U ⊂ X a dense Zariski open subset and γ : U → Y a
regular map, where two such pairs (U, γ) and (V, η) are
said to be equivalent if γ|U∩V = η|U∩V .
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regular function versus poles

(x

z

)3 (y

z

)

+
(y

z

)3
+

(x

z

)

= 0

(

x1
h1

)3(x2
h2

)

+

(

x2
h2

)3

+

(

x1
h1

)

= 0
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regular function versus poles

(x

z

)3 (y

z

)

+
(y

z

)3
+

(x

z

)

= 0

x

z
=
y3 + z2x

x2y
=

y3

x2y + z3

is a rational function, regular except when z = 0 = xy.

y

z
=

z2x

x3 + y2z
=
y3 + z2x

x3

is a rational function, regular except when z = 0 = x.

(

x1
h1

)3(x2
h2

)

+

(

x2
h2

)3

+

(

x1
h1

)

= 0

xi

hi
is a rational function with a pole when hi = 0 (and

xi = 1).
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The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities
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The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities

either the example of a cusp or the example of a multiple
point is an algebraic curve.
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The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities

Neither the example of a cusp nor the example of a multiple
point is an algebraic curve.

Leonard Function fields

https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities


The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities

Neither the example of a cusp nor the example of a multiple
point is an algebraic curve.

At best, each is a graph of part of a curve projected relative to
the functions x and y.
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Quiz

Which of the following doesn’t belong?

1

y2 = x3

2

y2 = x3 + x2

3

y2 = x3 + x2 + x

4

y2 = 1− x2

5

P
1(F), the projective line
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Answers to quiz

1

y2 = x3, y = t3, x = t2, t := y/x

as elements of F(t).

2

y2 = x3 + x2, y = t3 − t, x = t2 − 1, t := y/x

as elements of F(t).

3 y2 = x3 + x2 + x is an elliptic curve, so of genus 1, not
genus 0, at least in characteristic not 3.

4

y2 = 1− x2, x =
2t

1 + t2
, y =

1− t2

1 + t2
, t :=

x

y + 1

as elements of F(t) in characteristic not 2.

5

F(t)
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Quiz

Which of the following function fields doesn’t belong?

1

F(y, x)/〈y3 + yx3 + x〉

2

F(f5, f3)/〈f
3
5 + f5f3 + f53 〉

3

F(f7, f5, f3)/〈f
2
7 + f7 + f5f

3
3 , f7f5 + f5 + f43 , f

2
5 − f7f3〉

4

F(f7, f5, f3)/〈f
2
7+f7+f5f

3
3 , f7f5+f5+f

4
3 , f7f3−f

2
5 , f

3
5+f5f3+f

5
3 〉
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Answers to quiz

A trick question. f3 = y, f5 = yx, f7 = yx2, x = f5/y.
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Answers to quiz

A trick question. f3 = y, f5 = yx, f7 = yx2, x = f5/y. Which
of the following quotient rings doesn’t belong?

1

F[y, x]/〈y3 + yx3 + x〉

2

F[f5, f3]/〈f
3
5 + f5f3 + f53 〉

3

F[f7, f5, f3]/〈f
2
7 + f7 + f5f

3
3 , f7f5 + f5 + f43 , f

2
5 − f7f3〉

4

F[f7, f5, f3]/〈f
2
7+f7+f5f

3
3 , f7f5+f5+f

4
3 , f7f3−f

2
5 , f

3
5+f5f3+f

5
3 〉
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Birational equivalence

The quotient ring

A1 := F[x, y]/〈x3y + y3 + x〉

is supposedly birationally equivalent to

A2 := F[f7, f5]/〈f
5
7 + f47 + f75 〉.
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Birational equivalence

The quotient ring

A1 := F[x, y]/〈x3y + y3 + x〉

is supposedly birationally equivalent to

A2 := F[f7, f5]/〈f
5
7 + f47 + f75 〉.

That is, there are ring homomorphisms φ : A1 → A2 and
ψ : A2 → A1 defined by φ(x) := f7/f5, φ(y) := f25 /f7 and
ψ(f7) := x2y, ψ(f5) := xy, which should be inverses of each
other.
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φ(x3y + y3 + x) = (f7/f5)
3(f25 /f7) + (f25 /f7)

3 + (f7/f5)

= (f57 + f47 + f75 )/(f
3
7 f5)
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φ(x3y + y3 + x) = (f7/f5)
3(f25 /f7) + (f25 /f7)

3 + (f7/f5)

= (f57 + f47 + f75 )/(f
3
7 f5)

ψ(f57 + f47 + f75 ) = (x2y)5 + (x2y)4 + (xy)7 = x7y4(x3y + y3 + x)
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φ(x3y + y3 + x) = (f7/f5)
3(f25 /f7) + (f25 /f7)

3 + (f7/f5)

= (f57 + f47 + f75 )/(f
3
7 f5)

ψ(f57 + f47 + f75 ) = (x2y)5 + (x2y)4 + (xy)7 = x7y4(x3y + y3 + x)

Should we worry about the extra factors x7y4 and f37 f5
produced in this process? There are things called exceptional
divisors, normal crossings, and on and on, in the theory of
desingularizing curves and surfaces that suggest the answer is
yes; but I say no.
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φ(x3y + y3 + x) = (f7/f5)
3(f25 /f7) + (f25 /f7)

3 + (f7/f5)

= (f57 + f47 + f75 )/(f
3
7 f5)

ψ(f57 + f47 + f75 ) = (x2y)5 + (x2y)4 + (xy)7 = x7y4(x3y + y3 + x)

Should we worry about the extra factors x7y4 and f37 f5
produced in this process? There are things called exceptional
divisors, normal crossings, and on and on, in the theory of
desingularizing curves and surfaces that suggest the answer is
yes; but I say no.

K := Q(A1) = Q(A2).

That is x = f7/f5, y = f25/f7, f7 = x2y, and f5 = xy, if they are
all viewed as elements of the same function field. So not only
are φ and ψ inverses of each other, they are both the identity
map on the common function field.
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Divisors for the Klein quartic

a3c2 + abc3 + b5 = 0

also defines the Klein quartic.

(a

c

)3
+

(a

c

)

(

b

c

)

+

(

b

c

)5

= 0
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Divisors for the Klein quartic

a3c2 + abc3 + b5 = 0

also defines the Klein quartic.

(a

c

)3
+

(a

c

)

(

b

c

)

+

(

b

c

)5

= 0

((a

c

))

= −5 · P + 1 ·Q+ 4 · R

((

b

c

))

= −3 · P + 2 ·Q+ 1 · R
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Divisors for the Klein quartic

a3c2 + abc3 + b5 = 0

also defines the Klein quartic.

(a

c

)3
+

(a

c

)

(

b

c

)

+

(

b

c

)5

= 0

((a

c

))

= −5 · P + 1 ·Q+ 4 · R

((

b

c

))

= −3 · P + 2 ·Q+ 1 · R

describes that the homogeneous, rational functions a/c and b/c
with a/c having 5 poles and zeros; b/c, 3 each.
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Divisors for the Klein quartic

a3c2 + abc3 + b5 = 0

also defines the Klein quartic.

(a

c

)3
+

(a

c

)

(

b

c

)

+

(

b

c

)5

= 0

((a

c

))

= −5 · P + 1 ·Q+ 4 · R

((

b

c

))

= −3 · P + 2 ·Q+ 1 · R

describes that the homogeneous, rational functions a/c and b/c
with a/c having 5 poles and zeros; b/c, 3 each.
But now all the poles are at P with (a : b : c)(P ) = (1 : 0; 0),
while (a : b : c)(Q) = (0 : 0 : 1) = (a : b : c)(R) is a double point.
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Laurent series expansions

For the Klein quartic example above,

b/c = t−3
P u−2

P a/c = t−5
P u−3

P

b/c = t2QuQ a/c = t1Q
b/c = t1R a/c = t4RuR
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Towers

x28 + x24x8 + x4 = 0, x24 + x22x4 + x2 = 0, x22 + x21x2 + x1 = 0
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Towers

x28 + x24x8 + x4 = 0, x24 + x22x4 + x2 = 0, x22 + x21x2 + x1 = 0

((x8)) = −8 · P1 +4 · P2 +1 · P3 +1 · P4 +1 · P5 +1 · P6

((x4)) = −4 · P1 −4 · P2 +2 · P3 +2 · P4 +2 · P5 +2 · P6

((x2)) = −2 · P1 −2 · P2 −2 · P3 −2 · P4 +4 · P5 +4 · P6

((x1)) = −1 · P1 −1 · P2 −1 · P3 −1 · P4 −4 · P5 +8 · P6
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Towers

x28 + x24x8 + x4 = 0, x24 + x22x4 + x2 = 0, x22 + x21x2 + x1 = 0

((x8)) = −8 · P1 +4 · P2 +1 · P3 +1 · P4 +1 · P5 +1 · P6

((x4)) = −4 · P1 −4 · P2 +2 · P3 +2 · P4 +2 · P5 +2 · P6

((x2)) = −2 · P1 −2 · P2 −2 · P3 −2 · P4 +4 · P5 +4 · P6

((x1)) = −1 · P1 −1 · P2 −1 · P3 −1 · P4 −4 · P5 +8 · P6

P1 = (1 : 0 : 0 : 0 : 0), P2 = (0 : 1 : 0 : 0 : 0),

P3 = P4 = (0 : 0 : 1 : 0 : 0),

P5 = (0 : 0 : 0 : 1 : 0), P6 = (0 : 0 : 0 : 0 : 1)
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Special one-point position

For y23 := x28x4x2x1 and y8 := x8, both with poles only at one
point, there is a special one-point description of the curve.

loadPackage "QthPower";

wtr=matrix{{23,8}};

R=ZZ/2[y23,y8,Weights=>entries weightGrevlex(wtr)];

GB={y23^8+y8^23+y23^4*y8^10+y23^2*y8^15+y23^5*y8^6+y23^6*y8^2+y23*y8^16+y23^4*y8^7+y23^5*y8^3

+y23^3*y8^8+y23*y8^13+y23^4*y8^4+y23^2*y8^9+y23^3*y8^5+y23*y8^10+y23^4*y8+y23*y8^7+y23^2*y8^3}

time ic2=qthIntegralClosure(wtr,R,GB);

toString ic2
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(ZZ/2)[f33, f21, f19, f18, f15, f14, f12, f8], <-- weighted ring

matrix{{33, 21, 19, 18, 15, 14, 12, 8}})

delta=y8^40+y8^37+y8^34+y8^31+y8^16+y8^13+y8^10+y8^7, <-- denominator

n12=y23^4*y8^30+y23^5*y8^26+y23*y8^36+y23^4*y8^27+y23^7*y8^18+y23^2*y8^32

+y8^37+y23^2*y8^29+y8^34+y23^3*y8^25+y23^4*y8^21+y23^6*y8^13+y23^4*y8^18

+y23^6*y8^10+y23*y8^24+y23^4*y8^15+y23^2*y8^20+y8^25+y23^6*y8^7+y23^2*y8^17

+y23^5*y8^8+y23*y8^18+y23^2*y8^14+y8^19+y23^3*y8^10+y23*y8^15+y23^4*y8^6

+y8^16+y23*y8^12+y23^2*y8^8+y8^13+y8^7,

n14=y23^2*y8^36+y23^6*y8^23+y23^7*y8^19+y23^5*y8^24+y8^38+y23^3*y8^29

+y23^6*y8^20+y23*y8^34+y23^4*y8^25+y23^7*y8^16+y23^2*y8^30+y23^5*y8^21

+y8^35+y23^3*y8^26+y23^4*y8^22+y23^2*y8^27+y23^6*y8^14+y23^5*y8^15

+y23*y8^25+y23^4*y8^16+y23^7*y8^7+y23^2*y8^21+y8^26+y23*y8^22+y23^4*y8^13

+y23^2*y8^18+y23^5*y8^9+y23^3*y8^14+y23^6*y8^5+y23*y8^19+y23^4*y8^10

+y23^5*y8^6+y23^3*y8^11+y23^6*y8^2+y23^4*y8^7+y23^5*y8^3+y23^3*y8^8

+y23^2*y8^9+y8^14+y23^3*y8^5+y23*y8^10+y23^2*y8^6+y23*y8^7+y23^2*y8^3

+y8^8+y23*y8^4,

n15=y23*y8^39+y23^2*y8^35+y23^6*y8^22+y23*y8^36+y23^7*y8^18+y23^5*y8^23

+y8^37+y23^3*y8^28+y23^6*y8^19+y23^4*y8^24+y23^7*y8^15+y23^2*y8^29

+y23^5*y8^20+y8^34+y23^3*y8^25+y23*y8^30+y23^4*y8^21+y23^2*y8^26

+y23^6*y8^13+y23^5*y8^14+y23*y8^24+y23^4*y8^15+y23^7*y8^6+y23^2*y8^20

+y8^25+y23*y8^21+y23^4*y8^12+y23^2*y8^17+y23^5*y8^8+y23^3*y8^13

+y23^6*y8^4+y23*y8^18+y23^4*y8^9+y23^5*y8^5+y23^3*y8^10+y23^6*y8

+y23*y8^15+y23^4*y8^6+y23^5*y8^2+y23^3*y8^7+y23*y8^12+y23^2*y8^8+y8^13

+y23^3*y8^4+y23^2*y8^5+y23^2*y8^2+y8^7+y23*y8^3,

n18=y23^6*y8^25+y23^7*y8^21+y23^2*y8^35+y23^3*y8^31+y23^6*y8^22+y23^2*y8^32

+y23^5*y8^23+y23^3*y8^28+y23*y8^33+y23^4*y8^24+y23^2*y8^29+y23^5*y8^20

+y23^3*y8^25+y23^6*y8^16+y23*y8^30+y23^7*y8^12+y23^2*y8^26+y23^5*y8^17

+y23^6*y8^13+y23^7*y8^9+y23^3*y8^19+y23^6*y8^10+y23^4*y8^15+y23^5*y8^11

+y23^3*y8^16+y23^6*y8^7+y23*y8^21+y23^2*y8^17+y23^3*y8^13+y23^2*y8^14

+y23^5*y8^5+y23^6*y8+y23*y8^15+y23^2*y8^11+y23^5*y8^2+y8^16+y23^3*y8^7

+y23*y8^12+y23^3*y8^4+y23*y8^9+y8^10+y23^2*y8^2+y8^7+y23*y8^3,
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n19=y23^5*y8^28+y23*y8^38+y23^4*y8^29+y23^7*y8^20+y23^2*y8^34+y23*y8^35

+y23^2*y8^31+y23^5*y8^22+y8^36+y23^3*y8^27+y23*y8^32+y23^7*y8^14

+y23^2*y8^28+y8^33+y23^6*y8^15+y23*y8^29+y23^4*y8^20+y23^2*y8^25+y8^30

+y23^3*y8^21+y23^6*y8^12+y23*y8^26+y23^2*y8^22+y23^4*y8^14+y23^2*y8^19

+y23^5*y8^10+y23^6*y8^6+y23^4*y8^11+y23^3*y8^12+y23^6*y8^3+y23*y8^17

+y23^2*y8^13+y23^5*y8^4+y8^18+y8^15+y23^3*y8^6+y8^12+y23*y8^8+y23^2*y8^4

+y23*y8^5,

n21=y23^3*y8^34+y23^7*y8^21+y23^2*y8^35+y23^5*y8^26+y23^4*y8^27+y23^7*y8^18

+y23^2*y8^32+y23^5*y8^23+y8^37+y23^6*y8^19+y23^7*y8^15+y23^2*y8^29

+y23^5*y8^20+y8^34+y23^6*y8^16+y23*y8^30+y23^4*y8^21+y23^2*y8^26

+y23^5*y8^17+y23^6*y8^13+y23*y8^27+y23^4*y8^18+y23^2*y8^23+y23^3*y8^19

+y23^6*y8^10+y23*y8^24+y23^4*y8^15+y23^7*y8^6+y23^2*y8^20+y8^25

+y23^3*y8^16+y23*y8^21+y23^7*y8^3+y23^6*y8^4+y23^7+y23^2*y8^14+y23^3*y8^10

+y23^6*y8+y23^4*y8^6+y23^2*y8^11+y23^4*y8^3+y23^2*y8^8+y8^13+y23^3*y8^4

+y23*y8^9+y23^3*y8+y23*y8^6+y23^2*y8^2,

n33=y23^7*y8^24+y23^3*y8^31+y23*y8^36+y23^4*y8^27+y23^7*y8^18+y23^5*y8^23

+y8^37+y23*y8^33+y23^2*y8^29+y23^5*y8^20+y23^4*y8^21+y23^7*y8^12+y23*y8^27

+y23^7*y8^9+y23^2*y8^23+y23^5*y8^14+y23^6*y8^10+y23*y8^24+y23^2*y8^20

+y23^5*y8^11+y8^25+y23*y8^21+y23^4*y8^12+y23^7*y8^3+y23^2*y8^17

+y23^4*y8^9+y23^2*y8^14+y8^19+y23^2*y8^11+y8^13+y23^3*y8^4+y8^7
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f33^2+f33*f8^3+f18*f8^6+f18*f8^3+f18+f15+f14*f8^2+f12*f8^3+f8^6+f8^3+1,

f33*f21+f33+f18*f8^3+f18+f15*f8^3+f15+f14*f8^5+1,

f33*f19+f21*f8^2+f19*f8^3+f14*f8+f12*f8^5+f12*f8^2,

f33*f18+f33+f21+f19*f8^4+f19*f8+f18*f8^3+f18+f15*f8^3+f12*f8^3+f8^3+1,

f33*f15+f21+f15*f8^3+f15+f12*f8^3+f8^6+f8^3,

f33*f14+f21*f8+f15*f8^4+f15*f8+f14*f8^3+f12*f8+f8,

f33*f12+f21*f8^3+f19*f8+f18+f15+f14*f8^2+f12*f8^3+f8^3+1,

f21^2+f33+f21+f18*f8^3+f14*f8^2+f12,

f21*f19+f19+f14*f8+f12*f8^2+f8^5,

f21*f18+f19*f8+f18+f15*f8^3+f15+f12+f8^3+1,

f21*f15+f21+f18+f15+f12*f8^3+f12+f8^3+1,

f21*f14+f19*f8^2+f15*f8+f14,

f21*f12+f33+f21+f18+f15+f12+f8^3,

f19^2+f14*f8^3+f12*f8+f8,

f19*f18+f21*f8^2+f12*f8^2+f8^2,

f19*f15+f19+f18*f8^2+f8^2,

f19*f14+f33+f18+f15+1, <-- strict affine F_2[f8] algebra presentation

f19*f12+f15*f8^2+f8^2,

f18^2+f19*f8+f15+f12*f8^3+f12+f8^3+1,

f18*f15+f33+f21+f15+f12,

f18*f14+f15*f8+f12*f8+f8^4+f8,

f18*f12+f18+f14*f8^2,

f15^2+f18+f14*f8^2+f12+1,

f15*f14+f21*f8+f14+f12*f8+f8,

f15*f12+f19*f8+f15+f12+1,

f14^2+f19+f12*f8^2,

f14*f12+f18*f8,

f12^2+f12+f8^3
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8 9 10 11 12 13 14 15
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32 33
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genus

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33

The genus is easily computed as

g = |{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 17, 25}| = 13
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Quiz

1 Is y = 1
x
the same as xy = 1?
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1 Is y = 1
x
the same as xy = 1?

2 If x is given the value c, what value should y be given?

3 What values c should be considered?

4 Does it help to write things homogeneously as xy = h2 or
y
h
= h

x
, and think in projectively?
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Quiz

1 Is y = 1
x
the same as xy = 1?

2 If x is given the value c, what value should y be given?

3 What values c should be considered?

4 Does it help to write things homogeneously as xy = h2 or
y
h
= h

x
, and think in projectively?

5 How about xy = hk or y
k
= h

x
instead?

Leonard Function fields



My answers to the quiz

1 How about xy − 1 = 0?
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My answers to the quiz

1 How about xy − 1 = 0?

2 x should be given the value (a : b) and y the value (b : a).
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2 x should be given the value (a : b) and y the value (b : a).

3 That is, values should come from the projective line (over
an algebraically closed field).
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My answers to the quiz

1 How about xy − 1 = 0?

2 x should be given the value (a : b) and y the value (b : a).

3 That is, values should come from the projective line (over
an algebraically closed field).

4 xy = h2 (or x
h
y
h
= 1) is not the correct generalization.
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My answers to the quiz

1 How about xy − 1 = 0?

2 x should be given the value (a : b) and y the value (b : a).

3 That is, values should come from the projective line (over
an algebraically closed field).

4 xy = h2 (or x
h
y
h
= 1) is not the correct generalization.

5
x
h
y
k
= 1 (or xk = yh) is.

Leonard Function fields



Eisenbud example A2.32

(Resolution of singularities in codimension 1).
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Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

Leonard Function fields



Eisenbud example A2.32

(Resolution of singularities in codimension 1).

Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

By Theorem A2.26 the normalization R corresponds to an
affine variety Y , and the inclusion R ⊂ R corresponds to a
map g : Y → X.
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(Resolution of singularities in codimension 1).

Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

By Theorem A2.26 the normalization R corresponds to an
affine variety Y , and the inclusion R ⊂ R corresponds to a
map g : Y → X.

By Theorem A2.27 the map g is an isomorphism over the
part of X that is smooth, or even normal.
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Eisenbud example A2.32

(Resolution of singularities in codimension 1).

Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

By Theorem A2.26 the normalization R corresponds to an
affine variety Y , and the inclusion R ⊂ R corresponds to a
map g : Y → X.

By Theorem A2.27 the map g is an isomorphism over the
part of X that is smooth, or even normal.

The map g is a finite morphism in the sense that the
coordinate ring of X is finitely generated as a module over
the coordinate ring of X; this is a strong form of the
condition that each fiber g−1(x) is a finite set.
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Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,
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Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,

and this means the singular locus of Y is of codimenion at
least 2.
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Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,

and this means the singular locus of Y is of codimenion at
least 2.

Desingularization in codimension 1 is the most that can be
hoped, in general, from a finite morphism.
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For example, the quadric cone X ⊂ K
3 defined by the

equation x2 + y2 + z2 = 0 is normal, and it follows that any
finite map Y → X that is isomorphic outside the singular
point must be an isomorphism.
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For example, the quadric cone X ⊂ K
3 defined by the

equation x2 + y2 + z2 = 0 is normal, and it follows that any
finite map Y → X that is isomorphic outside the singular
point must be an isomorphism.

However, for any affine or projective variety X over a field
it is conjectured that there is actually a resolution of

singularities: that is, a projective map π : Y → X (this
means that Y can be represented as a closed subset of
X ×P

n for some projective space P
n) where Y is a smooth

variety, and the map π is an isomorphism over the part of
X that is already smooth.
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In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X ×P

2, with coordinates x, y, z for X and u, v, w
for P2, defined by the vanishing of the 2× 2 minors of the

matrix

(

x y z
u v w

)

together with the equations

xu+ yv + zw = 0 and u2 + v2 +w2 = 0.
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x y z
u v w

)

together with the equations

xu+ yv + zw = 0 and u2 + v2 +w2 = 0.

It is described algebraically by the Rees algebra
R⊕ I ⊕ I2 · · ·
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In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X ×P

2, with coordinates x, y, z for X and u, v, w
for P2, defined by the vanishing of the 2× 2 minors of the

matrix

(

x y z
u v w

)

together with the equations

xu+ yv + zw = 0 and u2 + v2 +w2 = 0.

It is described algebraically by the Rees algebra
R⊕ I ⊕ I2 · · ·

where R = K[x, y, z]/(x2 + y2 + z2) is the coordinate ring
of X
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In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X ×P

2, with coordinates x, y, z for X and u, v, w
for P2, defined by the vanishing of the 2× 2 minors of the

matrix

(

x y z
u v w

)

together with the equations

xu+ yv + zw = 0 and u2 + v2 +w2 = 0.

It is described algebraically by the Rees algebra
R⊕ I ⊕ I2 · · ·

where R = K[x, y, z]/(x2 + y2 + z2) is the coordinate ring
of X

and I = (x, y, z) ⊂ R.

Leonard Function fields



Where to begin?

Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.
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Phrasing singularity questions in affine terms allows one to
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surface.

This is supposed to be an example of how to desingularize
an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.
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Where to begin?

Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.

This is supposed to be an example of how to desingularize
an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.

Projectively but using rational functions:

(x

h

)2
+

(y

h

)2
+

( z

h

)2
= 0
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Where to begin?

Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.

This is supposed to be an example of how to desingularize
an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.

Projectively but using rational functions:

(x

h

)2
+

(y

h

)2
+

( z

h

)2
= 0

But then one would need to find a way to explain that
there were singularities when h = 0 as well as the one at
x = 0, y = 0, z = 0, h = 1.
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Looking at things in rational terms is a better alternative,
as the rational function equation:

(

x1
h1

)2

+

(

x2
h2

)2

+

(

x3
h3

)2

= 0
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Looking at things in rational terms is a better alternative,
as the rational function equation:

(

x1
h1

)2

+

(

x2
h2

)2

+

(

x3
h3

)2

= 0

can be rewritten in polyonomial form as

x21h
2
2h

2
3 + x22h

2
1h

2
3 + x23h

2
1h

2
2 = 0
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Looking at things in rational terms is a better alternative,
as the rational function equation:

(

x1
h1

)2

+

(

x2
h2

)2

+

(

x3
h3

)2

= 0

can be rewritten in polyonomial form as

x21h
2
2h

2
3 + x22h

2
1h

2
3 + x23h

2
1h

2
2 = 0

with singularities at h1 = 0 = h2 , h1 = 0 = h3, and
h2 = 0 = h3, in addition to the one at x1 = x2 = x3 = 0.
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P1(F))3,
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P1(F))3, it is possible to append three
new rational coordinate functions

x4
h4

:=

(

x1
h1

)(

h2
x2

)

,
x5
h5

:=

(

x2
h2

)(

h3
x3

)

,
x6
h6

:=

(

x3
h3

)(

h1
x1

)

Leonard Function fields



Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P1(F))3, it is possible to append three
new rational coordinate functions

x4
h4

:=

(

x1
h1

)(

h2
x2

)

,
x5
h5

:=

(

x2
h2

)(

h3
x3

)

,
x6
h6

:=

(

x3
h3

)(

h1
x1

)

to get a non-singular surface coordinatized over (P1(F))6;

Leonard Function fields



Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P1(F))3, it is possible to append three
new rational coordinate functions

x4
h4

:=

(

x1
h1

)(

h2
x2

)

,
x5
h5

:=

(

x2
h2

)(

h3
x3

)

,
x6
h6

:=

(

x3
h3

)(

h1
x1

)

to get a non-singular surface coordinatized over (P1(F))6;
with additional induced relations

1 +

(

h4
x4

)2

+

(

x6
h6

)2

= 0;

(

x4
h4

)2

+ 1 +

(

h5
x5

)2

= 0;

(

h6
x6

)2

+

(

x5
h5

)2

+ 1 = 0.
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Rees algebra

What does the Rees algebra R⊕ I ⊕ I2 · · · mean?
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Rees algebra

What does the Rees algebra R⊕ I ⊕ I2 · · · mean?

Well first, it should be R[It] :=
∑

j(It)
j .
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Well first, it should be R[It] :=
∑

j(It)
j .

Then there should be a map φ : R[u, v, w] → R[It] defined
by φ(u) := xt, φ(v) := yt, and φ(w) := zt.
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Then there should be a map φ : R[u, v, w] → R[It] defined
by φ(u) := xt, φ(v) := yt, and φ(w) := zt.

Then R[u, v, w]/kernel(φ) is a presentation of the Rees
algebra.
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Rees algebra

What does the Rees algebra R⊕ I ⊕ I2 · · · mean?

Well first, it should be R[It] :=
∑

j(It)
j .

Then there should be a map φ : R[u, v, w] → R[It] defined
by φ(u) := xt, φ(v) := yt, and φ(w) := zt.

Then R[u, v, w]/kernel(φ) is a presentation of the Rees
algebra.

Clearly φ(xu+ yv + zw) = 0t and φ(u2 + v2 + w2) = 0t2.

Leonard Function fields



My rees algebra alternative
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∑

j(It)
j .
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φ(y) := vt, and φ(z) := wt.
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Then try the map ψ : R→ R[It] defined by ψ(x) := ut,
φ(y) := vt, and φ(z) := wt.

Then R/kernel(ψ) is a presentation of my rees algebra.
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My rees algebra alternative

Start with R[It] :=
∑

j(It)
j .

Then try the map ψ : R→ R[It] defined by ψ(x) := ut,
φ(y) := vt, and φ(z) := wt.

Then R/kernel(ψ) is a presentation of my rees algebra.

Clearly
ψ(x2 + y2 + z2) 7→ (xu+ yv + zw)t 7→ (u2 + v2 + w2)t2.
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