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This is a plug for my lecture notes
Algebraic curves from function fields,
a draft of the first part of which is posted at
www.auburn.edu/~leonada
The notes are about commutative algebra and algebraic

curves, maybe (algebraic surfaces) as well.

But I am, at best an algebra-ist, with interest in the
algebra that leads to algebraic-geometry codes.

I have spent the last several decades running examples of
various theoretical ideas using Computer Algebra Systems.
I do not use any topology, geometry, or analysis when
doing this.

This leads me, not surprisingly, to an algebraic theory of
the subjects with which I deal, unencumbered by any ideas
of topology, geometry, or analysis.
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X3Y +V? + X € F[X,Y], F algebraically closed

Ideal
I:= (XY +Y’+X)CR:=F[X,Y]

Affine variety
Vi={X,Y)eF? : X’V +V’+X =0}
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Commutative algebra

X3Y +V? + X € F[X,Y], F algebraically closed

Ideal
I:= (XY +Y’+X)CR:=F[X,Y]

Affine variety
Vi={(X,)Y)€eF? : X3V + Y3+ X =0}
Quotient ring
A:=F[X,Y]/(X}Y + Y3+ X)
Function field (or field of fractions)

K:=FX,V)/(X?Y +Y?+ X):={a/b : a,bc A, b#0}
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Homogenization

:1;3y + ygz + 2z

Ideal
I:=(*y+ 9’2+ 2°2) C R:=Fla,y, 7]

Projective variety
Vi={(z:y:2)€ PQ(F) : :1:3y + y3z + 2% = 0}
Quotient ring
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Homogenization

:1;3y + ygz + 2z

Ideal
I:=(*y+ 9’2+ 2°2) C R:=Fla,y, 7]

Projective variety
Vi={(z:y:2) e PXF) : 2%y + 2+ 20 =0}
Quotient ring
A:=F[z,y,2]/{’y + v’z + 2°x)
Function field (or field of fractions)

K :=F(z,y,2)/(z°y + v’z + 2°2) := {a/b : a,bc A, b+#0}
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Divisors for the Klein quartic

50+ @)

is a relation between two homogeneous, rational functions.
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is a relation between two homogeneous, rational functions.

((f)):—2-P—1-Q+3-R

(é)) - 3.P+2.-Q+1-R

are divisors describing that x/z and y/z are supposed to
have 3 zeros and 3 poles each.
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Divisors for the Klein quartic

50+ @)

is a relation between two homogeneous, rational functions.

((f)):—2-P—1-Q+3-R

z

AN

=)])=-3-P+2-Q+1-R

z
are divisors describing that x/z and y/z are supposed to
have 3 zeros and 3 poles each.

@ This would seem to be a traditional approach in terms of
Riemann-Roch spaces and the Riemann-Roch theorem in
that these vector spaces are defined in terms of the
numbers of zeros and poles of rational functions.

Leonard Function fields



Riemann-Roch

@ There are divisors

D:=> mpD)-P, ((f) = we(f)-P
-
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@ There are divisors

D:=> mpD)-P, ((f) = we(f)-P
-

P

@ Riemann-Roch (vector) spaces

L(D):={0}U{f : vp(f)+mp(D) >0 for all P}
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Riemann-Roch

@ There are divisors

D:=> mpD)-P, ((f) = we(f)-P
P

@ Riemann-Roch (vector) spaces

L(D) := {0} U{f : vp(f)+mp(D) >0 for all P}

@ and the Riemann-Roch theorem
1+ deg(D) — dim(L(D)) <g

with equality when 1 + deg(D) > 2g, g the genus.
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Example spaces

y Ty y Yy
Ler) = (1292 Z3>

g=3,14deg(7P) =8, dim(L(7P)) =8—3
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Example spaces

2 .2
yry y ry
L(7P) = <17;7?7§7—Z3 >
3

g=3,1+deg(7P) =8, dim(L(7P)) =8 —

2 2
L(5P+4Q) = <17 T T _2)?) ] _>
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Example spaces

2 .2
yry y ry
L(7P) = <17;7?7§7—Z3 >
3

g=3,1+deg(7P) =8, dim(L(7P)) =8 —
2 2
L(5P + 4Q) = <17 0 ?) ] _>

g=3,14+deg(5P +4Q) = 10, dim(L(5P + 4Q)) = 10 — 3
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Laurent series expansions

For the Klein quartic example above,

Y43yl oz — 422,71 =z — Yz
> =tpup L =tpup tpi= up: 7
%:téuQ %:tél tQ =2 wug ::2—33’
Y _ 41 T _ 43 — Y — zz
E_tR ;—tRUR tR = UR —y—g
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Laurent series expansions

For the Klein quartic example above,

y _4—3,,—1 =« _ ;-2 -1 .z Yz
p tP up L =tpup tpi= up:i= 7
¥y — z _ —1 =Y
== QUQ > = tQ Q=12 uQ:= B
y _ 41 T _ 43 Jo—') . 2z
E_tR ;—tRUR tR = UR ‘= —y3

The induced equations used to define the units are gotten from:
fp UP (1+UP+tPUP) 0
to (14 ug +tHuyy) =0

th(L+up +thuk) =0
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Laurent series expansions

For the Klein quartic example above,

y _4-3,—1 =z -2, —1 .z Yz
p tP up T =tpup tp:= y up = z;,
¥y — z _ — Z p—)
== QUQ > = tQ Q=12 uQ:= B
Yy _ 41 T __ 43 — Y . 2z
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Laurent series expansions

For the Klein quartic example above,

y _4-3,—1 =z -2, —1 .z Yz
p tP up T =tpup tp:= y up = z;,
¥y — z _ — Z p—)
== QUQ > = tQ Q=12 uQ:= B
Yy _ 41 T __ 43 — Y . 2z
E_tR ;—tRUR tR = UR ‘= —y3

The induced equations used to define the units are gotten from:
tplup (L +up + thup) =0
to a + ug —i—tQuQ) 0

th(L+up +thuk) =0

by ignoring the terms outside the parentheses; not by defining
exceptional divisors and the like!
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Local view

)

is mapped to
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is mapped to

tP up Y14 up + thud).
Should we worry about ¢, u1_34?
@ Similarly
1+ up + thud

is mapped to
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° (5 )+ () +(2)

is mapped to

tp upt (1 + up + thud).

Should we worry about ¢, u1_34?

©

Similarly
1+ up + thud

is mapped to

(O @)

Should we worry about 574?
y

©
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Exceptional divisors are moot at the function field level
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Exceptional divisors are moot at the function field level

S EOENORORE)

K =F (tp,up) /(1 +up+tpup).
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A possible nonsingular model

thty +th +tg =0
toth +15 +tr =0
5 +th +tp =0
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A possible nonsingular model

]
thty +th +tg =0
toth +15 +tr =0
5 +th +tp =0
]

tptgtr —1 =10
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A possible nonsingular model

]
thty +th +tg =0
toth +15 +tr =0
5 +th +tp =0
]
tptgtr —1 =10
]

tpty + thtr +totr =0
toth +totp +trtp =0
tht + thto +tptg =0
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Why consider projective at all?

By + P2+ 2B =0

is really shorthand for three affine equations:
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Why consider projective at all?

By + P2+ 2B =0
is really shorthand for three affine equations:
o

(x/2)%(y/2) + (y/2)> + (x/2) =0, 2 #0
(z/y)® + (2/y) + (/) (x/y) =0, y # 0
(y/z) + (y/2)%(z/z) + (z/2)> =0, 2 £ 0
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Why consider projective at all?

By +ydz+232=0
is really shorthand for three affine equations:
(z/2)3(y/2) + (y/2)* + (x/2) =0, z #0
(@/y)* + (2/y) + (2/y)*(x/y) = 0, y # 0
(y/z) + (y/2)%(z/2x) + (2/2)> =0, 2 # 0

@ These in turn describe z/z and y/z being regular functions
except at P, @ where one or both have poles; z/y and z/y
being regular functions except at @, R where one or both
have poles; and y/z and z/x being regular functions except
at P, R where one or both have poles.
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Why consider projective at all?

By + P2+ 2B =0

is really shorthand for three affine equations:

(z/2)3(y/2) + (y/2)* + (x/2) =0, z #0
(x/y) + (z/y) + (z/9)*(x/y) =0, y # 0
(y/z) + (y/2)%(z/2x) + (2/2)> =0, 2 # 0

@ These in turn describe z/z and y/z being regular functions
except at P, @ where one or both have poles; z/y and z/y
being regular functions except at @, R where one or both
have poles; and y/z and z/x being regular functions except
at P, R where one or both have poles.

@ These three are consistent with each other if all three
points P, @, R are avoided.
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@ My first question is, what do you think coordinates are?
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there may be multiple points, meaning points that aren’t
distinguished by their values relative to the defining
functions.
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in that at best they represent quotients of values of
functions.

@ And it generally rules out the choice of the functions that
are given to define either a function field or curve, in that
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but not rational coordinates?
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Coordinates

@ My first question is, what do you think coordinates are?

@ This is not a frivolous question, in that I think they should
mean ordered sets of values of coordinate functions that
together distinguish points, whatever points are.

@ This rules out the common choice of projective coordinates,
in that at best they represent quotients of values of
functions.

@ And it generally rules out the choice of the functions that
are given to define either a function field or curve, in that
there may be multiple points, meaning points that aren’t
distinguished by their values relative to the defining
functions.

@ One big question is why affine or projective coordinates,
but not rational coordinates?

@ And why isn’t choosing a set of coordinates that does
distinguish points paramount?
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Choices of coordinates

° (x:y:2)(P)=(0:1:0)
(x:y:2)(Q)=(1:0:0) .
(x:y:2)(R)=(0:0:1)




Choices of coordinates

[+

(x:y:2)(P)=(0:1:0)
(z:y:2)(Q)=(1:0:0)
(z:y:2)(R)=(0:0:1)
@ For fr/h:=2%y/23, fs/h = xy/z* and f3/h :=y/z,
(f5: fa=h)(P) =(1:0:0)
(fs: f3:h)(Q) =(0:0:1) = (fs: f3:h)(R)




Choices of coordinates

[+

(x:y:2)(P)=(0:1:0)
(z:y:2)(Q@)=(1:0:0)
(x:y:2)(R)=(0:0:1)
@ For fr/h:=2%y/23, fs/h = xy/z* and f3/h :=y/z,
(fs: fs:h)(P)=(1:0:0)
(f5: f3:h)(Q) = (0:0:1) = (fs: f3:h)(R)

(fr:fs:fs:h)(P)=(1:0:0:0
(fr:fs:fs:h)(Q)=(1:0:0:1) .
(fr:fs:f3:h)(R)=(0:0:0:1




Choices of coordinates

[+

(x:y:2)(P)=(0:1:0)
(z:y:2)(Q@)=(1:0:0)
(x:y:2)(R)=(0:0:1)
@ For fr/h:=2%y/23, fs/h = xy/z* and f3/h :=y/z,
(fs: fs:h)(P)=(1:0:0)
(f5: f3:h)(Q) = (0:0:1) = (fs: f3:h)(R)

(fr:fs:fs:h)(P)=(1:0:0:0
(fr:fs:f3:h)(@Q)=(1:0:0:1) .
(fr:fs:f3:h)(R)=(0:0:0:1




Points as ring isomorphisms, Laurent series

Define ring homomorphisms
m : F(z) —» F((t))
with ker(m) = I to get induced ring isomorphisms

P : K=F(x)/I = F((t).

P(f) == Z fjtj - t”P(f)UP,f(t)
j=ve(f)
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Points as ring isomorphisms, Laurent series

Define ring homomorphisms
7 Flz) — (1))
with ker(m) = I to get induced ring isomorphisms
P K =F(@)/T - F((t).
Define equivalence classes of such, by
P, =P iff vp (f) = vp,(f) for all f;

and call these equivalence classes of ring isomorphisms points.

P(f) == Z fjtj - t”P(f)UP,f(t)
j=ve(f)
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Points as ring isomorphisms, Laurent series

Define ring homomorphisms

7 Flz) — (1))
with ker(m) = I to get induced ring isomorphisms

P K =F(x)/l - F((t)).
Define equivalence classes of such, by
P, =P iff vp (f) = vp,(f) for all f;
and call these equivalence classes of ring isomorphisms points.
P(f):= > fith =t"Dupg(t)
j=vp(f)

The trailing exponent vp(f) is called a valuation. The other
object independent of the representative, P, is the coordinate
value defined by fy if vp(f) > 0 and oo if vp(f) < 0.
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Harris Lecture 7 quote

@ Let X C A" be an irreducible affine variety.
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@ Let X C A" be an irreducible affine variety.

@ Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;
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can form its quotient field;

@ this is called the rational function field of X and is usually

denoted K(X); its elements are called rational functions on
X.
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@ Let X C A" be an irreducible affine variety.

@ Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;

@ this is called the rational function field of X and is usually

denoted K(X); its elements are called rational functions on
X.

@ One warning: a rational function f € K(X) is written as a
quotient g/h where g and h € A(X) are regular functions
on X;
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Let X C A" be an irreducible affine variety.
Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;

this is called the rational function field of X and is usually

denoted K(X); its elements are called rational functions on
X.

One warning: a rational function f € K(X) is written as a
quotient g/h where g and h € A(X) are regular functions
on X;

but despite its name, f itself is not a function on X;
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Harris Lecture 7 quote

@ Let X C A" be an irreducible affine variety.

@ Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;

@ this is called the rational function field of X and is usually

denoted K(X); its elements are called rational functions on
X.

@ One warning: a rational function f € K(X) is written as a
quotient g/h where g and h € A(X) are regular functions
on X;

@ but despite its name, f itself is not a function on X;

@ even if we allow oo as a value at points where h = 0, we
cannot in general make sense of f at points where both g
and h vanish.
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Harris Lecture 7 quote

@ Let X C A" be an irreducible affine variety.

@ Since its coordinate ring A(X) is an integral domain, we
can form its quotient field;
@ this is called the rational function field of X and is usually

denoted K(X); its elements are called rational functions on
X.

@ One warning: a rational function f € K(X) is written as a
quotient g/h where g and h € A(X) are regular functions
on X;

@ but despite its name, f itself is not a function on X;

@ even if we allow oo as a value at points where h = 0, we
cannot in general make sense of f at points where both g
and h vanish.

@ We will see shortly in what sense we can deal with these
objects as maps.
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Another quote from Harris lecture 7

@ ...a rational map, despite its name, is not a map, since it
may not be defined at some points of X.
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Another quote from Harris lecture 7

@ ...a rational map, despite its name, is not a map, since it
may not be defined at some points of X.

@ But if a rational map is not a map, what sort of object is
it?
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Another quote from Harris lecture 7

@ ...a rational map, despite its name, is not a map, since it

may not be defined at some points of X.

But if a rational map is not a map, what sort of object is
it?

Definition 7.3 Let X be an irreducible variety and Y any
variety. A rational map

b X—— Y

is defined to be an equivalence class of pairs (U, ) with
U C X a dense Zariski open subset and v : U =Y a
regular map, where two such pairs (U,7) and (V,n) are
said to be equivalent if v|yny = n|uny.
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regular function versus poles

() () ()« ()=
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regular function versus poles

o
x\3 3 T
() (D)+() () -0
z z z z
o
e R Vo
z  x?y  aly+ 23
is a rational function, regular except when z =0 = zy
o
y 22z . y3 + 22z
2z xd+y?z a3

is a rational function, regular except when z =0 = .

RN

L is a rational function with a pole when h; = 0 (and
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The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities
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The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities

either the example of a cusp or the example of a multiple
point is an algebraic curve.
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Neither the example of a cusp nor the example of a multiple
point is an algebraic curve.
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https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities

The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory

https://en.wikipedia.org/wiki/Resolution_of_singularities

Neither the example of a cusp nor the example of a multiple
point is an algebraic curve.

At best, each is a graph of part of a curve projected relative to
the functions x and y.
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https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities

Which of the following doesn’t belong?

o
Y2 = o

2]

y2:x3+$2
o

y2:x3—|—$2+$

o

gt =1 — 22
o

P!(F), the projective line

Leonard Function fields



Answers to quiz

o
V=3 y=13 2=t t:=y/x

as elements of F(¢).

o
V=342 y=t3—t, z=1>—1, t :=y/x

as elements of F(¢).

@ y? = 23 + 22 + x is an elliptic curve, so of genus 1, not
genus 0, at least in characteristic not 3.

Q
2t 1 —¢? ] T

1+ Y T 1 y+1

vP=1-2% =z

as elements of F(¢) in characteristic not 2.

o
F(t)
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Which of the following function fields doesn’t belong?

o
F(y,z)/(y> + y2® + z)
o
F(fs, f3)/(f3 + fsfs + [3)
Q
F(fr, f5. £3)/{f? + fr + fsf3, fofs + fs + f5, 32— fofs)
o

F(fr, f5, £3)/(f2+frt 1513, frfstfstfs, frfs—f2, fatfsfst+fs)




Answers to quiz

A trick question. f3 =y, f5 = yz, fr = yz?, © = f5/y.
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Answers to quiz

A trick question. f3 =y, f5 = yx, fr = yz%, v = f5/y. Which
of the following quotient rings doesn’t belong?

Q
Fly,2]/(y* + ya® + z)
Q
Flfs, f3]/(f2 + fs.f5 + f3)
Q
Flfr, fs, f3)/(f2 + fr+ fsf3, fofs+ fs+ f3, f2 — fofs)
Q

F(fr, f5, f3)/(F2+ Fr+F5 15, frfstfstfs, frfs—fe, fotfsfatfs)
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Birational equivalence

The quotient ring
Ar:=Flz,y)/ e’y +y° +2)
is supposedly birationally equivalent to

Ay ==F[fr, f5]/(f7 + f7 + f1).
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Birational equivalence

The quotient ring
Ar:=Flz,y)/ e’y +y° +2)
is supposedly birationally equivalent to

Ay ==F[fr, f5]/(f7 + f7 + f1).

That is, there are ring homomorphisms ¢ : A; — Ay and

¢ Ay — Ay defined by ¢(z) := fr/fs, ¢(y) := f3/fr and
Y(f7) := 22y, ¥(fs) := 2y, which should be inverses of each
other.
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@y + P+ ) = (f/ )2 (f2 ) fr) + (f2) f2)° + (f2/ f5)
= (f2 + f1 + 13)/ (7 5)




@y + P+ ) = (f/ )2 (f2 ) fr) + (f2) f2)° + (f2/ f5)
= (f2 + f1 + 13)/ (7 5)

V(2 + 7+ 1) = (2y)° + (@)t + (xy)" =2y @By + 3 + 2)




@y + P+ ) = (f/ )2 (f2 ) fr) + (f2) f2)° + (f2/ f5)
= (f2 + f1 + 13)/ (7 5)

G+ 17+ 1) = (@) + (@) + (2y)" =2y 2Py + o7 + o)
Should we worry about the extra factors z”y* and 3£
produced in this process? There are things called exceptional
divisors, normal crossings, and on and on, in the theory of
desingularizing curves and surfaces that suggest the answer is
yes; but I say no.
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@y + P+ ) = (f/ )2 (f2 ) fr) + (f2) f2)° + (f2/ f5)
= (f2 + f1 + 13)/ (7 5)

G+ 17+ 1) = (@) + (@) + (2y)" =2y 2Py + o7 + o)
Should we worry about the extra factors z”y* and 3£
produced in this process? There are things called exceptional
divisors, normal crossings, and on and on, in the theory of
desingularizing curves and surfaces that suggest the answer is
yes; but I say no.

K :=Q(A)) = Q(As).

That is @ = fr/fs, y = f2/fr, fr = a%y, and f5 = wy, if they are
all viewed as elements of the same function field. So not only
are ¢ and v inverses of each other, they are both the identity
map on the common function field.
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Divisors for the Klein quartic

a3 +abcd +1b° =0

also defines the Klein quartic.

(@ @) () -
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Divisors for the Klein quartic

a3 +abcd +1b° =0

also defines the Klein quartic.
a\3 a\ (b b\°
OROIOMON
c c/ \c c
) — 5 P+1-Q+4-R

( g)) = 3.P+2-Q+1-R
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Divisors for the Klein quartic

a3 +abcd +1b° =0

also defines the Klein quartic.
a\3 a\ (b b\°
OROIOMON
c c/ \c c

a

((-)) = 5-P+1-Q+4-R

C

(()-+rvmaen

describes that the homogeneous, rational functions a/c and b/c
with a/c having 5 poles and zeros; b/c, 3 each.
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Divisors for the Klein quartic

a3 +abcd +1b° =0

also defines the Klein quartic.
a\3 a\ (b b\°
OROIOMON
c c/ \c c

((9» = 5-P+1-Q+4-R

C

(()-+rvmaen

describes that the homogeneous, rational functions a/c and b/c
with a/c having 5 poles and zeros; b/c, 3 each.

But now all the poles are at P with (a:b:¢)(P) = (1:0;0),
while (a:b:¢)(Q)=(0:0:1)=(a:b:c)(R) is.a double point.
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Laurent series expansions

For the Klein quartic example above,

blc=tp"up’ ajc=tp up’

b/c:téuQ a/c:té2
bjc=1tp aje=thug
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Towers

2 2 2 2 2 2
g +xyrs +x4 =0, x3 + 2524 + 22 =0, 53 +2iT2 + 21 =0
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Towers

2 2 2 2 2 2
g +xyrs +x4 =0, x3 + 2524 + 22 =0, 53 +2iT2 + 21 =0

((zg)) = —8-P
(z4)) = —4-P
((x2)) = —2- P
(z1))= —1-P~

+4- P
—4 - Py
—2- P
—1- Py

Leonard

+1-P3
+2- P3
—92.py
“1-P

+1- Py
+2- Py
—2.p,
1P,

Function fields

+1'P5
—1—2'P5
+4 - P
4. Py

+1- Fg
+2- Py
4. Py
+8 - Py




Towers

2 2 2 2 2 2
g +xyrs +x4 =0, x3 + 2524 + 22 =0, 53 +2iT2 + 21 =0

((#g))= —8-P +4-P, +1-Py +1-P, +1-P5 +1-PF;
(4))= —4-P —4-P, +2-P5 +2-P +2-P5 +2- P
(z2))= —-2-P —2-P, —2-P3 —2-P; +4-P5 +4-F;
((#1))= -1-P —1-P, —=1-P; —1-P, —4-P5 +8-F;

Pr=(1:0:0:0:0), ,=(0:1:0:0:0),
Py=P;=(0:0:1:0:0),
Ps=(0:0:0:1:0), Bs=(0:0:0:0:1)
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Special one-point position

For y23 := $§x4$2$1 and y8 := xg, both with poles only at one
point, there is a special one-point description of the curve.

loadPackage "QthPower";

wtr=matrix{{23,8}};

R=2Z/2[y23,y8,Weights=>entries weightGrevlex(wtr)];
GB={y23"8+y8~23+y23"4+y8"10+y23"2+y8"15+y23~5*y8"6+y23"~6+y8"2+y23+y8~16+y23"4+y8"T+y23"5+y8"3
+y23°3%y8 B+y23+y8" 13+y23 Axy8 4+y23"2¥y8~9+y23"3+y8"5+y23+y8 " 10+y23 Axy8+y23+y8"T+y23"2%y8"3}
time ic2=qthIntegralClosure(wtr,R,GB);

toString ic2

Function fields



(zz/2) [£33, f21, £19, f18, f15, f14, f12, £8], <-- weighted ring
matrix{{33, 21, 19, 18, 15, 14, 12, 8}})

delta=y8~40+y8~37+y8"34+y8"31+y8~16+y8~13+y8~10+y8~7, <-- denominator
n12=y23~4+y8~30+y23"54y8"26+y23+y8~36+y23"4*y8 27 +y23"T+y8" 18+y23~2+y8"32
+y8~37+y23"24y8"20+y8"34+y23"3%y8"25+y23" 4+y8~21+y23"6+y8~13+y23"4+y8~18
+y23°6¥y8~10+y23+y8~ 24+y23"4+y8~15+y23" 2%y8"20+y8" 25+y23~6*y8"~T+y23"2*y8~17
+y23° By 8+y23+y8~18+y23"2+y8~14+y8~19+y23"3+y8"10+y23+y8~15+y23 4+y8~6
+y8~16+y23+y8~12+y23"2+y8"8+y8~13+y8"7,
n14=y23~2+y8"36+y23"64y8"23+y23"T*y8"~19+y23~5*y8~24+y8~38+y23"3+y8"29
+y23°6%y8~20+y23+y8~34+y23"4+y8"25+y23" T+y8" 16+y23~2%y8" 30+y23~5%y8~21
+y8~35+y23~3+y8"26+y23"4*y8"22+y23~ 2+y8~27+y23"6*y8~ 14+y23"5+y8~15
+y23%y8725+y23"4*y8~ 16+y23 " T+y8 T +y23"2xy8"21+y8"26+y23+y8"22+y23"4+y8"13
+y23°2+y8"18+y23"54y8"0+y23" B+y8~ 14+y23"6+y8"5+y23+y8~19+y23"4*y8~10
+y23°54y86+y23"3+y8"11+y23"6+y8" 2+y23"4xy8 " T+y23 " 5+y8"3+y23"3+y8"8
+y23°2%y8~9+y8~ 14+y23" 3+y8"5+y23+y8~10+y23" 2y 8~ 6+y23+y8~T+y23~2%y8"3
+y8~8+y23+y8~4,
n15=y23+y8~39+y23"2+y8~35+y23"6+y8"22+y23+y8~36+y23 " T+y8" 18+y23"5+y8-23
+y8~37+y23~3+y8"28+y23"6+y8" 19+y23~4*y8~24+y23"T*y8"~ 15+y23"2+y8~29
+y23°5¥y8~20+y8"34+y23 "~ 3%y8"25+y23+y8"30+y23"4+y8"21+y23"2%y8"26
+y23~6+y8~13+y23"5%y8" 14+y23+y8"24+y23"4*y8~15+y23"T+y8~6+y23"2+y8"20
+y8~25+y234y8~21+y23"4xy8~12+y23" 2+y8~17+y23"5%y8"8+y23"3+y8"13
+y23° 68 4+y23+y8~18+y23"4+y8"9+y23"bky8 5+y23~3*y8~10+y23"6+y8
+y23%y8”15+y23"4*y8~6+y23"5ry8"2+y23"3ky8"T+y23+y8~12+y23" 2+y8~8+y8~13
+y23°3%y8~4+y23" 2+y8 5 +y23"2%y8"2+y8"T+y23*y8"3,
n18=y23~6%y8"25+y23"T4y8"21+y23~2%y8"35+y23"3*y8~31+y23"6+y8~22+y23"2xy8"32
+y23~5*y8 23+y23" 3%y 8" 28+y23+y8"33+y23"A+y8"24+y23"2+y8~29+y23"5%y8~20
+y23°3+y8"26+y23"64y8” 16+y23+y8-30+y23" T+y8"12+y23~2%y8" 26+y23~5%y8~17
+y23°64y813+y23"T4y8"9+y23"3+y8~19+y23~6+y8"10+y23~4*y8"15+y23~5%y8~11
+y23°3%y8" 16+y23"64y8" T+y23+y8 21 +y23"2%y8" 17+y23" 3+y8~13+y23~2+y8" 14
+y23°54y8"5+y23"6+y8+y23+y8" 15+y23~2+y8"~11+y23~54y8~2+y8~16+y23~3+y8~7
+y23%y8”12+y23"3+y 8~ 4+y23+y8~9+y8"10+y23~ 2+y8~2+y8"T+y23+y8~3,




n19=y23"5%y8728+y23+y8~38+y23"4*y8~29+y23" 7T*y8720+y23"2%y8"~34+y23*y8~35
+y2372xy8731+y23"5%y8722+y8"36+y23" 3xy8~27+y23*y8~32+y23"7*y8"14
+y2372xy8728+y8733+y2376%y8” 156+y23*y8-29+y2374*y8720+y23"2*y8~25+y8"30
+y2373*y8721+y2376%y8~12+y23*y8726+y2372%y8"22+y2374*y8~14+y23"2+y8~19
+y2375xy8710+y2376%y8~6+y23"4*y8711+y2373*y8~12+y23"6xy873+y23*y8~17
+y2372xy8713+y2375%y874+y8718+y8715+y2373*y8 6+y8712+y23%y8~8+y23"2*y8"4
+y23%y875,

n21=y2373*y8734+y23 T*y8~21+y23"2xy8735+y23"5*y8~26+y23"4*y8727+y23"7*y8~18
+y2372xy8732+y2375%y8723+y8”37+y2376*y8719+y23"7*y8~ 15+y2372*y8729
+y2375xy8720+y8734+y2376%y8" 16+y23*y8~30+y23"4*y8721+y23"2*y8"26
+y23°5xy8~17+y23"6%y8~13+y23*y8~27+y23"4*y8"~18+y23"2%y8~23+y23"3%y8~19
+y2376xy8~10+y23%y8”24+y23 " 4*y8"15+y23" 7*y8 6+y23"2%y8~20+y8"25
+y2373%y8716+y23%y8”21+y23"7*y8~3+y23"6*y8~4+y23"7+y23"2%y8"14+y23"3*y8~10
+y2376xy8+y23"4*y8”6+y23"2%y8~ 11+y2374*y8~3+y23"2*y8~8+y8~13+y23"3*y8~4
+y23%y8~9+y23"3xy8+y23xy8~6+y2372%y8~2,

n33=y23"7xy8"24+y23"3%y8~31+y23*y8~36+y23~4*y8"27+y23"7*y8~18+y23~5%y8"23
+y8737+y23xy8~33+y2372xy8729+y 23" 5%y8~20+y23"4*y8"21+y23"7*y8”12+y23*y8~27
+y2377xy8"9+y23~2%y8"23+y23"5xy8~ 14+y23"6%y8" 10+y23*y8~24+y23"2xy8~ 20
+y2375xy8711+y8726+y23+y8721+y23"4*y8~12+y23"7*y8"3+y23"2*y8~17
+y2374*xy879+y2372%y8714+y8719+y2372xy8711+y8713+y23~3*y8~4+y8~7




£3372+£33%£8"3+f18+f876+f 18*%f8~3+f18+f 15+f 14*£8"2+f12*x£8"3+£876+£873+1,
£33*£f21+£33+f18*£8"3+f18+f15%f8"3+f15+f14%xf8"5+1,
£33*£19+£21%f872+f 19 £8 " 3+f 14*f8+f12xf8"5+f12%xf8"2,
£33*f£18+£33+f21+f19*£874+f19*xf8+f18%f8~3+f18+f15%f8"3+f12*xf8"3+£873+1,
£33%£15+£21+£15%£873+f15+f12%f873+£876+£873,

£33%f£14+£21*f8+f15%£874+f 15%f8+f14*f8"3+f12*f8+£8,
£33*f£12+£21*£8"3+f19*£8+f18+f16+f14*£f8"2+f12*f8"3+£873+1,

£2172+£33+£21+f18*£873+f14*£872+f12,
£21%£19+£19+£14*£8+£12%x£872+£875,
£21%f18+£19*£f8+f18+f15%x£873+f16+f12+£873+1,
£21%£15+£21+f18+f15+f12%f873+£12+£873+1,
£21%£14+£19*£872+f15%£8+f14,
£21x£12+£33+£21+£f18+f15+£12+£873,

£1972+f14*£8°3+f12x£8+£8,

f19x£18+£21%£872+f12x£872+£872,

f19x£15+£19+£18%£872+£872,

£19%f14+£33+f18+f15+1, <-- strict affine F_2[f8] algebra presentation
f19x£12+£165%£872+£872,

£1872+f19*%f8+f15+f12%£8"3+f12+£873+1,
£18*f15+£33+£21+£15+£12,
£18%f14+f15%xf8+f12*£8+£874+£8,
£18*f12+£18+£14*£872,

£1572+£18+£14*£872+£12+1,
£15%f£14+£21*£f8+f14+f12%£8+£8,
£15%f12+£19*£8+f15+£12+1,

£1472+£19+£12%£872,
£14x£12+£18%£8,

£1272+£12+£873




genus

o 1 2 3 4 5 6 7

§ 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33
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genus

o 1 2 3 4 5 6 7

§ 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33

The genus is easily computed as

g=1{1,2,3,4,5,6,7,9,10,11,13,17,25}| = 13
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QIsy:%thesameasxyzl?
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QIsy:%thesameasxyzl?

© If x is given the value ¢, what value should y be given?
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Q Isy:%thesameasxyzl?
© If x is given the value ¢, what value should y be given?
© What values ¢ should be considered?
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Q Isy:%thesameasxyzl?
© If x is given the value ¢, what value should y be given?
© What values ¢ should be considered?

© Does it help to write things homogeneously as zy = h? or

¥ = %, and think in projectively?
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Q Isy:%thesameasxyzl?
© If x is given the value ¢, what value should y be given?
© What values ¢ should be considered?

© Does it help to write things homogeneously as zy = h? or
¥ = %, and think in projectively?

@ How about xy = hk or £ = 2 instead?
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My answers to the quiz

@ How about zy — 1 =07
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My answers to the quiz

@ How about zy — 1 =07
© =z should be given the value (a : b) and y the value (b : a).
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My answers to the quiz

@ How about zy — 1 =07
© =z should be given the value (a : b) and y the value (b : a).

@ That is, values should come from the projective line (over
an algebraically closed field).
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My answers to the quiz

@ How about zy — 1 =07
© =z should be given the value (a : b) and y the value (b : a).

@ That is, values should come from the projective line (over
an algebraically closed field).

© zy =h? (or $4 =1) is not the correct generalization.
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My answers to the quiz

@ How about zy — 1 =07
© =z should be given the value (a : b) and y the value (b : a).
@ That is, values should come from the projective line (over

an algebraically closed field).

© zy =h? (or $4 =1) is not the correct generalization.

@ 74 =1 (or zk = yh) is.
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Eisenbud example A2.32

@ (Resolution of singularities in codimension 1).
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Eisenbud example A2.32

@ (Resolution of singularities in codimension 1).

@ Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.
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Eisenbud example A2.32

@ (Resolution of singularities in codimension 1).
@ Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

@ By Theorem A2.26 the normalization R corresponds to an
affine variety Y, and the inclusion R C R corresponds to a
mapg @ Y — X.
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Eisenbud example A2.32

o

)

(Resolution of singularities in codimension 1).
Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

By Theorem A2.26 the normalization R corresponds to an
affine variety Y, and the inclusion R C R corresponds to a
mapg @ Y — X.

By Theorem A2.27 the map g is an isomorphism over the
part of X that is smooth, or even normal.
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Eisenbud example A2.32

©

(Resolution of singularities in codimension 1).

Suppose that X is an affine variety over an algebraically
closed field K, with affine coordinate ring R.

By Theorem A2.26 the normalization R corresponds to an
affine variety Y, and the inclusion R C R corresponds to a
mapg @ Y — X.

By Theorem A2.27 the map g is an isomorphism over the
part of X that is smooth, or even normal.

The map g is a finite morphism in the sense that the
coordinate ring of X is finitely generated as a module over
the coordinate ring of X; this is a strong form of the
condition that each fiber g=!(z) is a finite set.
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@ Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,
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@ Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,

@ and this means the singular locus of Y is of codimenion at
least 2.
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@ Serre’s Criterion in Theorem A2.28 implies that the
coordinate ring of Y is smooth in codimension 1,

@ and this means the singular locus of Y is of codimenion at
least 2.

@ Desingularization in codimension 1 is the most that can be
hoped, in general, from a finite morphism.
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@ For example, the quadric cone X C K? defined by the
equation x2 4+ y2 + 22 = 0 is normal, and it follows that any
finite map Y — X that is isomorphic outside the singular
point must be an isomorphism.
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@ For example, the quadric cone X C K? defined by the
equation x2 4+ y2 + 22 = 0 is normal, and it follows that any
finite map Y — X that is isomorphic outside the singular
point must be an isomorphism.

@ However, for any affine or projective variety X over a field
it is conjectured that there is actually a resolution of
singularities: that is, a projective map m : Y — X (this
means that Y can be represented as a closed subset of
X x P for some projective space P™) where Y is a smooth
variety, and the map 7 is an isomorphism over the part of
X that is already smooth.
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@ In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X x P2, with coordinates z,y, z for X and u,v,w
for P2, defined by the vanishing of the 2 x 2 minors of the

matrix (a: y Z> together with the equations
u v ow

zu+yv + zw = 0 and u? + v? +w? = 0.
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@ In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X x P2, with coordinates z,y, z for X and u,v,w
for P2, defined by the vanishing of the 2 x 2 minors of the

matrix (a: y Z> together with the equations
u v ow

zu+yv + zw = 0 and u? + v? +w? = 0.

@ It is described algebraically by the Rees algebra
RaIaI?. ..
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@ In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X x P2, with coordinates z,y, z for X and u,v,w
for P2, defined by the vanishing of the 2 x 2 minors of the

matrix (a: y Z> together with the equations
u v ow

zu+yv + zw = 0 and u? + v? +w? = 0.

@ It is described algebraically by the Rees algebra
RaIaI?. ..

@ where R = K|x,y, 2]/(2? + 32 + 22) is the coordinate ring
of X
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@ In the example above, there is a desingularization (the
blowup of the origin in X) that may be described as the
subset of X x P2, with coordinates z,y, z for X and u,v,w
for P2, defined by the vanishing of the 2 x 2 minors of the

matrix (a: y Z> together with the equations
u v ow

zu+yv + zw = 0 and u? + v? +w? = 0.

@ It is described algebraically by the Rees algebra
RaIaI?. ..

@ where R = K|x,y, 2]/(2? + 32 + 22) is the coordinate ring
of X

@ and [ = (z,y,2) C R.
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Where to begin?

@ Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.
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Where to begin?

@ Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.

@ This is supposed to be an example of how to desingularize

an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.
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Where to begin?

@ Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.

@ This is supposed to be an example of how to desingularize
an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.

@ Projectively but using rational functions:

(7) (1) + () =0

Leonard Function fields



Where to begin?

@ Phrasing singularity questions in affine terms allows one to
hide all sorts of bad behavior at non-affine points of a
surface.

@ This is supposed to be an example of how to desingularize
an affine surface at the origin. But it ignores larger
problems of that surface hidden at non-affine points.

@ Projectively but using rational functions:
N 2 Y\ 2 2N 2
&) +(G) +(G) =

@ But then one would need to find a way to explain that
there were singularities when h = 0 as well as the one at
r=0,y=0,2=0,h=1.
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@ Looking at things in rational terms is a better alternative,
as the rational function equation:

w )\ (22, (m)
h1 ho hs)
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@ Looking at things in rational terms is a better alternative,
as the rational function equation:

z1\? 22\ 2 232
-1 o2 ) =0
(i) () + ()
@ can be rewritten in polyonomial form as

x2h3h3 + 22hink + 22hini =0
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@ Looking at things in rational terms is a better alternative,
as the rational function equation:

z1\? 22\ 2 232
-1 o2 ) =0
(i) () + ()
@ can be rewritten in polyonomial form as

x2h3h3 + 22hink + 22hini =0

@ with singularities at hy =0 = hy , hy =0 = hg, and
ho = 0 = hg, in addition to the one at x; = 29 = 3 = 0.
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P! (F))?,
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P! (F))?, it is possible to append three
new rational coordinate functions

Ta (T (he) @ (@2 (ha) ws  (as) (I
h4 T h1 T2 ’ h5 T hg T3 ’ hﬁ T h3 il
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P! (F))?, it is possible to append three
new rational coordinate functions

Ta (T (he) @ (@2 (ha) ws  (as) (I
h4 T h1 T2 ’ h5 T hg T3 ’ hﬁ T h3 il

to get a non-singular surface coordinatized over (P*(F))¢;
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Non-singular surface?

So instead of having a singular surface with points
coordinatizable over (P! (F))?, it is possible to append three
new rational coordinate functions

T4 L T h2 xIs L i) h3 Te L T3 h1
h4 o h1 i) ’ h5 T hg T3 ’ hﬁ T h3 T
to get a non-singular surface coordinatized over (P*(F))¢;
with additional induced relations




Rees algebra

@ What does the Rees algebra R@® I @ I?--- mean?
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Rees algebra

@ What does the Rees algebra R@® I @ I?--- mean?
o Well first, it should be R[It] := Zj(lt)j.
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Rees algebra

@ What does the Rees algebra R@® I @ I?--- mean?

o Well first, it should be R[It] := Zj(lt)j.

@ Then there should be a map ¢ : Rlu,v,w] — R[It] defined
by ¢(u) := xt, ¢p(v) := yt, and ¢(w) := zt.
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Rees algebra

@ What does the Rees algebra R@® I @ I?--- mean?

o Well first, it should be R[It] := Zj(lt)j.

@ Then there should be a map ¢ : Rlu,v,w] — R[It] defined
by ¢(u) := xt, ¢p(v) := yt, and ¢(w) := zt.

@ Then R[u,v,w|/kernel(¢) is a presentation of the Rees
algebra.
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Rees algebra

©

What does the Rees algebra R@® I @ I?--- mean?

Well first, it should be R[It] := Zj(lt)j.

Then there should be a map ¢ : Rlu,v,w] — R[It] defined
by ¢(u) := xt, ¢p(v) := yt, and ¢(w) := zt.

Then R[u,v,w]/kernel(¢) is a presentation of the Rees
algebra.

Clearly ¢(zu + yv + zw) = 0t and ¢(u? + v? + w?) = 0t2.

©

©

©

©
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My rees algebra alternative
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My rees algebra alternative

o Start with R[It] := . (It).
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My rees algebra alternative

o Start with R[It] := . (It).
@ Then try the map ¢ : R — R[It] defined by ¥ (z) := ut,
o(y) := vt, and ¢(z) := wt.
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My rees algebra alternative

o Start with R[It] := . (It).

o Then try the map ¢/ : R — R[It] defined by ¥(z) = ut,
$y) = vt, and ¢(2) := wt.

@ Then R/kernel(1) is a presentation of my rees algebra.
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My rees algebra alternative

o Start with R[It] := . (It).

@ Then try the map ¢ : R — R[It] defined by ¥ (z) := ut,
o(y) := vt, and ¢(z) := wt.

@ Then R/kernel(1) is a presentation of my rees algebra.

@ Clearly
P(x? +y? 4+ 22) = (pu+ yo + 2w)t = (u? + 0% +w?)?
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