Algebraic curves from function fields

Douglas A. Leonard
Department of Mathematics and Statistics
Auburn University

October 20, 2015

- This is a plug for my lecture notes

Algebraic curves from function fields,
a draft of the first part of which is posted at
www. auburn.edu/~leonada

- This is a plug for my lecture notes

Algebraic curves from function fields, a draft of the first part of which is posted at
www. auburn.edu/~leonada

- The notes are about commutative algebra and algebraic curves, maybe (algebraic surfaces) as well.
- This is a plug for my lecture notes

Algebraic curves from function fields, a draft of the first part of which is posted at
www. auburn.edu/~leonada

- The notes are about commutative algebra and algebraic curves, maybe (algebraic surfaces) as well.
- But I am, at best an algebra-ist, with interest in the algebra that leads to algebraic-geometry codes.
- This is a plug for my lecture notes

Algebraic curves from function fields,
a draft of the first part of which is posted at
www. auburn.edu/~leonada

- The notes are about commutative algebra and algebraic curves, maybe (algebraic surfaces) as well.
- But I am, at best an algebra-ist, with interest in the algebra that leads to algebraic-geometry codes.
- I have spent the last several decades running examples of various theoretical ideas using Computer Algebra Systems. I do not use any topology, geometry, or analysis when doing this.
- This is a plug for my lecture notes

> Algebraic curves from function fields,
a draft of the first part of which is posted at
www. auburn.edu/~leonada

- The notes are about commutative algebra and algebraic curves, maybe (algebraic surfaces) as well.
- But I am, at best an algebra-ist, with interest in the algebra that leads to algebraic-geometry codes.
- I have spent the last several decades running examples of various theoretical ideas using Computer Algebra Systems. I do not use any topology, geometry, or analysis when doing this.
- This leads me, not surprisingly, to an algebraic theory of the subjects with which I deal, unencumbered by any ideas of topology, geometry, or analysis.

Commutative algebra

$$
X^{3} Y+Y^{3}+X \in \mathbf{F}[X, Y], \mathbf{F} \text { algebraically closed }
$$

Commutative algebra

$$
X^{3} Y+Y^{3}+X \in \mathbf{F}[X, Y], \mathbf{F} \text { algebraically closed }
$$

Ideal

$$
I:=\left\langle X^{3} Y+Y^{3}+X\right\rangle \subset R:=\mathbf{F}[X, Y]
$$

Commutative algebra

$$
X^{3} Y+Y^{3}+X \in \mathbf{F}[X, Y], \mathbf{F} \text { algebraically closed }
$$

Ideal

$$
I:=\left\langle X^{3} Y+Y^{3}+X\right\rangle \subset R:=\mathbf{F}[X, Y]
$$

Affine variety

$$
V:=\left\{(X, Y) \in \mathbf{F}^{2}: X^{3} Y+Y^{3}+X=0\right\}
$$

Commutative algebra

$$
X^{3} Y+Y^{3}+X \in \mathbf{F}[X, Y], \mathbf{F} \text { algebraically closed }
$$

Ideal

$$
I:=\left\langle X^{3} Y+Y^{3}+X\right\rangle \subset R:=\mathbf{F}[X, Y]
$$

Affine variety

$$
V:=\left\{(X, Y) \in \mathbf{F}^{2}: X^{3} Y+Y^{3}+X=0\right\}
$$

Quotient ring

$$
A:=\mathbf{F}[X, Y] /\left\langle X^{3} Y+Y^{3}+X\right\rangle
$$

Commutative algebra

$$
X^{3} Y+Y^{3}+X \in \mathbf{F}[X, Y], \mathbf{F} \text { algebraically closed }
$$

Ideal

$$
I:=\left\langle X^{3} Y+Y^{3}+X\right\rangle \subset R:=\mathbf{F}[X, Y]
$$

Affine variety

$$
V:=\left\{(X, Y) \in \mathbf{F}^{2}: X^{3} Y+Y^{3}+X=0\right\}
$$

Quotient ring

$$
A:=\mathbf{F}[X, Y] /\left\langle X^{3} Y+Y^{3}+X\right\rangle
$$

Function field (or field of fractions)

$$
\mathbf{K}:=\mathbf{F}(X, Y) /\left\langle X^{3} Y+Y^{3}+X\right\rangle:=\{a / b: a, b \in A, b \neq 0\}
$$

Homogenization

$$
x^{3} y+y^{3} z+z^{3} x
$$

Homogenization

$$
x^{3} y+y^{3} z+z^{3} x
$$

Ideal

$$
I:=\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle \subset R:=\mathbf{F}[x, y, z]
$$

Homogenization

$$
x^{3} y+y^{3} z+z^{3} x
$$

Ideal

$$
I:=\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle \subset R:=\mathbf{F}[x, y, z]
$$

Projective variety

$$
V:=\left\{(x: y: z) \in \mathbf{P}^{2}(\mathbf{F}): x^{3} y+y^{3} z+z^{3} x=0\right\}
$$

Homogenization

$$
x^{3} y+y^{3} z+z^{3} x
$$

Ideal

$$
I:=\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle \subset R:=\mathbf{F}[x, y, z]
$$

Projective variety

$$
V:=\left\{(x: y: z) \in \mathbf{P}^{2}(\mathbf{F}): x^{3} y+y^{3} z+z^{3} x=0\right\}
$$

Quotient ring

$$
A:=\mathbf{F}[x, y, z] /\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle
$$

Homogenization

$$
x^{3} y+y^{3} z+z^{3} x
$$

Ideal

$$
I:=\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle \subset R:=\mathbf{F}[x, y, z]
$$

Projective variety

$$
V:=\left\{(x: y: z) \in \mathbf{P}^{2}(\mathbf{F}): x^{3} y+y^{3} z+z^{3} x=0\right\}
$$

Quotient ring

$$
A:=\mathbf{F}[x, y, z] /\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle
$$

Function field (or field of fractions)
$\mathbf{K}:=\mathbf{F}(x, y, z) /\left\langle x^{3} y+y^{3} z+z^{3} x\right\rangle:=\{a / b: a, b \in A, b \neq 0\}$

Divisors for the Klein quartic

0

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)=0
$$

is a relation between two homogeneous, rational functions.

Divisors for the Klein quartic

0

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)=0
$$

is a relation between two homogeneous, rational functions.
-

$$
\begin{aligned}
& \left(\left(\frac{x}{z}\right)\right)=-2 \cdot P-1 \cdot Q+3 \cdot R \\
& \left(\left(\frac{y}{z}\right)\right)=-3 \cdot P+2 \cdot Q+1 \cdot R
\end{aligned}
$$

are divisors describing that x / z and y / z are supposed to have 3 zeros and 3 poles each.

Divisors for the Klein quartic

0

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)=0
$$

is a relation between two homogeneous, rational functions.
-

$$
\begin{aligned}
& \left(\left(\frac{x}{z}\right)\right)=-2 \cdot P-1 \cdot Q+3 \cdot R \\
& \left(\left(\frac{y}{z}\right)\right)=-3 \cdot P+2 \cdot Q+1 \cdot R
\end{aligned}
$$

are divisors describing that x / z and y / z are supposed to have 3 zeros and 3 poles each.

- This would seem to be a traditional approach in terms of Riemann-Roch spaces and the Riemann-Roch theorem in that these vector spaces are defined in terms of the numbers of zeros and poles of rational functions.
- There are divisors

$$
\mathbf{D}:=\sum_{P} m_{P}(\mathbf{D}) \cdot P, \quad((f))=\sum_{P} \nu_{P}(f) \cdot P
$$

Riemann-Roch

- There are divisors

$$
\mathbf{D}:=\sum_{P} m_{P}(\mathbf{D}) \cdot P, \quad((f))=\sum_{P} \nu_{P}(f) \cdot P
$$

- Riemann-Roch (vector) spaces

$$
\mathbf{L}(\mathbf{D}):=\{0\} \cup\left\{f: \nu_{P}(f)+m_{P}(\mathbf{D}) \geq 0 \text { for all } P\right\}
$$

Riemann-Roch

- There are divisors

$$
\mathbf{D}:=\sum_{P} m_{P}(\mathbf{D}) \cdot P, \quad((f))=\sum_{P} \nu_{P}(f) \cdot P
$$

- Riemann-Roch (vector) spaces

$$
\mathbf{L}(\mathbf{D}):=\{0\} \cup\left\{f: \nu_{P}(f)+m_{P}(\mathbf{D}) \geq 0 \text { for all } P\right\}
$$

- and the Riemann-Roch theorem

$$
1+\operatorname{deg}(\mathbf{D})-\operatorname{dim}(\mathbf{L}(\mathbf{D})) \leq g
$$

with equality when $1+\operatorname{deg}(\mathbf{D}) \geq 2 g, g$ the genus.

Example spaces

$$
\mathbf{L}(7 P)=\left\langle 1, \frac{y}{z}, \frac{x y}{z^{2}}, \frac{y^{2}}{z^{2}}, \frac{x^{2} y}{z^{3}}\right\rangle
$$

Example spaces

$$
\begin{array}{r}
\mathbf{L}(7 P)=\left\langle 1, \frac{y}{z}, \frac{x y}{z^{2}}, \frac{y^{2}}{z^{2}}, \frac{x^{2} y}{z^{3}}\right\rangle \\
g=3,1+\operatorname{deg}(7 P)=8, \operatorname{dim}(\mathbf{L}(7 P))=8-3
\end{array}
$$

Example spaces

$$
\begin{array}{r}
\mathbf{L}(7 P)=\left\langle 1, \frac{y}{z}, \frac{x y}{z^{2}}, \frac{y^{2}}{z^{2}}, \frac{x^{2} y}{z^{3}}\right\rangle \\
g=3,1+\operatorname{deg}(7 P)=8, \operatorname{dim}(\mathbf{L}(7 P))=8-3 \\
\mathbf{L}(5 P+4 Q)=\left\langle 1, \frac{x}{z}, \frac{y}{z}, \frac{x^{2}}{z^{2}}, \frac{x y}{z^{2}}, \frac{x}{y}, \frac{x^{2}}{y z}\right\rangle
\end{array}
$$

Example spaces

$$
\begin{gathered}
\mathbf{L}(7 P)=\left\langle 1, \frac{y}{z}, \frac{x y}{z^{2}}, \frac{y^{2}}{z^{2}}, \frac{x^{2} y}{z^{3}}\right\rangle \\
g=3,1+\operatorname{deg}(7 P)=8, \operatorname{dim}(\mathbf{L}(7 P))=8-3 \\
\mathbf{L}(5 P+4 Q)=\left\langle 1, \frac{x}{z}, \frac{y}{z}, \frac{x^{2}}{z^{2}}, \frac{x y}{z^{2}}, \frac{x}{y}, \frac{x^{2}}{y z}\right\rangle \\
g=3,1+\operatorname{deg}(5 P+4 Q)=10, \operatorname{dim}(\mathbf{L}(5 P+4 Q))=10-3
\end{gathered}
$$

Laurent series expansions

For the Klein quartic example above,

$$
\begin{array}{llll}
\frac{y}{z}=t_{P}^{-3} u_{P}^{-1} & \frac{x}{z}=t_{P}^{-2} u_{P}^{-1} & t_{P}:=\frac{x}{y} & u_{P}:=\frac{y^{2} z}{x^{3}} \\
\frac{y}{z}=t_{Q}^{2} u_{Q} & \frac{x}{z}=t_{Q}^{-1} & t_{Q}:=\frac{z}{x} & u_{Q}:=\frac{x^{2} y}{z^{3}} \\
\frac{y}{z}=t_{R}^{1} & \frac{x}{z}=t_{R}^{3} u_{R} & t_{R}:=\frac{y}{z} & u_{R}:=\frac{z^{2} x}{y^{3}}
\end{array}
$$

Laurent series expansions

For the Klein quartic example above,

$$
\begin{array}{llll}
\frac{y}{z}=t_{P}^{-3} u_{P}^{-1} & \frac{x}{z}=t_{P}^{-2} u_{P}^{-1} & t_{P}:=\frac{x}{y} & u_{P}:=\frac{y^{2} z}{x^{3}} \\
\frac{y}{z}=t_{Q}^{2} u_{Q} & \frac{x}{z}=t_{Q}^{-1} & t_{Q}:=\frac{z}{x} & u_{Q}:=\frac{x^{2} y}{z^{3}} \\
\frac{y}{z}=t_{R}^{1} & \frac{x}{z}=t_{R}^{3} u_{R} & t_{R}:=\frac{y}{z} & u_{R}:=\frac{z^{2} x}{y^{3}}
\end{array}
$$

The induced equations used to define the units are gotten from:

$$
\begin{gathered}
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)=0 \\
t_{Q}^{-1}\left(1+u_{Q}+t_{Q}^{7} u_{Q}^{3}\right)=0 \\
t_{R}^{3}\left(1+u_{R}+t_{R}^{7} u_{R}^{3}\right)=0
\end{gathered}
$$

Laurent series expansions

For the Klein quartic example above,

$$
\begin{array}{llll}
\frac{y}{z}=t_{P}^{-3} u_{P}^{-1} & \frac{x}{z}=t_{P}^{-2} u_{P}^{-1} & t_{P}:=\frac{x}{y} & u_{P}:=\frac{y^{2} z}{x^{3}} \\
\frac{y}{z}=t_{Q}^{2} u_{Q} & \frac{x}{z}=t_{Q}^{-1} & t_{Q}:=\frac{z}{x} & u_{Q}:=\frac{x^{2} y}{z^{3}} \\
\frac{y}{z}=t_{R}^{1} & \frac{x}{z}=t_{R}^{3} u_{R} & t_{R}:=\frac{y}{z} & u_{R}:=\frac{z^{2} x}{y^{3}}
\end{array}
$$

The induced equations used to define the units are gotten from:

$$
\begin{gathered}
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)=0 \\
t_{Q}^{-1}\left(1+u_{Q}+t_{Q}^{7} u_{Q}^{3}\right)=0 \\
t_{R}^{3}\left(1+u_{R}+t_{R}^{7} u_{R}^{3}\right)=0
\end{gathered}
$$

by ignoring the terms outside the parentheses;

Laurent series expansions

For the Klein quartic example above,

$$
\begin{array}{llll}
\frac{y}{z}=t_{P}^{-3} u_{P}^{-1} & \frac{x}{z}=t_{P}^{-2} u_{P}^{-1} & t_{P}:=\frac{x}{y} & u_{P}:=\frac{y^{2} z}{x^{3}} \\
\frac{y}{z}=t_{Q}^{2} u_{Q} & \frac{x}{z}=t_{Q}^{-1} & t_{Q}:=\frac{z}{x} & u_{Q}:=\frac{x^{2} y}{z^{3}} \\
\frac{y}{z}=t_{R}^{1} & \frac{x}{z}=t_{R}^{3} u_{R} & t_{R}:=\frac{y}{z} & u_{R}:=\frac{z^{2} x}{y^{3}}
\end{array}
$$

The induced equations used to define the units are gotten from:

$$
\begin{gathered}
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)=0 \\
t_{Q}^{-1}\left(1+u_{Q}+t_{Q}^{7} u_{Q}^{3}\right)=0 \\
t_{R}^{3}\left(1+u_{R}+t_{R}^{7} u_{R}^{3}\right)=0
\end{gathered}
$$

by ignoring the terms outside the parentheses; not by defining exceptional divisors and the like!

Local view

-

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)
$$

is mapped to

Local view

-

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)
$$

is mapped to
-

$$
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)
$$

Should we worry about $t_{P}^{-9} u_{P}^{-4}$?

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)
$$

is mapped to
-

$$
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)
$$

Should we worry about $t_{P}^{-9} u_{P}^{-4}$?

- Similarly

$$
1+u_{P}+t_{P}^{7} u_{P}^{3}
$$

is mapped to

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)
$$

is mapped to
-

$$
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)
$$

Should we worry about $t_{P}^{-9} u_{P}^{-4}$?

- Similarly

$$
1+u_{P}+t_{P}^{7} u_{P}^{3}
$$

is mapped to

$$
\left(\frac{z^{4}}{x^{3} y}\right)\left(\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)\right)
$$

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)
$$

is mapped to
-

$$
t_{P}^{-9} u_{P}^{-4}\left(1+u_{P}+t_{P}^{7} u_{P}^{3}\right)
$$

Should we worry about $t_{P}^{-9} u_{P}^{-4}$?

- Similarly

$$
1+u_{P}+t_{P}^{7} u_{P}^{3}
$$

is mapped to
-

$$
\left(\frac{z^{4}}{x^{3} y}\right)\left(\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)\right)
$$

- Should we worry about $\frac{z^{4}}{x^{3} y}$?

Exceptional divisors are moot at the function field level

-

$$
\mathbf{K}=\mathbf{F}\left(\frac{x}{z}, \frac{y}{z}\right) /\left\langle\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)\right\rangle
$$

Exceptional divisors are moot at the function field level

-

$$
\mathbf{K}=\mathbf{F}\left(\frac{x}{z}, \frac{y}{z}\right) /\left\langle\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)\right\rangle
$$

$$
\mathbf{K}=\mathbf{F}\left(t_{P}, u_{P}\right) /\left\langle 1+u_{P}+t_{P}^{7} u_{P}^{3}\right\rangle .
$$

A possible nonsingular model

0

$$
\begin{aligned}
& t_{P}^{3} t_{Q}^{3}+t_{P}^{2}+t_{Q}=0 \\
& t_{Q}^{3} t_{R}^{3}+t_{Q}^{2}+t_{R}=0 \\
& t_{R}^{3} t_{P}^{3}+t_{R}^{2}+t_{P}=0
\end{aligned}
$$

A possible nonsingular model

$$
\begin{aligned}
& t_{P}^{3} t_{Q}^{3}+t_{P}^{2}+t_{Q}=0 \\
& t_{Q}^{3} t_{R}^{3}+t_{Q}^{2}+t_{R}=0 \\
& t_{R}^{3} t_{P}^{3}+t_{R}^{2}+t_{P}=0
\end{aligned}
$$

$$
t_{P} t_{Q} t_{R}-1=0
$$

A possible nonsingular model

$$
\begin{aligned}
& t_{P}^{3} t_{Q}^{3}+t_{P}^{2}+t_{Q}=0 \\
& t_{Q}^{3} t_{R}^{3}+t_{Q}^{2}+t_{R}=0 \\
& t_{R}^{3} t_{P}^{3}+t_{R}^{2}+t_{P}=0
\end{aligned}
$$

$$
t_{P} t_{Q} t_{R}-1=0
$$

-

$$
\begin{aligned}
& t_{P}^{2} t_{Q}^{2}+t_{P}^{2} t_{R}+t_{Q} t_{R}=0 \\
& t_{Q}^{2} t_{R}^{2}+t_{Q}^{2} t_{P}+t_{R} t_{P}=0 \\
& t_{R}^{2} t_{P}^{2}+t_{R}^{2} t_{Q}+t_{P} t_{Q}=0
\end{aligned}
$$

Why consider projective at all?

-

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

is really shorthand for three affine equations:

Why consider projective at all?

-

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

is really shorthand for three affine equations:

$$
\begin{aligned}
& (x / z)^{3}(y / z)+(y / z)^{3}+(x / z)=0, \quad z \neq 0 \\
& (x / y)^{3}+(z / y)+(z / y)^{3}(x / y)=0, y \neq 0 \\
& (y / x)+(y / x)^{3}(z / x)+(z / x)^{3}=0, x \neq 0
\end{aligned}
$$

Why consider projective at all?

$-$

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

is really shorthand for three affine equations:
-

$$
\begin{aligned}
& (x / z)^{3}(y / z)+(y / z)^{3}+(x / z)=0, z \neq 0 \\
& (x / y)^{3}+(z / y)+(z / y)^{3}(x / y)=0, y \neq 0 \\
& (y / x)+(y / x)^{3}(z / x)+(z / x)^{3}=0, x \neq 0
\end{aligned}
$$

- These in turn describe x / z and y / z being regular functions except at P, Q where one or both have poles; x / y and z / y being regular functions except at Q, R where one or both have poles; and y / x and z / x being regular functions except at P, R where one or both have poles.

Why consider projective at all?

$-$

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

is really shorthand for three affine equations:
-

$$
\begin{aligned}
& (x / z)^{3}(y / z)+(y / z)^{3}+(x / z)=0, \quad z \neq 0 \\
& (x / y)^{3}+(z / y)+(z / y)^{3}(x / y)=0, y \neq 0 \\
& (y / x)+(y / x)^{3}(z / x)+(z / x)^{3}=0, x \neq 0
\end{aligned}
$$

- These in turn describe x / z and y / z being regular functions except at P, Q where one or both have poles; x / y and z / y being regular functions except at Q, R where one or both have poles; and y / x and z / x being regular functions except at P, R where one or both have poles.
- These three are consistent with each other if all three points P, Q, R are avoided.

Coordinates

- My first question is, what do you think coordinates are?

Coordinates

- My first question is, what do you think coordinates are?
- This is not a frivolous question, in that I think they should mean ordered sets of values of coordinate functions that together distinguish points, whatever points are.

Coordinates

- My first question is, what do you think coordinates are?
- This is not a frivolous question, in that I think they should mean ordered sets of values of coordinate functions that together distinguish points, whatever points are.
- This rules out the common choice of projective coordinates, in that at best they represent quotients of values of functions.

Coordinates

- My first question is, what do you think coordinates are?
- This is not a frivolous question, in that I think they should mean ordered sets of values of coordinate functions that together distinguish points, whatever points are.
- This rules out the common choice of projective coordinates, in that at best they represent quotients of values of functions.
- And it generally rules out the choice of the functions that are given to define either a function field or curve, in that there may be multiple points, meaning points that aren't distinguished by their values relative to the defining functions.

Coordinates

- My first question is, what do you think coordinates are?
- This is not a frivolous question, in that I think they should mean ordered sets of values of coordinate functions that together distinguish points, whatever points are.
- This rules out the common choice of projective coordinates, in that at best they represent quotients of values of functions.
- And it generally rules out the choice of the functions that are given to define either a function field or curve, in that there may be multiple points, meaning points that aren't distinguished by their values relative to the defining functions.
- One big question is why affine or projective coordinates, but not rational coordinates?

Coordinates

- My first question is, what do you think coordinates are?
- This is not a frivolous question, in that I think they should mean ordered sets of values of coordinate functions that together distinguish points, whatever points are.
- This rules out the common choice of projective coordinates, in that at best they represent quotients of values of functions.
- And it generally rules out the choice of the functions that are given to define either a function field or curve, in that there may be multiple points, meaning points that aren't distinguished by their values relative to the defining functions.
- One big question is why affine or projective coordinates, but not rational coordinates?
- And why isn't choosing a set of coordinates that does distinguish points paramount?

Choices of coordinates

$-$

$$
\begin{aligned}
& (x: y: z)(P)=(0: 1: 0) \\
& (x: y: z)(Q)=(1: 0: 0) . \\
& (x: y: z)(R)=(0: 0: 1)
\end{aligned}
$$

Choices of coordinates

-

$$
\begin{aligned}
& (x: y: z)(P)=(0: 1: 0) \\
& (x: y: z)(Q)=(1: 0: 0) . \\
& (x: y: z)(R)=(0: 0: 1)
\end{aligned}
$$

- For $f_{7} / h:=x^{2} y / z^{3}, f_{5} / h:=x y / z^{2}$ and $f_{3} / h:=y / z$,

$$
\begin{aligned}
& \left(f_{5}: f_{3}: h\right)(P)=(1: 0: 0) \\
& \left(f_{5}: f_{3}: h\right)(Q)=(0: 0: 1)=\left(f_{5}: f_{3}: h\right)(R)
\end{aligned}
$$

$$
\begin{aligned}
& (x: y: z)(P)=(0: 1: 0) \\
& (x: y: z)(Q)=(1: 0: 0) . \\
& (x: y: z)(R)=(0: 0: 1)
\end{aligned}
$$

- For $f_{7} / h:=x^{2} y / z^{3}, f_{5} / h:=x y / z^{2}$ and $f_{3} / h:=y / z$,

$$
\begin{aligned}
& \left(f_{5}: f_{3}: h\right)(P)=(1: 0: 0) \\
& \left(f_{5}: f_{3}: h\right)(Q)=(0: 0: 1)=\left(f_{5}: f_{3}: h\right)(R)
\end{aligned}
$$

-

$$
\begin{aligned}
& \left(f_{7}: f_{5}: f_{3}: h\right)(P)=(1: 0: 0: 0) \\
& \left(f_{7}: f_{5}: f_{3}: h\right)(Q)=(1: 0: 0: 1) \\
& \left(f_{7}: f_{5}: f_{3}: h\right)(R)=(0: 0: 0: 1)
\end{aligned} .
$$

$$
\begin{aligned}
& (x: y: z)(P)=(0: 1: 0) \\
& (x: y: z)(Q)=(1: 0: 0) . \\
& (x: y: z)(R)=(0: 0: 1)
\end{aligned}
$$

- For $f_{7} / h:=x^{2} y / z^{3}, f_{5} / h:=x y / z^{2}$ and $f_{3} / h:=y / z$,

$$
\begin{aligned}
& \left(f_{5}: f_{3}: h\right)(P)=(1: 0: 0) \\
& \left(f_{5}: f_{3}: h\right)(Q)=(0: 0: 1)=\left(f_{5}: f_{3}: h\right)(R)
\end{aligned}
$$

-

$$
\begin{aligned}
& \left(f_{7}: f_{5}: f_{3}: h\right)(P)=(1: 0: 0: 0) \\
& \left(f_{7}: f_{5}: f_{3}: h\right)(Q)=(1: 0: 0: 1) \\
& \left(f_{7}: f_{5}: f_{3}: h\right)(R)=(0: 0: 0: 1)
\end{aligned}
$$

-

$$
\begin{aligned}
& \left(f_{7}, f_{5}, f_{3}\right)(P)=((1: 0),(1: 0),(1: 0))=(\infty, \infty, \infty) \\
& \left(f_{7}, f_{5}, f_{3}\right)(Q)=((1: 1),(0: 1),(0: 1))=(1,0,0) \\
& \left(f_{7}, f_{5}, f_{3}\right)(R)=((0: 1),(0: 1),(0: 1)) \Rightarrow(0,0,0)
\end{aligned}
$$

Points as ring isomorphisms, Laurent series

Define ring homomorphisms

$$
\pi: \mathbf{F}(\underline{x}) \rightarrow \mathbf{F}((t))
$$

with $\operatorname{ker}(\pi)=I$ to get induced ring isomorphisms

$$
P: \mathbf{K}=\mathbf{F}(\underline{x}) / I \rightarrow \mathbf{F}((t))
$$

$$
P(f):=\sum_{j=\nu_{P}(f)} f_{j} t^{j}=t^{\nu_{P}(f)} u_{P, f}(t)
$$

Points as ring isomorphisms, Laurent series

Define ring homomorphisms

$$
\pi: \mathbf{F}(\underline{x}) \rightarrow \mathbf{F}((t))
$$

with $\operatorname{ker}(\pi)=I$ to get induced ring isomorphisms

$$
P: \mathbf{K}=\mathbf{F}(\underline{x}) / I \rightarrow \mathbf{F}((t)) .
$$

Define equivalence classes of such, by

$$
P_{1} \equiv P_{2} \text { iff } \nu_{P_{1}}(f)=\nu_{P_{2}}(f) \text { for all } f ;
$$

and call these equivalence classes of ring isomorphisms points.

$$
P(f):=\sum_{j=\nu_{P}(f)} f_{j} t^{j}=t^{\nu_{P}(f)} u_{P, f}(t)
$$

Points as ring isomorphisms, Laurent series

Define ring homomorphisms

$$
\pi: \mathbf{F}(\underline{x}) \rightarrow \mathbf{F}((t))
$$

with $\operatorname{ker}(\pi)=I$ to get induced ring isomorphisms

$$
P: \mathbf{K}=\mathbf{F}(\underline{x}) / I \rightarrow \mathbf{F}((t))
$$

Define equivalence classes of such, by

$$
P_{1} \equiv P_{2} \text { iff } \nu_{P_{1}}(f)=\nu_{P_{2}}(f) \text { for all } f ;
$$

and call these equivalence classes of ring isomorphisms points.

$$
P(f):=\sum_{j=\nu_{P}(f)} f_{j} t^{j}=t^{\nu_{P}(f)} u_{P, f}(t)
$$

The trailing exponent $\nu_{P}(f)$ is called a valuation. The other object independent of the representative, P, is the coordinate value defined by f_{0} if $\nu_{P}(f) \geq 0$ and ∞ if $\nu_{P}(f)<0$.

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;
- this is called the rational function field of X and is usually denoted $\mathbf{K}(X)$; its elements are called rational functions on X.

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;
- this is called the rational function field of X and is usually denoted $\mathbf{K}(X)$; its elements are called rational functions on X.
- One warning: a rational function $f \in \mathbf{K}(X)$ is written as a quotient g / h where g and $h \in A(X)$ are regular functions on X;

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;
- this is called the rational function field of X and is usually denoted $\mathbf{K}(X)$; its elements are called rational functions on X.
- One warning: a rational function $f \in \mathbf{K}(X)$ is written as a quotient g / h where g and $h \in A(X)$ are regular functions on X;
- but despite its name, f itself is not a function on X;

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;
- this is called the rational function field of X and is usually denoted $\mathbf{K}(X)$; its elements are called rational functions on X.
- One warning: a rational function $f \in \mathbf{K}(X)$ is written as a quotient g / h where g and $h \in A(X)$ are regular functions on X;
- but despite its name, f itself is not a function on X;
- even if we allow ∞ as a value at points where $h=0$, we cannot in general make sense of f at points where both g and h vanish.

Harris Lecture 7 quote

- Let $X \subset \mathbf{A}^{n}$ be an irreducible affine variety.
- Since its coordinate ring $A(X)$ is an integral domain, we can form its quotient field;
- this is called the rational function field of X and is usually denoted $\mathbf{K}(X)$; its elements are called rational functions on X.
- One warning: a rational function $f \in \mathbf{K}(X)$ is written as a quotient g / h where g and $h \in A(X)$ are regular functions on X;
- but despite its name, f itself is not a function on X;
- even if we allow ∞ as a value at points where $h=0$, we cannot in general make sense of f at points where both g and h vanish.
- We will see shortly in what sense we can deal with these objects as maps.

Another quote from Harris lecture 7

- ...a rational map, despite its name, is not a map, since it may not be defined at some points of X.

Another quote from Harris lecture 7

- ...a rational map, despite its name, is not a map, since it may not be defined at some points of X.
- But if a rational map is not a map, what sort of object is it?

Another quote from Harris lecture 7

- ...a rational map, despite its name, is not a map, since it may not be defined at some points of X.
- But if a rational map is not a map, what sort of object is it?
- Definition 7.3 Let X be an irreducible variety and Y any variety. A rational map

$$
\phi: X--\rightarrow Y
$$

is defined to be an equivalence class of pairs (U, γ) with $U \subset X$ a dense Zariski open subset and $\gamma: U \rightarrow Y$ a regular map, where two such pairs (U, γ) and (V, η) are said to be equivalent if $\left.\gamma\right|_{U \cap V}=\left.\eta\right|_{U \cap V}$.
-

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)=0
$$

-

$$
\left(\frac{x_{1}}{h_{1}}\right)^{3}\left(\frac{x_{2}}{h_{2}}\right)+\left(\frac{x_{2}}{h_{2}}\right)^{3}+\left(\frac{x_{1}}{h_{1}}\right)=0
$$

$$
\left(\frac{x}{z}\right)^{3}\left(\frac{y}{z}\right)+\left(\frac{y}{z}\right)^{3}+\left(\frac{x}{z}\right)=0
$$

$$
\frac{x}{z}=\frac{y^{3}+z^{2} x}{x^{2} y}=\frac{y^{3}}{x^{2} y+z^{3}}
$$

is a rational function, regular except when $z=0=x y$.
-

$$
\frac{y}{z}=\frac{z^{2} x}{x^{3}+y^{2} z}=\frac{y^{3}+z^{2} x}{x^{3}}
$$

is a rational function, regular except when $z=0=x$.
-

$$
\left(\frac{x_{1}}{h_{1}}\right)^{3}\left(\frac{x_{2}}{h_{2}}\right)+\left(\frac{x_{2}}{h_{2}}\right)^{3}+\left(\frac{x_{1}}{h_{1}}\right)=0
$$

- $\frac{x_{i}}{h_{i}}$ is a rational function with a pole when $h_{i}=0$ (and $x_{i}=1$).

The Wikipedia page for singularity theory is: https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities

The Wikipedia page for singularity theory is: https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities
either the example of a cusp or the example of a multiple point is an algebraic curve.

The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities

Neither the example of a cusp nor the example of a multiple point is an algebraic curve.

The Wikipedia page for singularity theory is:
https://en.wikipedia.org/wiki/Singularity_theory
https://en.wikipedia.org/wiki/Resolution_of_singularities

Neither the example of a cusp nor the example of a multiple point is an algebraic curve.

At best, each is a graph of part of a curve projected relative to the functions x and y.

Quiz

Which of the following doesn't belong?
©

$$
y^{2}=x^{3}
$$

(2)

$$
y^{2}=x^{3}+x^{2}
$$

(3)

$$
y^{2}=x^{3}+x^{2}+x
$$

(1)

$$
y^{2}=1-x^{2}
$$

(3)
$\mathbf{P}^{1}(\mathbf{F})$, the projective line

Answers to quiz

(1)

$$
y^{2}=x^{3}, y=t^{3}, x=t^{2}, t:=y / x
$$

as elements of $\mathbf{F}(t)$.
(2)

$$
y^{2}=x^{3}+x^{2}, y=t^{3}-t, x=t^{2}-1, t:=y / x
$$

as elements of $\mathbf{F}(t)$.
(3) $y^{2}=x^{3}+x^{2}+x$ is an elliptic curve, so of genus 1 , not genus 0 , at least in characteristic not 3 .
(1)

$$
y^{2}=1-x^{2}, x=\frac{2 t}{1+t^{2}}, y=\frac{1-t^{2}}{1+t^{2}}, t:=\frac{x}{y+1}
$$

as elements of $\mathbf{F}(t)$ in characteristic not 2 .
©
$\mathbf{F}(t)$

Quiz

Which of the following function fields doesn't belong?
(1)

$$
\mathbf{F}(y, x) /\left\langle y^{3}+y x^{3}+x\right\rangle
$$

(2)

$$
\mathbf{F}\left(f_{5}, f_{3}\right) /\left\langle f_{5}^{3}+f_{5} f_{3}+f_{3}^{5}\right\rangle
$$

(3)

$$
\mathbf{F}\left(f_{7}, f_{5}, f_{3}\right) /\left\langle f_{7}^{2}+f_{7}+f_{5} f_{3}^{3}, f_{7} f_{5}+f_{5}+f_{3}^{4}, f_{5}^{2}-f_{7} f_{3}\right\rangle
$$

(4)

$$
\mathbf{F}\left(f_{7}, f_{5}, f_{3}\right) /\left\langle f_{7}^{2}+f_{7}+f_{5} f_{3}^{3}, f_{7} f_{5}+f_{5}+f_{3}^{4}, f_{7} f_{3}-f_{5}^{2}, f_{5}^{3}+f_{5} f_{3}+f_{3}^{5}\right\rangle
$$

Answers to quiz

A trick question. $f_{3}=y, f_{5}=y x, f_{7}=y x^{2}, x=f_{5} / y$.

Answers to quiz

A trick question. $f_{3}=y, f_{5}=y x, f_{7}=y x^{2}, x=f_{5} / y$. Which of the following quotient rings doesn't belong?
(1)

$$
\mathbf{F}[y, x] /\left\langle y^{3}+y x^{3}+x\right\rangle
$$

(2)

$$
\mathbf{F}\left[f_{5}, f_{3}\right] /\left\langle f_{5}^{3}+f_{5} f_{3}+f_{3}^{5}\right\rangle
$$

(3)

$$
\mathbf{F}\left[f_{7}, f_{5}, f_{3}\right] /\left\langle f_{7}^{2}+f_{7}+f_{5} f_{3}^{3}, f_{7} f_{5}+f_{5}+f_{3}^{4}, f_{5}^{2}-f_{7} f_{3}\right\rangle
$$

(1)
$\mathbf{F}\left[f_{7}, f_{5}, f_{3}\right] /\left\langle f_{7}^{2}+f_{7}+f_{5} f_{3}^{3}, f_{7} f_{5}+f_{5}+f_{3}^{4}, f_{7} f_{3}-f_{5}^{2}, f_{5}^{3}+f_{5} f_{3}+f_{3}^{5}\right\rangle$

Birational equivalence

The quotient ring

$$
A_{1}:=\mathbf{F}[x, y] /\left\langle x^{3} y+y^{3}+x\right\rangle
$$

is supposedly birationally equivalent to

$$
A_{2}:=\mathbf{F}\left[f_{7}, f_{5}\right] /\left\langle f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right\rangle
$$

Birational equivalence

The quotient ring

$$
A_{1}:=\mathbf{F}[x, y] /\left\langle x^{3} y+y^{3}+x\right\rangle
$$

is supposedly birationally equivalent to

$$
A_{2}:=\mathbf{F}\left[f_{7}, f_{5}\right] /\left\langle f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right\rangle
$$

That is, there are ring homomorphisms $\phi: A_{1} \rightarrow A_{2}$ and $\psi: A_{2} \rightarrow A_{1}$ defined by $\phi(x):=f_{7} / f_{5}, \phi(y):=f_{5}^{2} / f_{7}$ and $\psi\left(f_{7}\right):=x^{2} y, \psi\left(f_{5}\right):=x y$, which should be inverses of each other.

$$
\begin{aligned}
\phi\left(x^{3} y+y^{3}+x\right) & =\left(f_{7} / f_{5}\right)^{3}\left(f_{5}^{2} / f_{7}\right)+\left(f_{5}^{2} / f_{7}\right)^{3}+\left(f_{7} / f_{5}\right) \\
& =\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right) /\left(f_{7}^{3} f_{5}\right)
\end{aligned}
$$

$$
\begin{gathered}
\phi\left(x^{3} y+y^{3}+x\right)=\left(f_{7} / f_{5}\right)^{3}\left(f_{5}^{2} / f_{7}\right)+\left(f_{5}^{2} / f_{7}\right)^{3}+\left(f_{7} / f_{5}\right) \\
=\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right) /\left(f_{7}^{3} f_{5}\right) \\
\psi\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right)=\left(x^{2} y\right)^{5}+\left(x^{2} y\right)^{4}+(x y)^{7}=x^{7} y^{4}\left(x^{3} y+y^{3}+x\right)
\end{gathered}
$$

$$
\begin{aligned}
\phi\left(x^{3} y+y^{3}+x\right) & =\left(f_{7} / f_{5}\right)^{3}\left(f_{5}^{2} / f_{7}\right)+\left(f_{5}^{2} / f_{7}\right)^{3}+\left(f_{7} / f_{5}\right) \\
& =\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right) /\left(f_{7}^{3} f_{5}\right)
\end{aligned}
$$

$\psi\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right)=\left(x^{2} y\right)^{5}+\left(x^{2} y\right)^{4}+(x y)^{7}=x^{7} y^{4}\left(x^{3} y+y^{3}+x\right)$
Should we worry about the extra factors $x^{7} y^{4}$ and $f_{7}^{3} f_{5}$ produced in this process? There are things called exceptional divisors, normal crossings, and on and on, in the theory of desingularizing curves and surfaces that suggest the answer is yes; but I say no.

$$
\begin{aligned}
\phi\left(x^{3} y+y^{3}+x\right) & =\left(f_{7} / f_{5}\right)^{3}\left(f_{5}^{2} / f_{7}\right)+\left(f_{5}^{2} / f_{7}\right)^{3}+\left(f_{7} / f_{5}\right) \\
& =\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right) /\left(f_{7}^{3} f_{5}\right)
\end{aligned}
$$

$\psi\left(f_{7}^{5}+f_{7}^{4}+f_{5}^{7}\right)=\left(x^{2} y\right)^{5}+\left(x^{2} y\right)^{4}+(x y)^{7}=x^{7} y^{4}\left(x^{3} y+y^{3}+x\right)$
Should we worry about the extra factors $x^{7} y^{4}$ and $f_{7}^{3} f_{5}$ produced in this process? There are things called exceptional divisors, normal crossings, and on and on, in the theory of desingularizing curves and surfaces that suggest the answer is yes; but I say no.

$$
K:=Q\left(A_{1}\right)=Q\left(A_{2}\right)
$$

That is $x=f_{7} / f_{5}, y=f_{5}^{2} / f_{7}, f_{7}=x^{2} y$, and $f_{5}=x y$, if they are all viewed as elements of the same function field. So not only are ϕ and ψ inverses of each other, they are both the identity map on the common function field.

Divisors for the Klein quartic

$$
a^{3} c^{2}+a b c^{3}+b^{5}=0
$$

also defines the Klein quartic.

$$
\left(\frac{a}{c}\right)^{3}+\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)+\left(\frac{b}{c}\right)^{5}=0
$$

Divisors for the Klein quartic

$$
a^{3} c^{2}+a b c^{3}+b^{5}=0
$$

also defines the Klein quartic.

$$
\begin{aligned}
& \left(\frac{a}{c}\right)^{3}+\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)+\left(\frac{b}{c}\right)^{5}=0 \\
& \left(\left(\frac{a}{c}\right)\right)=-5 \cdot P+1 \cdot Q+4 \cdot R \\
& \left(\left(\frac{b}{c}\right)\right)=-3 \cdot P+2 \cdot Q+1 \cdot R
\end{aligned}
$$

Divisors for the Klein quartic

$$
a^{3} c^{2}+a b c^{3}+b^{5}=0
$$

also defines the Klein quartic.

$$
\begin{aligned}
& \left(\frac{a}{c}\right)^{3}+\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)+\left(\frac{b}{c}\right)^{5}=0 \\
& \left(\left(\frac{a}{c}\right)\right)=-5 \cdot P+1 \cdot Q+4 \cdot R \\
& \left(\left(\frac{b}{c}\right)\right)=-3 \cdot P+2 \cdot Q+1 \cdot R
\end{aligned}
$$

describes that the homogeneous, rational functions a / c and b / c with a / c having 5 poles and zeros; $b / c, 3$ each.

Divisors for the Klein quartic

$$
a^{3} c^{2}+a b c^{3}+b^{5}=0
$$

also defines the Klein quartic.

$$
\begin{aligned}
& \left(\frac{a}{c}\right)^{3}+\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)+\left(\frac{b}{c}\right)^{5}=0 \\
& \left(\left(\frac{a}{c}\right)\right)=-5 \cdot P+1 \cdot Q+4 \cdot R \\
& \left(\left(\frac{b}{c}\right)\right)=-3 \cdot P+2 \cdot Q+1 \cdot R
\end{aligned}
$$

describes that the homogeneous, rational functions a / c and b / c with a / c having 5 poles and zeros; $b / c, 3$ each.
But now all the poles are at P with $(a: b: c)(P)=(1: 0 ; 0)$, while $(a: b: c)(Q)=(0: 0: 1)=(a: b: c)(R)$ is a double point.

Laurent series expansions

For the Klein quartic example above,

$$
\begin{aligned}
b / c & =t_{P}^{-3} u_{P}^{-2} & & a / c=t_{P}^{-5} u_{P}^{-3} \\
b / c & =t_{Q}^{2} u_{Q} & & a / c=t_{Q}^{1} \\
b / c & =t_{R}^{1} & & a / c=t_{R}^{4} u_{R}
\end{aligned}
$$

$$
x_{8}^{2}+x_{4}^{2} x_{8}+x_{4}=0, x_{4}^{2}+x_{2}^{2} x_{4}+x_{2}=0, x_{2}^{2}+x_{1}^{2} x_{2}+x_{1}=0
$$

$$
\begin{aligned}
& x_{8}^{2}+x_{4}^{2} x_{8}+x_{4}=0, x_{4}^{2}+x_{2}^{2} x_{4}+x_{2}=0, x_{2}^{2}+x_{1}^{2} x_{2}+x_{1}=0 \\
& \left(\left(x_{8}\right)\right)=-8 \cdot P_{1} \\
& \left(\left(x_{4}\right)\right)=-4 \cdot P_{2} \\
& \left(\left(x_{2}\right)\right)=-1 \cdot P_{1} \\
& \left.\left(x_{1}\right)\right)=-2 \cdot P_{3} \\
& \left(\begin{array}{llllll}
& -2 \cdot P_{2} & +2 \cdot P_{3} & +2 \cdot P_{4} & +1 \cdot P_{5} & +1 \cdot P_{6} \\
-1 \cdot P_{1} & -1 \cdot P_{2} & -1 \cdot P_{3} & -2 \cdot P_{4} & +1 \cdot P_{4} & +4 \cdot P_{5} \\
+4 \cdot P_{6} \\
\hline
\end{array}\right. \\
& \begin{array}{llll}
& -4 \cdot P_{5} & +8 \cdot P_{6}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x_{8}^{2}+x_{4}^{2} x_{8}+x_{4}=0, x_{4}^{2}+x_{2}^{2} x_{4}+x_{2}=0, x_{2}^{2}+x_{1}^{2} x_{2}+x_{1}=0 \\
& \left(\left(x_{8}\right)\right)=-8 \cdot P_{1} \quad+4 \cdot P_{2} \quad+1 \cdot P_{3} \quad+1 \cdot P_{4} \quad+1 \cdot P_{5} \quad+1 \cdot P_{6} \\
& \left(\left(x_{4}\right)\right)=-4 \cdot P_{1} \quad-4 \cdot P_{2} \quad+2 \cdot P_{3} \quad+2 \cdot P_{4} \quad+2 \cdot P_{5} \quad+2 \cdot P_{6} \\
& \left(\left(x_{2}\right)\right)=-2 \cdot P_{1} \quad-2 \cdot P_{2} \quad-2 \cdot P_{3} \quad-2 \cdot P_{4} \quad+4 \cdot P_{5} \quad+4 \cdot P_{6} \\
& \left(\left(x_{1}\right)\right)=-1 \cdot P_{1} \quad-1 \cdot P_{2} \quad-1 \cdot P_{3} \quad-1 \cdot P_{4} \quad-4 \cdot P_{5} \quad+8 \cdot P_{6} \\
& P_{1}=(1: 0: 0: 0: 0), P_{2}=(0: 1: 0: 0: 0), \\
& P_{3}=P_{4}=(0: 0: 1: 0: 0), \\
& P_{5}=(0: 0: 0: 1: 0), P_{6}=(0: 0: 0: 0: 1)
\end{aligned}
$$

Special one-point position

For $y 23:=x_{8}^{2} x_{4} x_{2} x_{1}$ and $y 8:=x_{8}$, both with poles only at one point, there is a special one-point description of the curve.

```
loadPackage "QthPower";
wtr=matrix{{23,8}};
R=ZZ/2[y23,y8,Weights=>entries weightGrevlex(wtr)];
GB={y23^8+y8^23+y23^4*y8^10+y23^2*y8^15+y23^5*y8^6+y23^6*y8^2+y23*y8^16+y23^4*y8^7+y23^5*y8^3
+y23^3*y8^8+y23*y8^13+y23^4*y8^4+y23^2*y8^9+y23^3*y8^5+y23*y8^10+y23^4*y8+y23*y8^7+y23^2*y8^3}
time ic2=qthIntegralClosure(wtr,R,GB);
toString ic2
```

$(Z Z / 2)[f 33, f 21, f 19, f 18, f 15, f 14, f 12, f 8]$, <-- weighted ring matrix $\{\{33,21,19,18,15,14,12,8\}\})$
delta $=y 8^{\wedge} 40+y 8^{\wedge} 37+y 8^{\wedge} 34+y 8^{\wedge} 31+y 8^{\wedge} 16+y 8^{\wedge} 13+y 8^{\wedge} 10+y 8^{\wedge} 7$, <-- denominator $\mathrm{n} 12=\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 30+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 26+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 36+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 27+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 18+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 32$ $+y 8^{\wedge} 37+y 23^{\wedge} 2 * y 8^{\wedge} 29+y 8^{\wedge} 34+y 23^{\wedge} 3 * y 8^{\wedge} 25+y 23^{\wedge} 4 * y 8^{\wedge} 21+y 23^{\wedge} 6 * y 8^{\wedge} 13+y 23^{\wedge} 4 * y 8^{\wedge} 18$ $+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 10+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 24+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 20+\mathrm{y} 8^{\wedge} 25+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 17$ $+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 8+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 18+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 14+\mathrm{y} 8^{\wedge} 19+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 10+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 6$ $+y 8^{\wedge} 16+y 23 * y 8^{\wedge} 12+y 23^{\wedge} 2 * y 8^{\wedge} 8+y 8^{\wedge} 13+y 8^{\wedge} 7$,
$\mathrm{n} 14=\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 36+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 23+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 19+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 24+\mathrm{y} 8 \wedge 38+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 29$ $+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 20+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 34+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 25+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 16+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 30+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 21$ $+\mathrm{y} 8^{\wedge} 35+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 26+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 22+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 27+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 14+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 15$ $+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 25+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 16+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 21+\mathrm{y} 8^{\wedge} 26+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 22+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 13$ $+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 18+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 9+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 14+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 5+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 19+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 10$ $+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 6+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 11+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 2+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 3+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 8$ $+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 9+\mathrm{y} 8^{\wedge} 14+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8 \wedge 5+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 10+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 6+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 3$ $+y 8 \wedge 8+y 23 * y 8^{\wedge} 4$,
$\mathrm{n} 15=\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 39+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 35+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 22+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 36+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 18+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 23$ $+y 8^{\wedge} 37+y 23^{\wedge} 3 * y 8^{\wedge} 28+y 23^{\wedge} 6 * y 8^{\wedge} 19+y 23^{\wedge} 4 * y 8^{\wedge} 24+y 23^{\wedge} 7 * y 8^{\wedge} 15+y 23^{\wedge} 2 * y 8^{\wedge} 29$ $+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 20+\mathrm{y} 8^{\wedge} 34+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 25+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 30+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 21+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 26$ $+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 13+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 14+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 24+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 6+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 20$ $+\mathrm{y} 8^{\wedge} 25+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 21+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 12+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 17+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 8+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 13$ $+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 4+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 18+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 9+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 5+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 10+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8$ $+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 6+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 2+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 12+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 8+\mathrm{y} 8^{\wedge} 13$ $+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 4+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 5+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 2+\mathrm{y} 8^{\wedge} 7+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 3$,
$\mathrm{n} 18=\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 25+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 21+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 35+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 31+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 22+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 32$ $+y 23^{\wedge} 5 * y 8^{\wedge} 23+y 23^{\wedge} 3 * y 8^{\wedge} 28+y 23 * y 8^{\wedge} 33+y 23^{\wedge} 4 * y 8^{\wedge} 24+y 23^{\wedge} 2 * y 8^{\wedge} 29+y 23^{\wedge} 5 * y 8^{\wedge} 20$ $+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 25+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 16+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 30+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 12+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 26+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 17$ $+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 13+\mathrm{y} 23^{\wedge} 7 * \mathrm{y} 8^{\wedge} 9+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 19+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 10+\mathrm{y} 23^{\wedge} 4 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 11$ $+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 16+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8^{\wedge} 7+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 21+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 17+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 13+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 14$ $+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 5+\mathrm{y} 23^{\wedge} 6 * \mathrm{y} 8+\mathrm{y} 23 * \mathrm{y} 8^{\wedge} 15+\mathrm{y} 23^{\wedge} 2 * \mathrm{y} 8^{\wedge} 11+\mathrm{y} 23^{\wedge} 5 * \mathrm{y} 8^{\wedge} 2+\mathrm{y} 8^{\wedge} 16+\mathrm{y} 23^{\wedge} 3 * \mathrm{y} 8^{\wedge} 7$ $+y 23 * y 8^{\wedge} 12+y 23^{\wedge} 3 * y 8 \wedge 4+y 23 * y 8^{\wedge} 9+y 8^{\wedge} 10+y 23^{\wedge} 2 * y 8^{\wedge} 2+y 8 \wedge 7+y 23 * y 8 \wedge 3$,

```
n19=y23^5*y8^28+y23*y8^38+y23^4*y8^29+y23^7*y8^20+y23^2*y8^34+y23*y8^35
    +y23^2*y8^31+y23^5*y8^22+y8^36+y23^3*y8^27+y23*y8^32+y23^7*y8^14
    +y23^2*y8^28+y8^33+y23^6*y8^15+y23*y8^29+y23^4*y8^20+y23^2*y8^25+y8^30
    +y23^3*y8^21+y23^6*y8^12+y23*y8^26+y23^2*y8^22+y23^4*y8^14+y23^2*y8^19
    +y23^5*y8^10+y23^6*y8^6+y23^4*y8^11+y23^3*y8^12+y23^6*y8^3+y23*y8^17
    +y23^2*y8^13+y23^5*y8^4+y8^18+y8^15+y23^3*y8^6+y8^12+y23*y8^8+y23^2*y8^4
    +y23*y8^5,
n21=y23^3*y8^34+y23^7*y8^21+y23^2*y8^35+y23^5*y8^26+y23^4*y8^27+y23^7*y8^18
    +y23^2*y8^32+y23^5*y8^23+y8^37+y23^6*y8^19+y23^7*y8^15+y23^2*y8^29
    +y23^5*y8^20+y8^34+y23^6*y8^16+y23*y8^30+y23^4*y8^21+y23^2*y8^26
    +y23^5*y8^17+y23^6*y8^13+y23*y8^27+y23^4*y8^18+y23^2*y8^23+y23^3*y8^19
    +y23^6*y8^10+y23*y8^24+y23^4*y8^15+y23^7*y8^6+y23^2*y8^20+y8^25
    +y23^3*y8^16+y23*y8^21+y23^7*y8^3+y23^6*y8^4+y23^7+y23^2*y8^14+y23^3*y8^10
    +y23^6*y8+y23^4*y8^6+y23^2*y8^11+y23^4*y8^3+y+y23^2*y8^8+y8^13+y23^3*y8^4
    +y23*y8^9+y23^3*y8+y23*y8^6+y23^2*y8^2,
n33=y23^7*y8^24+y23^3*y8^31+y23*y8^36+y23^4*y8^27+y23^7*y8^18+y23^5*y8^23
    +y8^37+y23*y8^33+y23^2*y8^29+y23^5*y8^20+y23^4*y8^21+y23^7*y8^12+y23*y8^27
    +y23^7*y8^9+y23^2*y8^23+y23^5*y8^14+y23^6*y8^10+y23*y8^24+y23^2*y8^20
    +y23^5*y8^11+y8^25+y23*y8^21+y23^4*y8^12+y23^7*y8^3+y23^2*y8^17
    +y23^4*y8^9+y23^2*y8^14+y8^19+y23^2*y8^11+y8^13+y23^3*y8^4+y8^7
```

```
f33^2+f33*f8^3+f18*f8^6+f18*f8^3+f18+f15+f14*f8^2+f12*f8^3+f8^6+f8^3+1,
f33*f21+f33+f18*f8^3+f18+f15*f8^3+f15+f14*f8^5+1,
f33*f19+f21*f8^2+f19*f8^3+f14*f8+f12*f8^5+f12*f8^2,
f33*f18+f33+f21+f19*f8^4+f19*f8+f18*f8^3+f18+f 15*f8^ 3+f 12*f8^ 3+f8^ 3+1,
f33*f15+f21+f15*f8^3+f15+f12*f8^3+f8^6+f8^3,
f33*f14+f21*f8+f15*f8^4+f15*f8+f14*f8^ 3+f12*f8+f8,
f33*f12+f21*f8^ 3+f 19*f8+f18+f15+f14*f8^2+f12*f8^3+f8^ 3+1,
f21~2+f33+f21+f18*f8^3+f14*f8^2+f12,
f21*f19+f19+f14*f8+f12*f8^2+f8^5,
f21*f18+f19*f8+f18+f15*f8^3+f15+f12+f8^3+1,
f21*f15+f21+f18+f15+f12*f8^ 3+f12+f8^ 3+1,
f21*f14+f19*f8^2+f15*f8+f14,
f21*f12+f33+f21+f18+f15+f12+f8^3,
f19^2+f14*f8^3+f12*f8+f8,
f19*f18+f21*f8^2+f12*f8^2+f8^2,
f19*f15+f19+f18*f8^2+f8^2,
f19*f14+f33+f18+f15+1, <-- strict affine F_2[f8] algebra presentation
f19*f12+f15*f8^2+f8^2,
f18^2+f19*f8+f15+f12*f8^3+f12+f8^ 3+1,
f18*f15+f33+f21+f15+f12,
f18*f14+f15*f8+f12*f8+f8^4+f8,
f18*f12+f18+f14*f8~2,
f15^2+f18+f14*f8^2+f12+1,
f15*f14+f21*f8+f14+f12*f8+f8,
f15*f12+f19*f8+f15+f12+1,
f14~2+f19+f12*f8^2,
f14*f12+f18*f8,
f12^2+f12+f8^3
```

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33						

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33						

The genus is easily computed as

$$
g=|\{1,2,3,4,5,6,7,9,10,11,13,17,25\}|=13
$$

Quiz

(1) Is $y=\frac{1}{x}$ the same as $x y=1$?

Quiz

(1) Is $y=\frac{1}{x}$ the same as $x y=1$?
(2) If x is given the value c, what value should y be given?

Quiz

(1) Is $y=\frac{1}{x}$ the same as $x y=1$?
(2) If x is given the value c, what value should y be given?
(3) What values c should be considered?

Quiz

(1) Is $y=\frac{1}{x}$ the same as $x y=1$?
(2) If x is given the value c, what value should y be given?
(3) What values c should be considered?
(1) Does it help to write things homogeneously as $x y=h^{2}$ or $\frac{y}{h}=\frac{h}{x}$, and think in projectively?

Quiz

(1) Is $y=\frac{1}{x}$ the same as $x y=1$?
(2) If x is given the value c, what value should y be given?
(3) What values c should be considered?
(1) Does it help to write things homogeneously as $x y=h^{2}$ or $\frac{y}{h}=\frac{h}{x}$, and think in projectively?
(0) How about $x y=h k$ or $\frac{y}{k}=\frac{h}{x}$ instead?

My answers to the quiz

(1) How about $x y-1=0$?

My answers to the quiz

(1) How about $x y-1=0$?
(2) x should be given the value $(a: b)$ and y the value $(b: a)$.

My answers to the quiz

(1) How about $x y-1=0$?
(2) x should be given the value $(a: b)$ and y the value $(b: a)$.
(3) That is, values should come from the projective line (over an algebraically closed field).

My answers to the quiz

(1) How about $x y-1=0$?
(2) x should be given the value $(a: b)$ and y the value $(b: a)$.
(3) That is, values should come from the projective line (over an algebraically closed field).
(1) $x y=h^{2}$ (or $\frac{x}{h} \frac{y}{h}=1$) is not the correct generalization.

My answers to the quiz

(1) How about $x y-1=0$?
(2) x should be given the value $(a: b)$ and y the value $(b: a)$.
(3) That is, values should come from the projective line (over an algebraically closed field).
(9) $x y=h^{2}$ (or $\frac{x}{h} \frac{y}{h}=1$) is not the correct generalization.
(0) $\frac{x}{h} \frac{y}{k}=1$ (or $\left.x k=y h\right)$ is.

Eisenbud example A2.32

- (Resolution of singularities in codimension 1).

Eisenbud example A2.32

- (Resolution of singularities in codimension 1).
- Suppose that X is an affine variety over an algebraically closed field \mathbf{K}, with affine coordinate ring R.

Eisenbud example A2.32

- (Resolution of singularities in codimension 1).
- Suppose that X is an affine variety over an algebraically closed field \mathbf{K}, with affine coordinate ring R.
- By Theorem A2.26 the normalization \bar{R} corresponds to an affine variety Y, and the inclusion $R \subset \bar{R}$ corresponds to a map $g: Y \rightarrow X$.

Eisenbud example A2.32

- (Resolution of singularities in codimension 1).
- Suppose that X is an affine variety over an algebraically closed field \mathbf{K}, with affine coordinate ring R.
- By Theorem A2.26 the normalization \bar{R} corresponds to an affine variety Y, and the inclusion $R \subset \bar{R}$ corresponds to a map $g: Y \rightarrow X$.
- By Theorem A2.27 the map g is an isomorphism over the part of X that is smooth, or even normal.

Eisenbud example A2.32

- (Resolution of singularities in codimension 1).
- Suppose that X is an affine variety over an algebraically closed field \mathbf{K}, with affine coordinate ring R.
- By Theorem A2.26 the normalization \bar{R} corresponds to an affine variety Y, and the inclusion $R \subset \bar{R}$ corresponds to a map $g: Y \rightarrow X$.
- By Theorem A2.27 the map g is an isomorphism over the part of X that is smooth, or even normal.
- The map g is a finite morphism in the sense that the coordinate ring of \bar{X} is finitely generated as a module over the coordinate ring of X; this is a strong form of the condition that each fiber $g^{-1}(x)$ is a finite set.
- Serre's Criterion in Theorem A2.28 implies that the coordinate ring of Y is smooth in codimension 1,
- Serre's Criterion in Theorem A2.28 implies that the coordinate ring of Y is smooth in codimension 1,
- and this means the singular locus of Y is of codimenion at least 2.
- Serre's Criterion in Theorem A2.28 implies that the coordinate ring of Y is smooth in codimension 1,
- and this means the singular locus of Y is of codimenion at least 2.
- Desingularization in codimension 1 is the most that can be hoped, in general, from a finite morphism.
- For example, the quadric cone $X \subset \mathbf{K}^{3}$ defined by the equation $x^{2}+y^{2}+z^{2}=0$ is normal, and it follows that any finite map $Y \rightarrow X$ that is isomorphic outside the singular point must be an isomorphism.
- For example, the quadric cone $X \subset \mathbf{K}^{3}$ defined by the equation $x^{2}+y^{2}+z^{2}=0$ is normal, and it follows that any finite map $Y \rightarrow X$ that is isomorphic outside the singular point must be an isomorphism.
- However, for any affine or projective variety X over a field it is conjectured that there is actually a resolution of singularities: that is, a projective map $\pi: Y \rightarrow X$ (this means that Y can be represented as a closed subset of $X \times \mathbf{P}^{n}$ for some projective space \mathbf{P}^{n}) where Y is a smooth variety, and the map π is an isomorphism over the part of X that is already smooth.
- In the example above, there is a desingularization (the blowup of the origin in X) that may be described as the subset of $X \times \mathbf{P}^{2}$, with coordinates x, y, z for X and u, v, w for \mathbf{P}^{2}, defined by the vanishing of the 2×2 minors of the matrix $\left(\begin{array}{lll}x & y & z \\ u & v & w\end{array}\right)$ together with the equations $x u+y v+z w=0$ and $u^{2}+v^{2}+w^{2}=0$.
- In the example above, there is a desingularization (the blowup of the origin in X) that may be described as the subset of $X \times \mathbf{P}^{2}$, with coordinates x, y, z for X and u, v, w for \mathbf{P}^{2}, defined by the vanishing of the 2×2 minors of the matrix $\left(\begin{array}{lll}x & y & z \\ u & v & w\end{array}\right)$ together with the equations $x u+y v+z w=0$ and $u^{2}+v^{2}+w^{2}=0$.
- It is described algebraically by the Rees algebra $R \oplus I \oplus I^{2} \ldots$
- In the example above, there is a desingularization (the blowup of the origin in X) that may be described as the subset of $X \times \mathbf{P}^{2}$, with coordinates x, y, z for X and u, v, w for \mathbf{P}^{2}, defined by the vanishing of the 2×2 minors of the matrix $\left(\begin{array}{ccc}x & y & z \\ u & v & w\end{array}\right)$ together with the equations $x u+y v+z w=0$ and $u^{2}+v^{2}+w^{2}=0$.
- It is described algebraically by the Rees algebra $R \oplus I \oplus I^{2} \ldots$
- where $R=\mathbf{K}[x, y, z] /\left(x^{2}+y^{2}+z^{2}\right)$ is the coordinate ring of X
- In the example above, there is a desingularization (the blowup of the origin in X) that may be described as the subset of $X \times \mathbf{P}^{2}$, with coordinates x, y, z for X and u, v, w for \mathbf{P}^{2}, defined by the vanishing of the 2×2 minors of the matrix $\left(\begin{array}{ccc}x & y & z \\ u & v & w\end{array}\right)$ together with the equations $x u+y v+z w=0$ and $u^{2}+v^{2}+w^{2}=0$.
- It is described algebraically by the Rees algebra $R \oplus I \oplus I^{2} \ldots$
- where $R=\mathbf{K}[x, y, z] /\left(x^{2}+y^{2}+z^{2}\right)$ is the coordinate ring of X
- and $I=(x, y, z) \subset R$.

Where to begin?

- Phrasing singularity questions in affine terms allows one to hide all sorts of bad behavior at non-affine points of a surface.

Where to begin?

- Phrasing singularity questions in affine terms allows one to hide all sorts of bad behavior at non-affine points of a surface.
- This is supposed to be an example of how to desingularize an affine surface at the origin. But it ignores larger problems of that surface hidden at non-affine points.

Where to begin?

- Phrasing singularity questions in affine terms allows one to hide all sorts of bad behavior at non-affine points of a surface.
- This is supposed to be an example of how to desingularize an affine surface at the origin. But it ignores larger problems of that surface hidden at non-affine points.
- Projectively but using rational functions:

$$
\left(\frac{x}{h}\right)^{2}+\left(\frac{y}{h}\right)^{2}+\left(\frac{z}{h}\right)^{2}=0
$$

Where to begin?

- Phrasing singularity questions in affine terms allows one to hide all sorts of bad behavior at non-affine points of a surface.
- This is supposed to be an example of how to desingularize an affine surface at the origin. But it ignores larger problems of that surface hidden at non-affine points.
- Projectively but using rational functions:

$$
\left(\frac{x}{h}\right)^{2}+\left(\frac{y}{h}\right)^{2}+\left(\frac{z}{h}\right)^{2}=0
$$

- But then one would need to find a way to explain that there were singularities when $h=0$ as well as the one at $x=0, y=0, z=0, h=1$.
- Looking at things in rational terms is a better alternative, as the rational function equation:

$$
\left(\frac{x_{1}}{h_{1}}\right)^{2}+\left(\frac{x_{2}}{h_{2}}\right)^{2}+\left(\frac{x_{3}}{h_{3}}\right)^{2}=0
$$

- Looking at things in rational terms is a better alternative, as the rational function equation:

$$
\left(\frac{x_{1}}{h_{1}}\right)^{2}+\left(\frac{x_{2}}{h_{2}}\right)^{2}+\left(\frac{x_{3}}{h_{3}}\right)^{2}=0
$$

- can be rewritten in polyonomial form as

$$
x_{1}^{2} h_{2}^{2} h_{3}^{2}+x_{2}^{2} h_{1}^{2} h_{3}^{2}+x_{3}^{2} h_{1}^{2} h_{2}^{2}=0
$$

- Looking at things in rational terms is a better alternative, as the rational function equation:

$$
\left(\frac{x_{1}}{h_{1}}\right)^{2}+\left(\frac{x_{2}}{h_{2}}\right)^{2}+\left(\frac{x_{3}}{h_{3}}\right)^{2}=0
$$

- can be rewritten in polyonomial form as

$$
x_{1}^{2} h_{2}^{2} h_{3}^{2}+x_{2}^{2} h_{1}^{2} h_{3}^{2}+x_{3}^{2} h_{1}^{2} h_{2}^{2}=0
$$

- with singularities at $h_{1}=0=h_{2}, h_{1}=0=h_{3}$, and $h_{2}=0=h_{3}$, in addition to the one at $x_{1}=x_{2}=x_{3}=0$.

Non-singular surface?

So instead of having a singular surface with points coordinatizable over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{3}$,

Non-singular surface?

So instead of having a singular surface with points coordinatizable over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{3}$, it is possible to append three new rational coordinate functions

$$
\frac{x_{4}}{h_{4}}:=\left(\frac{x_{1}}{h_{1}}\right)\left(\frac{h_{2}}{x_{2}}\right), \frac{x_{5}}{h_{5}}:=\left(\frac{x_{2}}{h_{2}}\right)\left(\frac{h_{3}}{x_{3}}\right), \frac{x_{6}}{h_{6}}:=\left(\frac{x_{3}}{h_{3}}\right)\left(\frac{h_{1}}{x_{1}}\right)
$$

Non-singular surface?

So instead of having a singular surface with points coordinatizable over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{3}$, it is possible to append three new rational coordinate functions

$$
\frac{x_{4}}{h_{4}}:=\left(\frac{x_{1}}{h_{1}}\right)\left(\frac{h_{2}}{x_{2}}\right), \frac{x_{5}}{h_{5}}:=\left(\frac{x_{2}}{h_{2}}\right)\left(\frac{h_{3}}{x_{3}}\right), \frac{x_{6}}{h_{6}}:=\left(\frac{x_{3}}{h_{3}}\right)\left(\frac{h_{1}}{x_{1}}\right)
$$

to get a non-singular surface coordinatized over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{6}$;

Non-singular surface?

So instead of having a singular surface with points coordinatizable over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{3}$, it is possible to append three new rational coordinate functions

$$
\frac{x_{4}}{h_{4}}:=\left(\frac{x_{1}}{h_{1}}\right)\left(\frac{h_{2}}{x_{2}}\right), \frac{x_{5}}{h_{5}}:=\left(\frac{x_{2}}{h_{2}}\right)\left(\frac{h_{3}}{x_{3}}\right), \frac{x_{6}}{h_{6}}:=\left(\frac{x_{3}}{h_{3}}\right)\left(\frac{h_{1}}{x_{1}}\right)
$$

to get a non-singular surface coordinatized over $\left(\mathbf{P}^{1}(\mathbf{F})\right)^{6}$; with additional induced relations

$$
\begin{aligned}
& 1+\left(\frac{h_{4}}{x_{4}}\right)^{2}+\left(\frac{x_{6}}{h_{6}}\right)^{2}=0 \\
& \left(\frac{x_{4}}{h_{4}}\right)^{2}+1+\left(\frac{h_{5}}{x_{5}}\right)^{2}=0 \\
& \left(\frac{h_{6}}{x_{6}}\right)^{2}+\left(\frac{x_{5}}{h_{5}}\right)^{2}+1=0
\end{aligned}
$$

Rees algebra

- What does the Rees algebra $R \oplus I \oplus I^{2} \cdots$ mean?

Rees algebra

- What does the Rees algebra $R \oplus I \oplus I^{2} \cdots$ mean?
- Well first, it should be $R[I t]:=\sum_{j}(I t)^{j}$.

Rees algebra

- What does the Rees algebra $R \oplus I \oplus I^{2} \cdots$ mean?
- Well first, it should be $R[I t]:=\sum_{j}(I t)^{j}$.
- Then there should be a map $\phi: R[u, v, w] \rightarrow R[I t]$ defined by $\phi(u):=x t, \phi(v):=y t$, and $\phi(w):=z t$.

Rees algebra

- What does the Rees algebra $R \oplus I \oplus I^{2} \cdots$ mean?
- Well first, it should be $R[I t]:=\sum_{j}(I t)^{j}$.
- Then there should be a map $\phi: R[u, v, w] \rightarrow R[I t]$ defined by $\phi(u):=x t, \phi(v):=y t$, and $\phi(w):=z t$.
- Then $R[u, v, w] / \operatorname{kernel}(\phi)$ is a presentation of the Rees algebra.

Rees algebra

- What does the Rees algebra $R \oplus I \oplus I^{2} \cdots$ mean?
- Well first, it should be $R[I t]:=\sum_{j}(I t)^{j}$.
- Then there should be a map $\phi: R[u, v, w] \rightarrow R[I t]$ defined by $\phi(u):=x t, \phi(v):=y t$, and $\phi(w):=z t$.
- Then $R[u, v, w] / \operatorname{kernel}(\phi)$ is a presentation of the Rees algebra.
- Clearly $\phi(x u+y v+z w)=0 t$ and $\phi\left(u^{2}+v^{2}+w^{2}\right)=0 t^{2}$.

My rees algebra alternative

My rees algebra alternative

- Start with $R[I t]:=\sum_{j}(I t)^{j}$.

My rees algebra alternative

- Start with $R[I t]:=\sum_{j}(I t)^{j}$.
- Then try the map $\psi: R \rightarrow R[I t]$ defined by $\psi(x):=u t$, $\phi(y):=v t$, and $\phi(z):=w t$.

My rees algebra alternative

- Start with $R[I t]:=\sum_{j}(I t)^{j}$.
- Then try the map $\psi: R \rightarrow R[I t]$ defined by $\psi(x):=u t$, $\phi(y):=v t$, and $\phi(z):=w t$.
- Then $R / \operatorname{kernel}(\psi)$ is a presentation of my rees algebra.

My rees algebra alternative

- Start with $R[I t]:=\sum_{j}(I t)^{j}$.
- Then try the map $\psi: R \rightarrow R[I t]$ defined by $\psi(x):=u t$, $\phi(y):=v t$, and $\phi(z):=w t$.
- Then $R / \operatorname{kernel}(\psi)$ is a presentation of my rees algebra.
- Clearly

$$
\psi\left(x^{2}+y^{2}+z^{2}\right) \mapsto(x u+y v+z w) t \mapsto\left(u^{2}+v^{2}+w^{2}\right) t^{2} .
$$

