Weather Elements that Affect Fire BehaviorWhat is weather? It is the state of the atmosphere surrounding the earth at a certain area. The atmosphere is a gaseous mantle (mostly oxygen and nitrogen) encasing the earth and rotating with it in space. Weather is never static. It is dynamic, changing day-by-day, hour-by-hour and even minute-by-minute. Of the three major components making up a fire’s environment (Fuel, Weather and Topography), weather is the most important, yet it is continuously changing. This unit will deal with the role weather plays in the start and spread of wildfires and in the use of prescribed Fires. There are several elements of weather that must be considered. They are: In addition drought, a result of certain weather conditions, must be considered. TemperatureAir temperature has a direct influence on fire behavior because of the heat requirements for ignition and continuing the combustion process. We discussed radiant heat in the previous unit. Heat from the sun is transferred to the earth by radiation. This heat warms up the surface of the earth and the atmosphere close to the surface is in turn warmed by heat reflecting from the surface. This is the reason that the temperature above the surface is cooler than at the surface of the earth. These temperatures generally decrease about 3.5 degrees per thousand feet in altitude. This decrease is known as the adiabatic lapse rate. Forest fuels receive heat by radiation from the sun.
As a result, less heat is required for ignition.
The differential heating of the earth’s surface is the driving force
behind most of the influences on the atmosphere.
The sun emits short-wave energy rays (radiation).
When striking a solid object such as trees or grass, it is warmed. The surface absorbs some of the heat and reflects some in
long-wave radiation that is absorbed by the water vapor in the air thus
raising its temperature as well.
Arguably, temperature, is the single most important
weather factor affecting fire behavior.
Some might say that relative humidity is most important but we will learn
that temperature drives relative humidity. Fuel temperatures also affect a fire’s rate of spread.
Warm fuels will ignite and burn faster because less heat energy is used
to raise the fuels to their ignition temperature.
Fuels exposed to sunlight will be warmer than the fuels in shade.
They will also be drier. For
this reason, fuels not shaded by an overstory will generally be warmer and drier
resulting in a more intense fire.
The type of surface will also affect the temperature. The temperature at the surface of a body of water will be cooler because the heat will readily penetrate and spread throughout the water. On the other hand, bare soil will be higher because heat will not penetrate. Instead, it will be concentrated at the surface. In forested areas, the trees will absorb most of the heat. For this reason, fuel in the shade will be cooler than in the sun. We will be discussing other reasons later. WIND
Wind has a strong effect on fire behavior due to the fanning effect on the fire. Wind can change direction and intensity throughout the day. This change can be very abrupt surprising the burner that is not alert. Abrupt changes generally occur during the afternoon when atmospheric conditions are most unstable. We will discuss stability later. Wind is important to the prescribed burners fire fighter because of three influences it has on fire behavior: · Supplying oxygen for the combustion process · Reducing fuel moisture by increasing evaporation
·
Exerting pressure to physically move the fire and
heat produced closer to fuel in the path of the fire increasing radiation
including in some
cases pitching burn embers, firebrands Wind increases the supply of oxygen, which
results in the fire burning more rapidly. It also removes the surface fuel moisture, which
increases the drying of the fuel.
Air pressure will push flames, sparks and firebrands into new fuel.
By pushing the flames closer to the fuel in front of the fire, the fuel
is preheated quicker because of the increased radiant heat discussed previously. More of the fuel becomes
available for combustion since it is dryer and can reach ignition temperature
quicker.
In addition wind strongly influences prescribed fire
smoke dispersal, a critical consideration.
The National Weather Service, NOAA NWS, normally reports wind speed in
fire weather reports at 20’ elevation in the open (for instance at an air port).
NWS also reports the transport wind speed, the average wind speed from
the surface to the mixing height. As
a general rule prescribed burn planners prescribe surface winds at flame level
or eye level between 1 and 5 MPH and transport wind speeds between 9 aqnd 20 MPH
depending on the circumstance and prescribed burn objective. Effect of Wind on Vegetation
General Types of WindsPressure or Gradient Winds Air always moves as a result of temperature differences. It moves from high pressure areas to low pressure areas in an attempt to balance out the differences in temperature. Due to the movement of the earth, this is not a straight line. Wind from a "high" will spiral outward in a clockwise direction in the northern hermisphere. The wind flow toward a "low" will spiral in a counter clockwise direction toward the center. These highs and lows are generally shown on weather maps.Frontal Winds A weather front is the boundary layer between two air masses of different temperatures. Fronts start from an area of low pressure. Winds will be the strongest at the frontal boundaries. Wind direction will also shift in a clockwise direction as the front passes. Local
Types of Winds
General winds
are winds that are included in the weather forecast. Local factors will also
affect the wind in an area that is too small to be included in the forecast.
These are known as "local
winds".
There are two that are important to fire behavior in the southeast.
As discussed earlier, land surfaces become warmer than water
surfaces during the day. As a result, the air adjacent to the land surface,
being warmer, begins to rise and the cooler air (thus heaver) flows inland to
take its place. This local wind begins around 2 to 3 hours after sunrise and
ends around sunset. At night, the
reverse is true because the land surface cools more quickly than the water
surface causing airflow from land to the water.
This
shift generally occurs around
While these
winds are normally strongest in coastal areas they may occur around large bodies
of water.
Eddies
Eddy winds form around large objects and along tree lines.
Eddie winds can strongly influence fire behavior at the edge of stands
and open fields or along roads
Slope
Winds Over large,
flat areas, it is difficult for the air mass to mix even though the air next to
the surface is warmer, thus lighter. However on a slope, the lighter air can
rise along the slope with cooler air filling in from below. Local winds will
flow upslope during the day and down-slope at night. This is true even on the
slightest slope unless the general wind is strong enough to overcome this
phenomenon. Stability of the AtmoshpereAtmospheric stability is the resistance of the atmosphere to vertical
motion. If the atmosphere is
unstable, vertical movement of air is encouraged and this tends to increase fire
activity. If the atmosphere is
stable, vertical movement of air is discouraged and this decreases fire
activity. Parcels of air masses
with different temperatures are continually mixing trying to reach the same
temperature, much as boiling water. The
more difference in the temperatures in the atmosphere, the more unstable the
conditions and the more movement--both vertical and horizontally.
More unstable conditions result in more vertical movement in the
atmosphere. Such conditions act
like opening the damper on a stove. A
fire will burn more intensely because of the unrestricted updraft of the
atmosphere and convective currents. Under
stable conditions, fires will burn slowly and the smoke column will not rise
very far.
Cumulus clouds are an indicator of vertical movement.
The higher they rise, the more unstable the atmosphere is and with higher
vertical movement. The air in the atmosphere mixes readily with updrafts and
downdrafts. Winds will be gusty and
tend to change direction. With dry
conditions, there may be no cumulus clouds to show the unstable conditions.
Other indicators are, strong, gusty winds, tall smoke columns, good
visibility and dust devils or small whirlwinds. Because of the radiant heat of the sun, stability changes much the same as
the temperature and relative humidity during a 24-hour period.
Conditions are usually very stable at night and can become very unstable
during the day.
An inversion is a layer in the atmosphere where the temperature increases
with altitude instead of decreasing. With
warmer, less dense air, it acts as a lid on updrafts.
It is the most stable condition that exists, especially when close to the
surface. In the southeast, such
conditions occur almost every night. They
are close to the surface and with calm winds, high humidity and low temperature,
fires seldom start and those still burning at night will be drastically reduced
in intensity. Smoke will only rise
to the inversion and then flatten out and spread horizontally. When the sun rises and begins to warm the earth’s surface, the lower atmosphere is warmed and the inversion rapidly dissipates.
Relative
Humidity
Moisture in the form of water vapor is always present in the atmosphere.
And - the amount of moisture that is in the atmosphere affects the amount
of moisture that is in the fuel. Relative humidity is the term used in prescribed burning to express the amount of moisture in the atmosphere. It is the ratio of actual water vapor in the atmosphere compared to the amount of water vapor that would saturate the atmosphere at that temperature. When the relative humidity is 40 percent, it means that the atmosphere contains 40 percent of the moisture that it could contain at that same temperature. The lower the relative humidity, the more readily a fire will start
and burn; the more vigorously a fire will burn. As will be discussed in
more detail later, moisture in the fuel absorbs heat and reduces the fire’s
intensity before it is converted to steam and driven off. When the relative humidity is low, the moisture in the fuel
is readily evaporated as it rises to the surface of the fuel.
When the humidity is high, it’s harder for the moisture to evaporate
into the air. Consequently, high
humidity acts like a damper on a stove. If
the humidity is 100 percent or close to it, the fuel will not dry.
On the other hand, the lower the relative humidity, the quicker the
moisture will evaporate. Relative humidity fluctuates widely during each 24-hour period. It will generally be the highest in the early morning hours before daylight and the lowest during the early afternoon; the diurnal cycle. This is because relative humidity is changed by temperature. When air is warmed, it expands and as a result, will hold more moisture. The actual amount has not changed but it is spread out over a larger area, consequently the percent is less. As temperature changes, relative humidity changes but in the opposite direction. As temperature goes up, relative humidity goes down and vice versa.
“Rule of Thumb:
Relative Humidity doubles with each 20°F drop in temperature – and halves
with each 20°F increase in temperature.” PrecipitationPrecipitation (rain or snow) has a direct and immediate effect on fuel
moisture and relative humidity. Temperature
usually drops as well and the winds become calm.
When the atmosphere becomes saturated, precipitation usually occurs if
more moisture is added. Precipitation
will quickly dampen the surface of fuels to the point that fires cannot ignite
and no wildfires will occur. The pattern of rainfall is a big factor in determining the
fire season (the period when wildfires occur).
In the South the fire season starts in the fall and generally slacks off
during December and possibly January as the climate turns cold, with numerous
rains, calm winds and overcast skies.
Knowing typical weather patterns in an area is essential for the accomplished
prescribed burn planner.
Typically the last two weeks of
February and the first two weeks of March are suitable for late dormant season
burns in the deep South. As
the rains lessen in the early spring and the winds increase, the fire season is
again “high” until middle or late April.
The last two weeks of March and first
two weeks of April is generally a good period to plan early growing season burns
depending on bud swelling and break of target species. As the vegetation “greens-up,” prescribed burning conditions may deteriorate. If, however, a winter drought occurs and continues into the spring, fires will readily burn on into the summer because of the larger amount of dead, dry fuel and low fuel moisture. These fires may be more difficult to control and do more damage due to burning deeper into the litter and consuming larger size fuel. During long periods of dry weather, drought, moisture that is toward the center of larger fuels and deeper in surface litter is able to work its way to the surface and evaporate into the dry atmosphere. As a result, a larger percent of the total fuel becomes available fuel; available to burn. Cloud Development AND FRONTSWhen moisture is added to the atmosphere or the air temperature is lowered, the relative humidity increases. When it increases to the saturation point, the moisture begins to combine into droplets. As this process continues, the droplets become visible--as clouds. When the atmosphere is very dry, saturation may not be reached, and – no clouds are formed. Clouds are formed when there is a lot of surface heating from the sun and a lot of moisture is present. As the air close to the surface is heated, it rises to be replaced by cooler air. The heated air can rise until it is saturated and clouds form. As it rises the warmer air cools until it reaches the temperature of the surrounding air. At this altitude puffy type cumulus clouds will form. If they continue to build up, they become darker and rain may occur. Clouds are also caused by fronts.
Fronts and the associated clouds are important because fronts mean
changing weather. Clouds are
visible indicators of fronts and other weather phenomenon. Cumulus clouds indicate vertical movement in the atmosphere. Clouds
are moisture. The more clouds
available, the more moisture available and relative humidity will be higher.” Overcast skies shade the surface of the earth and less radiant heat is received. Temperatures are lower
and winds are more moderate.
In the South cold fronts usually travel in a west to easterly direction--usually to the
southeast. A cold front will
generally change the direction of the wind from a southerly direction to the
west and on around to the northwest.
When one mass of air is moving, it will push under the mass of air it is replacing if it is cooler, causing the other mass to lift. If lifted high enough, clouds will form and rain may occur due to cooling. If the air mass is warmer than the mass it is replacing, it will be pushed up over the other mass. In either case, one air mass is lifted causing clouds. This is the reason we have changing weather and possibly rain when a front comes through. Thunderheads One type of cloud can spell trouble even though of short duration. As cumulus clouds build higher, they become more turbulent. Such clouds are called thunderheads. Their towering, turbulent-appearing head can be easily recognized. In the later stage the towering top may become anvil-shaped with the point facing the direction the thunderhead is traveling. As they develop, air currents reach a critical height and precipitation begins. The falling rain or hail indicates a strong downdraft below the cloud. The strong downdraft strikes the ground and spreads in all directions producing strong, gusty winds of up to 70 mph in a few seconds. As the thunderhead moves, the wind shifts rapidly. The 24-hour Cycle, The Diurnal CycleEarly afternoon is generally the peak burning period when fires will burn
the most intensely, spread most rapidly and tend to exhibit erratic fire
behavior. This is because all of
the weather elements are at the point where their influence on fire behavior is
the greatest.
Radiation from the sun is at its maximum when the sun is directly overhead. Because of a delay in its effect, the peak of the burning period is generally around 1:00 to 2:00 in the afternoon depending on latitude and daylight savings time.
DroughtDays since the last rain and
seasonal soil moisture deficit have an influence on fuel moisture and fire
behavior. The drier the soil,
generally, the drier the litter, duff, and organic matter in the soil will be.
It is generally inadvisable to burn the organic matter out of the soil. (see Drought doc for drought indicator discussion.) |