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ABSTRACT: We consider decelerating and cooling an ensemble of multilevel atoms and molecules with a coherent
train of ultrashort laser pulses. In the frequency domain such trains form frequency combs. We propose a novel see-saw
scheme of Doppler cooling of multilevel atoms and molecules. In this scheme the teeth of the frequency comb are
periodically moved in and out of resonance with the allowed transitions. The see-saw cooling may be carried out in
practice by switching carrier-envelope phase offset between predefined values. We study the performance of the
see-saw scheme for the simplest prototype three-level � system and demonstrate its advantage. For these systems we
demonstrate a procedure for determining optimal train parameters, and see-saw switching period. We also illustrate the
performance of the protocol by numerically simulating time evolution of velocity distribution.

PACS numbers: 37.10.De, 37.10.Gh, 42.50.Wk

I. INTRODUCTION

The most widespread method of direct laser cooling of atoms is Doppler cooling [1], in which a sample of atoms is
irradiated with laser light. Each atom absorbs laser photons and then radiates the light in random directions returning
to the ground state. Repeating this optical cycle typically tens of thousands of times can cool the atomic sample
down to the mK temperatures. Direct application of the conventional Doppler cooling to multilevel atoms and
molecules is challenging: most atoms and all molecules have transitions that can radiatively branch out to a multitude
of other states. Exciting population from all these lower-energy states requires a large number of lasers which makes
the conventional scheme impractical.

Direct cooling of only a few special multilevel atomic and molecular systems have been demonstrated so far.
Recently the cooling of multilevel atoms Er and Dy were experimentally demonstrated [2, 3]. Doppler cooling of a
certain class of a molecules with highly diagonal Franck-Condon matrixes has been demonstrated [4]. The prospects
for laser cooling of TlF molecules have been reported [5].

The enumerated multilevel systems have very unique properties; here we address the possibility of cooling
general multilevel system. The basic idea is to employ a frequency comb (FC). Frequency combs are produced by
coherent pulse train emitted by mode-locked lasers. Their frequency spectrum consists of a regular comb of sharp
lines, i.e., effectively a large collection of CW lasers. By moving the teeth in resonance with individual transitions
one can selectively transfer populations between the levels, thereby enabling cooling multilevel systems.

We start by introducing basic parameters of pulse trains and frequency combs. The electric field of the train may
be expresed as

ˆ( ) cos( ) ( )� � � � � ��p c m
m

t E t g t mTE , (1)

where �̂  is the polarization vector, E
p
 is the field amplitude, �

m
 is the phase shift, �

c
 is the carrier laser frequency

and T is the pulse repetition period. �
m
 = m � � is the accumulated phase with � being the carrier envelope phase

offset (CEO) between subsequent pulses. The pulse envelope g(t) is normalized so that max g(t) � 1. The spectral
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width of a single mode is ~ 24 /( )NT , where N is the number of pulses in the train [6]. For an infinite train, N � �,
the spectral profile of the pulse train exhibits a characteristic periodic structure composed of a series of regularly
spaced laser modes

2 � �
� � � � �n c

n

T T
, (2)

where n is the index of the mode. The frequency interval between the neighbouring modes is determined by the
pulse repetition rate �

rep
 = 2�/T. The third term, i.e., �/T, shifts the entire FC while keeping intervals between teeth

constant.

Our method is based on varying the carrier-envelope phase offset � (see Eq. (2)). We alter the pulse train in such
a way that the teeth move in and out of resonance with specific transitions. The time-sequence is shown in Fig. 1.
For illustrative purposes, we consider a four-level system with three ground states (|

 
g1�, | g2�, | g3�) and one excited

state | e1�. Suppose the atom/molecule is initially in the |
 
g1� state. We start by tuning the comb to the frequency of the

| g1� – | e1� transition. We Doppler cool the atom on this transition. At each radiative emission event a part of the
population branches out to the | g2� and | g3� levels. When the population of the | g1� level is depleted, by varying the
carrier-envelope phase � we tune the comb to the frequency of the | g2� – | e1� transition and cool on that transition.
Again due to the radiative branching, the population will leak to the | g1� and | g3� levels. We then retune the comb to
the | g3� – | e1� transition and cool on that transition. And so on. As a result the atom or molecule is cooled with a
single laser source. We refer to this method as the see-saw scheme.

Figure 1: See-saw cooling protocol of multi-level system with a tunable frequency comb

Figure 2: See-saw cooling protocol applied to the  system. (a) Shows the energy level frequencies relative to the FC teeth positions
for  = 

1
. (b) Shows new detunings of the ground states when the CEO phase in the subsequent period is set to  = 

2
.

Alternating the phase between 
1
 and 

2
 moves FC teeth in and out of resonance with either |

 
g

1
 or |

 
g

2
.

(a) 1 = 0 (b) 2 = 2T
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The optical Bloch equations for the density matrix governing the evolution of populations �
ee

, �gj gj
 and coherences

�egj 
, �g1 g2

 ( j = 1, 2) read

�� ee  =
2

1

Im [ , ]
�

� �� � � �� j jee eg eg
j

, (3)

II. SEE-SAW DOPPLER COOLING APPLIED TO THE  SYSTEM

Below we demonstrate how the proposed see-saw cooling scheme can be applied for cooling the simplest prototype
multilevel system: three-level atoms. We limit our consideration to the � configuration, as sketched in Fig. 3(b). The
system has two ground states | g1� and | g2�, and one excited state | e�. The energy gap between the two ground states
is �12. The excited state life-time � = 1/�, where the total radiative decay rate is the sum of the decay rates to the two
ground states � = �1 + �2. The Rabi-frequencies of individual transitions are denoted as �1 and �2.

The atomic beam is irradiated by the counter-propagating train of laser pulses Eq.(1) as illustrated in Fig. 3(a).

Figure 3: (a) An atomic beam of -type systems interacting with a counter propagating pulse train. (b) Energy level diagram of
 system. (c) Frequency domain picture of comb interacting with  system

(a)

(b)

(c)
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j
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�
��

j jg g  = *( )
2 � ��� � � � � � � � � �

j j j jj j j ee eg g e eg eg
i

. (5)

The time- and space-dependent Rabi frequency is

( , )�
jeg z t  =

1
( ( ) )

0

�
� � � � �

�

� �� � �� �
� �

� c j m

N
i k z t tpeak

j
m

z
g t mT e

c
, (6)

where � � � � �
jj c eg , k

c
 = �

c /c and z is the atomic co-ordinate. The peak Rabi frequency is |� � �
�

ppeak
j

E e D .

ˆ |� �jg . Eqs. (3, 4, 5) were derived using the rotating wave approximation. The pulse areas corresponding to individual

transitions are: ( )
�

��
� � � �peak

i i g t dt . The residual detunings of transitions | gi
� � | e� from the nearest FC teeth, �

—

i

can be expressed as

�
—

i
 = (�—

i
 + 2�n

i
)/T, (7)

where

�—
i
 = (�

i
 + k

c 
v) T + �, (8)

is the Doppler-shifted phase offset between the subsequent pulses [7, 8], k
c
 is the wave vector and an integer n

i
 is

chosen in order to normalize the detunings to the – �rep /2 � �
—

i
 < �

rep /2 interval.

Below we assume that individual pulse areas and radiative decay rates are equal: �1 = �2, �1 = �2. Direct population
transfer between the two ground states is dipole forbidden. Therefore, the second ground state is accessible only
through the excited state. Additionally, the atoms are assumed to be initially prepared in the first ground state | g1�.

The scattering force exerted on atoms by the pulse train can be expressed in terms of the coherences as [8]

F
z
 =

2

1

Im [ , ]
�

� ���
j jc eg eg

j

k . (9)

In the limiting case when the duration of the pulse is much shorter than the repetition period T , one can utilize
the delta-function pulse shape model to describe the dynamics of the system [9]. In this approximation, the fractional
momentum kick due to the interaction of an atom with the n-th pulse reads

�p
n /pr

 = (�n
ee

) r – (�n
ee

) l , (10)

where � �r cp k  is the recoil momentum, and (�n
ee

) l, r are the populations of the exited state right before and after the
n-th pulse.

The average scattering force may be determined as

F
avg

 = 
�p

NT
, (11)

where �p is the total momentum imparted by the pulse train, T is its repetition period and N is the number of pulses
in the train. Maximum value of F

avg
 = p

r /T is attained when each pulse transfers full recoil momentum to the atom.

We suppose that initially the central FC tooth is resonant with the | e� � | g1� transition. Then the frequency of
the | e� � | g2� transition will be detuned with respect to the central tooth by – �12, where �12 is the energy gap between
the two ground states. The nearest to the �eg2 tooth will be detuned from it by mod (�12, �rep

) if mod (�12, �rep
) < �

rep 
/2

and mod (�12, �rep
) – �

rep
 if mod (�12, �rep

) > �
rep 

/2. In the first case it is blue detuned and in the second case it is red
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detuned. The pulse repetition frequency is chosen so that mod (�12, �rep
) � 0, that is the two photon resonance

condition is avoided. In case when mod (�12, �rep
) = 0 the system evolves into the “dark” superposition of the two

ground states which is transparent to the pulse train [10] and therefore does not exert the scattering force. The
population of the system is initially in the first ground state | g1�. If the atoms are irradiated by the pulse train for
some time, the population will migrate from the first, strongly driven, ground state | g1� to the second, less coupled,
ground state | g2�. Then according to the see-saw protocol, the phase offset can be switched � = �1 = k

c 
v

mp 
T to � = �2,

where �2 = k
c 

v
mp 

T – mod (�12, �rep
)T if mod (�12, �rep

) < �
rep 

/2 and �2 = k
c 
v

mp 
T + �

rep
 – mod (�12, �rep

)T if
mod (�12, �rep

) > �
rep 

/2 (where v
mp

 is usually the center of velocity distribution), so that the second transition becomes
resonant with one of the FC modes.

To evaluate the time evolution of the density matrix we numerically integrated the optical Bloch equations
(3, 4, 5). Fig. 4(a) shows the time evolution of population distribution over the first 100 lifetimes. One can see that
as the system approaches the quasi-steady state regime, the average population becomes redistributed mostly between
the two ground states and the post pulse excited state population saturates without further increase. To interrupt the
saturation a change in the parameters is needed. This is accomplished by changing the phase from � = �1 to � = �2.
Such switching is illustrated in Fig. 2(b).

Figure 4: (Color online) Time-dependence of -system populations (panel (a)) and fractional momentum kick (panel (b)) in the
see-saw protocol with N

sw
 = 50. These figures were computed by integrating OBEs, Eq. (3) with the following parameters:

ground states splitting  = 2   300 GHz, spontaneous decays of 
1
 = 

2
 = 2   10 MHz, repetition period is T = 0.5/

e
 ns,

and pulse areas of 
1
 = 

2
 = /10.
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Fig. 4(b) shows the mechanical momentum accumulated by the atoms. It is clear that at the end of each 50-pulse
period, the momentum accumulation saturates to a constant value. This means that the rate of deceleration slows
down. Once the phase is set to � = �2 after the 50th pulse, a sudden increase in the accumulated momentum occurs
which improves the cooling efficiency. Continuous switching of the phase between � = �1 and � = �2 every 50th

pulse sustains more efficient momentum transfer from the pulse train to the atomic beam. Fig. 5 compares the
excited state dynamics for the non see-saw and the see-saw schemes, switching the phase between �1 to �2 or vice
versa every 50th pulse (i.e., red curve). The average excited state population is increased compared to the case when
the phase is fixed (i.e., black curve).

Figure 5: (Color online) Excited state population as a function of time. The black curve is for a fixed . The red curve is for see-
saw scheme with N

sw
 = 50. The jump in the population is apparent once the phase is switched from  = 0 to

 = – mod
 
(

12
, 

rep
)T. These plots are obtained for the following parameters: ground states splitting 

12
 = 2   300 GHz,

spontaneous decays of 
1
 = 

2
 = 2   10 MHz, repetition period is T = 1.00017 ns, and pulse areas 

1
 = 

2
 = /10.

Hereafter in this paper, we denote N
sw

 as the length of sub-train for which we keep the phase constant at either
values �1 and �2. For example N

sw
 = 50 in Fig. 4.

III. COOLING A 1D BEAM OF SYSTEMS

In this section we apply the proposed see-saw cooling method for cooling a thermal 1D beam of three-level �-type
atoms. First we find the optimal parameters maximizing the scattering force exerted on the atoms. Second we study
the evolution of the ensemble velocity distribution during cooling with these parameters.

A. Maximum Scattering Force

The atoms under consideration have the �-like configuration of Fig. 3. Specific atomic values are taken to be as
follows: ground state splitting is �12 = 2� � 300 GHz. Spontaneous decay rate to the ground sates are equal, i.e.,
�1 = �2 = 2� � 10 MHz, leading to the excited state lifetime of 8 ns. Pulse areas are taken to be equal as well, �1 = �2.
We optimize the FC parameters for the two different values of the pulse area �1, 2 = �/10 and �/2.

All parameters may be categorized into three groups

• Atomic parameters: �12, �1 and �2.

• Fixed laser field parameters: T and laser intensity.

• Variable laser-field parameter: �1, �2 and N
sw

.
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The description of the optimization process is summarized in the following text. Parameters �12, �1 and �2

remain fixed for the specific � system. A mode-locked laser source is assumed to have fixed repetition period T and
intensity. The intensity of the laser beam along with the transition dipole moments determine the Rabi frequencies
�1, 2 and pulse areas �1, 2. An optical element may be placed at the output of the laser source to control the CEO
phases �1 and �2, and the see-saw switching period N

sw
.

We carry out an exhaustive search for the optimal values of T and N
sw

 corresponding to the maximum possible
average scattering force. The maximum and minimum pulse repetition period values are taken as Tmin = 1 ns and
Tmax = 10 ns. Maximum and minimum number of pulses between the switching are N

sw
min  = 1 and N

sw
max = 60. As an

example, we obtained the optimal repetition periods and the optimal see-saw switching periods for the two pulse
areas �1, 2 = �/10 and �1, 2 = �/2. For �1, 2 = �/10, optimal pulse repetition period was found to be T opt = 1.0035 ns and
N

Sw
opt = 1. For �1, 2 = �/2, T opt = 1.0083 ns and N

sw
opt = 1.

B. Evolution of the Velocity Distribution

We consider a 1D atomic beam with the initial velocity distribution

3

4 2

9 3
( , 0) exp

2 2

�� �
� �� � �
� �
� �mp mp

v v
f v t

v v
, (12)

where most probable value of the velocity v
mp

 is set to 300 m/s.

The carrier laser frequency is resonant with the atomic transition frequency, �c = �eg1
. The values of the phase

offsets �1, �2 are chosen with account of the Doppler shift of the laser frequency in the reference frame moving with
the center of velocity distribution, �1 = k

c 
v

mp 
T, �2 = k

c 
v

mp 
T – mod (�12, �rep

)T (if mod (�12, �rep
) < �

rep 
/2),

�2 = k
c 
v

mp 
T + �

rep 
T – mod (�12, �rep

)T (if mod (�12, �rep
) > �

rep 
/2). Initially �1 = k

c 
v

mp 
T and as the atoms slow down

�1 follows the v
mp 

(t).

Figure 6 shows the fractional momentum kick per pulse �p/(Np
r
) versus atomic velocity for the pulse area

�1, 2 = �/10, T = 1.0035 ns and N
sw

 = 1. These optimal parameters correspond to the teeth separation of �
rep

 ~ 2� � 1 GHz
in the frequency space and v = � c 

/T ~ 587 m/s in the velocity space.

Figure 6: Right axis is the average scattering force F
avg

 plotted for the Doppler shifted velocities v in the atomic beam. The left
axis is the average momentum kick per pulse p /(Np

r
) imparted to the atoms in the same atomic beam.
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The FC teeth are initially resonant with the atomic transition frequency �eg1
 for the atoms with velocities

v
Dn

 = v
mp

 + nc /T. Continuously as the atoms slow down the phases �1, �2 have to be shifted by the amount – kc 
v

mp 
T

(where v
mp

 is the decrease in the value of the central velocity due to the slowing of the beam) to compensate for the
change in phases �̄

j 
, Eq.(8). This leads to the formation of pronounced peaks in the velocity dependence of the

scattering force, separated by � c /T ~ 587 m/s. Fig. 6 shows one of such peaks for n = 0 or v
D0 = v

mp
 = 300 m/s.

Figure 7: The plot shows the two velocity dependent peaks of fractional momentum kick that were not resolved in Fig. 6 due to
overlapping of frequency comb teeth. The plot is for pulse areas 

1, 2
 = /100 otherwise the parameters are the same as

Fig. 6.

Figure 8: Evolution of the velocity distribution of a 1D beam of -type atoms interacting with a train of ultrashort laser pulses.
Curve (a) displays the initial velocity distribution of the atomic beam, curve (b) shows velocity distribution after
interaction with 25,000 pulses, curve (c) shows velocity distribution evolution after deceleration by 100,000 pulses.
These were plotted for 

1, 2
 = /10, T = 1.0035 ns and N

sw
 = 1. The remaining parameters are the same as in Fig. 6.

The velocity dependence of the scattering force can be explained on the basis of the Fourier transform of the
see-saw pulse train Eq. (1). The Fourier transform (the derivation is given in the appendix) of the electric field (1)
reads
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1 2

1 2

1 2

1 1
sin sin

2 22 2
( ) ( ) ( )

1 1
sin sin

2 2

sw sw

sw swn n

N N
n n

F F
N N

� �

� � � �� �� � � �� � � �� �� � � �� � � � � � � � � � � � �� � � �
� � � �� � � �� �� � � �
� � � �

� �� , (13)

where �
i
 = �

i
 + (� – �

c
)T, � = (�1 + �2) + 2(� – �

c
)T, and F†

1, 2(�) are the Fourier transforms of the pulse envelopes.

The arguments of the two �-functions determine positions of the FC teeth: 
2 0

sw

n
N

�� � �  or 1 22
2 2

� � ��� � � � �
sw

n
n c T N T .

In the atomic reference frame these values are Doppler shifted: 1 22
2 2s w

na
n c c T N Tk v � � ��� � � � � � . When �a

n
 = �egi 

, then
the n-th tooth is resonant with the frequency of corresponding atomic transition for a given atomic velocity.

Now we return to the interpretation of the velocity peaks in Fig. 7. The carrier laser frequency is resonant with

the frequency of the first atomic transition �
c
 = �eg1

. Then for a set of velocities � �1 2 2
2 s w

na
n cT T Nv k� � � �� �  the FC teeth

will be resonant with the frequency of atomic transition �eg1
.  At the same time for the velocities

� �1 2
122 s w

nb
n cT T Nv k� � � �� � � �  the FC teeeth will be resonant with frequency �eg2

 of another transition. The difference
between the velocities v a

n1
 and v b

n2
 is determined by

1 2 2 1 12( )
� ��� � � � �� �
� �

a b
n n c

sw

v v n n k
T N . (14)

For N
sw

 = 1 the minimum distance between the two resonant velocities equals to mod (�12, �rep
)/k

c
. If the pulse

area is small (�
i
 << 1) and the lifetime of the excited state is small compared to the pulse repetition period, then the

two peaks corresponding to the nearest velocities v a
n1

 and v b
n2

 can be resolved, Fig. 7.

Figure 8 shows time evolution of the atomic velocity distribution for various number of pulses. This is a numerical
simulation for a 1D atomic beam with the initial velocity distribution given by Eq. (12). We present two computed
snapshots of velocity distribution for 25,000 and 100,000 pulses. For the interaction with 25,000 pulses, there is a
deceleration for a major part of the distribution accompanied with velocity compression. As the number of pulses
interacting with atoms increases, the continuous deceleration and the decrease of the width of velocity distribution
becomes more pronounced, as shown in Fig. 8 curve (c).

Figure 9: Fractional momentum kick as a function of the Doppler shifted atomic velocity for repetition period T = 1.00083 ns,
switching period of N

sw
 = 1, and pulse areas 

1, 2
 = /2. Otherwise the parameters are the same as in Fig. 6.
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As the pulse area is increased, the scattering force ceases to become velocity selective. This is illustrated in
Fig. 9 where we present the average momentum per pulse transferred to the atomic ensemble for single pulse areas
�1, 2 = �/2. The optimal parameters for which the scattering force is maximized are: T = 1.00083 ns and N

sw
 = 1.

For the large pulse areas 1, 2 ~ / 2� �  the teeth in the scattering force spectral profile are essentially
power-broaden. Low contrast of the maxima in velocity dependence of the scattering force leads to the slower
compression of the velocity distribution. As a result the ensemble can be decelerated, but not cooled.

IV. CONCLUSION

We have proposed the see-saw protocol for decelerating and cooling multilevel systems by trains of ultrashort laser
pulses. We have demonstrated the efficiency of the proposed method in cooling the ensemble of three-level �-type
atoms. The method is based on periodic interruption of the saturation regime in the system by switching the phase
offset between subsequent pulses. As a result the sustained population transfer to the excited state occurs and
nonzero scattering force is exerted on the atoms. The see-saw scattering force is velocity-dependent and mimics the

Fourier transform image of the see-saw pulse train. At large single pulse areas 2 2
1 2 ~� � � � � �  the scattering

force becomes largely velocity insensitive. The same effect happens when the pulse repetition period is much longer
then the excited state lifetime. The FC parameters, such as intensity, pulse repetition period and the number of
pulses between the phase switchings can be optimized in order to maximize the scattering force. Additionally the
phase offsets has to be adjusted during the deceleration process, while the position of the center of velocity distribution
moves toward the lower velocities.

We illustrated the see-saw cooling by computing time evolution of velocity distribution for a thermal beam of
three-level �-type atoms. The center of velocity distribution moves toward lower velocities, i.e., the beam is slowed
down. Moreover the width of the distribution is decreased, velocity distribution is compressed, i.e., the ensemble in
addition to being slowed is cooled.

APPENDIX: FOURIER TRANSFORM OF A PULSE TRAIN WITH
SEE-SAW CEO PHASE SWITCHING

Consider a train of identical pulses emitted from an ideal mode-locked laser at equal time intervals. The repetition
period between the pulses is fixed. We consider the case when the pulses accumulates a CEO phase of �1 and �2

every N
sw

 pulses alternatively. Fig. 10 illustrates such pulse train in the time domain. The snapshot of the pulse train
in Fig. 10 shows that the train may be subdivided into N shorter trains. Each shorter train has 2N

sw
 pulses. The first

N
sw

 pulses accumulate a CEO phase of �1 every pulse. The subsequent N
sw

 pulses accumulate a CEO phase of �2

every pulse. Therefore, the phase of a given pulse equals to the total accumulated phases for all the previous individual
pulses. The electric field at a fixed position for a pulse train of Fig. 10 is

Figure 10: The static picture of a pulse train that accumulates phases 
1
 and 

2
 alternatively each Nsw pulses
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�
�
(�) = �1(t) + �2(t),

�1(�) = 1 2

11
( ) ( )

0
0 0

1
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��
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� �

�� ��
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c sw sw

NN
i t i n m N i m N

m n

g t e c c , (A.1)

�2(�) = 2 1

11
( 1) ( 1)

0
0 0

1
( ( ) . .)

2

��
� � � � � � � � � �

� �

�� ��
sw

c sw sw sw

NN
i t i n m N i m N N

m n

g t e c c . (A.2)

where g(t) is the envelope function. The two terms in the preceding equation differ by the time shift of N
sw 

T and their

accumulative phases. We compute the Fourier transform of Eq. (A.1) and Eq. (A.2) as �
�
(�) = �[�] = 1

2
( )

� �
��� � � i tt e dt .

The result with � � � – �
c
 reads

�
�
(�) = 1 2

11
(( 2 ) ( ) )

1
0 0

( )
��
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� �

�
��

��
� �

sw

sw sw sw

NN
i n mN T n m N mN

m n

F e

2 1

11
(( 2 ) ( ) )

2
0 0

( )
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� � �

��
� �
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NN
i n m N T n mN mN
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F e . (A.3)

Here F1
+ (�) is the Fourier transform of the first pulse of the first term in Eq. (A.1) and F2

+ (�) is is the Fourier

transform of the first pulse of the first term in Eq. (A.2). For example, in case of a Gaussian envelope, 
2 2/ 2( ) � �� ptg t e ,

F1
+ (�) =

2 21
2

0
1

2
� � ��� pe

F2
+ (�) =

2 2
1 2

1
2 ( 1)

0
1

2
� � � � � � � � � ��� p sw swi N T i N i

e .

In Eq.(A.3) we ignored the Fourier transform of the c.c. terms in Eq.(A.1) and Eq.(A.2) as we are interested only
in the frequency comb that is going to be built around �

c
. By treating each sum in Eq.(A.3) as a geometric series, we

obtain

1 2

1 2

1 2

1 1 1 1
sin sin sin sin

2 2 2 2
( ) ( ) ( )

1 1 1 1
sin sin sin sin

2 2 2 2

� �

� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� � � � � � �

� � � � � � � �� � � �� � � � � � � �
� � � � � � � �

�
sw sw sw sw

sw sw

N T N N T N T N N T
F F

T N T T N T
, (A.4)

where �
i
 = �

i /T +(� – �
c
) and � = (�1 + �2)/T + 2(� – �

c
). In the limit when N � �, Eq. (A.4) simplifies to

1 2

1 2

1 2

1 1
sin sin

2 22 2
( ) ( ) ( )

1 1
sin sin

2 2

� �

� � � �� �� � � �� � � �� �� � � �� � � � � � � � � � � � �� � � �
� � � �� � � �� �� � � �
� � � �

� ��
sw sw
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. (A.5)
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