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ABSTRACT: This review discusses the origin of the reversed angular momentum concept introduced by requiring consistency
with the correspondence principle. The original paper mentioning anomalous commutators appeared almost one hundred
years ago, and today, spectroscopists continue utilization of both normal and anomalous commutators in the analysis of
diatomic molecules. This review emphasizes that there is no mathematical justification of reversed angular momentum
algebra. Quantum theory preserves the sign of the fundamental angular momentum algebra for transformation from laboratory-
fixed to molecule-attached coordinates. Reversed angular momentum sign changes are of heuristic nature and are actually not
needed in analysis of diatomic spectra. This work addresses sustenance of usual angular momentum theory, including
presentation of straightforward proofs leading to falsification of the occurrence of reversed angular momentum identities.
This review also summarises aspects of a consistent implementation of quantum mechanics for spectroscopy with selected
diatomic molecules of interest in astrophysics and in engineering applications.
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1. INTRODUCTION

Concepts of angular momentum (AM) in quantum mechanics theory (QMT) are essential for classification of
atomic and molecular spectra. QMT is quite specific regarding AM in that not all three spatial components can be
measured simultaneously as mathematically described by Lie-algebra type operator identities. The analysis of diatomic
molecular spectra historically includes adoption of various approximations, and consequently, various sets of selection
rules that may include adoption of semiclassical vector models [1] rather than following through with algebra consistent
with QMT [1-5] and standard mathematical methods [6].

Classical mechanics (CM) description and associated quantization of the asymmetric top [7] suggests occurrence
of commutator relations with different signs when computing momenta with respect to the principal axes of inertia. In
other words, a laboratory-fixed system shows standard AM commutators, but with respect to the molecule-attached
coordinate system there is a sign change that carries the name “reversed” internal AM [8]. The derivation by Klein in
1929 [7] is based on the correspondence principle that in essence emphasizes that QMT reproduces classical physics in
the limit of large quantum numbers. From a CM point of view, reversal of motion occurs when transforming from a lab-
fixed to a molecule-attached coordinate system, akin to experience of motion reversal when jumping onto a moving
merry-go-around. However, reversal of motion in quantum mechanics (QM) is described by an anti-unitary transformation,
requiring sign change and complex conjugation. The reversed internal AM concept [8] and applications actually are
communicated and applied in analysis of molecular spectra by Van Vleck in 1951 in his review article on coupling
angular momenta, i.e., AM referred to axes mounted on the molecule adheres to opposite-sign commutator algebra.
This evolved into so-called reversed angular momentum (RAM) concepts for prediction of molecular spectra.
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However, orthodox or classic QM abides by strict mathematical rules associated with the theory. Use of RAM
techniques is contraindicated, especially since N&ther-type symmetry transformation [9] sustain the standard
commutator relations, viz. reversal of motion is an anti-unitary transformation, just like in the Schr Nodinger wave
equation that is invariant with respect to motion-reversal or time-reversal due to anti-unitary operation, as expected.
It is important to recognize that a transformation from laboratory-fixed to molecular-attached coordinates within
standard QM does not condone anomalous AM operator identities.

This review communicates proofs that the quantum-mechanic AM equations remain the same in a transition
from laboratory-fixed to molecular-attached coordinates. Methods that invoke RAM for the prediction of molecular
spectra are misleading. Application of standard QM establishes within the concept of line strengths [10] consistent
computation of diatomic spectra [11], examples include hydroxyl, cyanide and diatomic carbon spectra [12].

2. METHODS

The premise of this article is Oscar Klein’s work [7] “Zur Frage der Quantelung des asymmetrischen Kreisels” or
“On the question of the quantization of the asymmetric top.” This particular work is in German without an available
translation, the essential contents are in the Einleitung, viz. introduction, and on the page following the introduction.
Klein’s paper reflects the initial argumentation of the RAM method.

The purpose of the 1929 work is, as O. Klein writes, to reduce quantization of the asymmetric top to simple
algebra for the components of the angular momentum *... that were developed by Dirac [13] and as well by Born,
Heisenberg and Jordan [14].” For a solid body, the main moment of inertia are labeled as A, B, and C, the angular
momenta are labeled P, Q, R, and one finds the CM energy of rotation, E,

E§C4 g () )

or perhaps with convenient notation, using for operators J, = P, J, = Q, J; = R, where the tilde-symbol indicates
that angular momenta (that would be AM operators in QM) are referred to the main axis of the ellipse of inertia (or
in molecules, referred to molecular-fixed coordinates), and for moment of inertia I, =A, I, =B, I, = C,

k=3 1

Ik Je- )
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Subsequently, O. Klein writes that P, Q, R can be understood to describe matrices satisfying QM equations of
motion, with ; = /=1 and using the standard # for Planck’s constant divided by 2,

dR i

dP i dQ i B B
o =R EP-PE). =2 (EQ-QE)., =5 (ER-RE). )

In terms of operators, using the Hamilton operator # instead of E and writing the equation in the Heisenberg-picture

. L .00 .
for an abstract observable (operator), (7, without explicit timedependence of the observable, i.e., F 0, and using

the commutator [#, 0] = HO — O,

do i 00

ﬁ_ﬁm'o]“Lﬁ' 4)

The hypothesis of O. Klein comprises the requirement of utilizing Eq. (3) in Eg. (1). Consequently, O. Klein assumes
commutator relations for P, Q, R,

ihP = RQ — QR, ihQ =PR— RP, ihR=QP - PQ, ©)

or using abbreviated nomenclature and the Levi-Civita symbol, with =;;,,, = 1 for even permutations, and ., = —1
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for odd ones, otherwise <j,,, = 0 for identical indices, k, |, m=1, 2, 3,
|:jk ]Nf:| o _Z‘hgklm jm- (6)

With the commutator relations in Egs. (5), the correspondence principle leads to the equations of motion, and as O.

Klein writes “... as we overlook occurrence of the actionquant ...,” viz. overlook 7. Further, O. Klein remarks that
Egs. (5) differ only by the sign of i from the well known guantum-mechanical commutators for a laboratory-fixed
system. viz. the correspondence principle leads to the negative sign

Clearly, writing Egs. (5) in the compact form of Eq. (6), highlights the minus sign that differs from the standard
equations of AM operators J,, k=1, 2, 3,

[]A ]l] = jhgl\'lm ']m.- (7)

The minus sign in Eq. (6) is labeled “anomalous” by some authors, e.g., J. Van Vleck [8], but there is no justification
for the anomalous minus sign to occur within QMT. Usually one considers right hand systems, so Eq. (7) is termed
as the standard quantum-mechanic AM operator identity. Sustenance of RAM concepts may appear convenient,
even calling the negative sign an “anomaly” but without QMT support. In scientific approach and in spite of the initial
success in explaining spectra within various approximations, one usually avoids starting with an “anomaly” and/or
inaccurate presuppositions that are readily falsified [15]. However, several textbooks and works continue support of
RAM in the theory of molecular spectra [16—28], in spite of obvious falsification by QMT. This work emphasizes
that there is no need to resort to RAM “cook book” [28] methods.

The methods in this work utilize standard QMT and standard mathematical methods showing that there is no sign
change of the standard commutator relations when transforming from a laboratory-fixed to a molecule-attached
coordinate system. Consistent application of standard AM algebra in the establishment of computed spectra yield
nice agreement with laboratory experimental results [11] and agreement in analysis of astrophysical C, Swan data
from the white dwarf Procyon B [11], including agreement in comparisons with computed spectra that are obtained
with other molecular fitting programs such as PGOPHER [29].

Methods for measurement of optical emission signals from diatomic molecules are comprised of standard molecular
spectroscopy experimental arrangements such as in laserinduced plasma or breakdown spectroscopy [30-37],
encountered as well in stellar plasma physics or astrophysics to name other areas of interest, including extra-solar
planets [38].

3. RESULTS

A. Angular Momentum Commutators
The invariance of standard QMT commutator relations, see Eq. (7), is communicated in this section.

1. Invariance for unitary transformations

Application unitary transformation, viz. transforming from one coordinate system to another, leaves the AM commutator
relations invariant [39]. A unitary transformation operator, U, acting on an operator © — ‘. with ¢t — ;-1 is
defined by

O'=U0Ut o O=UOU (8)
The invariance of the AM commutators with respect to a unitary transformation, Eg. (8),
[Jk .]g] = i-:ﬁklnr]m —p {JT;C ];] = f-fk{m-]:n- (9)

can be derived by inserting 7, = Ut and J, = Ut in Eq. (9), and subsequently, multiplying from left with U
and from right with U? yields the transformed identity in Eq. (9). In other words, a unitary transformation preserves
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the quantum-mechanic AM commutators. For example, the Euler rotation matrix is easily demonstrated to be unitary
[12]. In other words, there is no anomaly when going from a laboratory-fixed to a moleculeattached coordinate
system.

2. Invariance for time reversal or reversal of motion

Time reversal or reversal of motion in QMT requires sign changes of the operators and complex conjugation, leaving
the QMT commutators invariant,

[]k J[} = (;Ekhn.]m —> [(—]A) (—][)] = (—If)f;‘.(r‘m(—Jm) (10)

CM would indicate a reversal of motion when going from a laboratory-fixed to a molecularfixed coordinate system,
however, reversal of motion requires complex conjugation due to the anti-unitary requirement. In other words, the
sign is preserved. QMT so-to-speak opposes the hypothesis by O. Klein.

The invariance regarding time reversal or reversal of motion of course also would apply to the abstract form of
the time-dependent Schrodinger equation,

)
st — Mo (11)

5
ihov=Ho = (i)

where /v describes an abstract vector in Hilbert space, and H is a Hamiltonian. Changing time ¢ — —¢ and
applying conjugate complex of i preserves the left hand side of the equation. For example for a free particle of mass
m and momentum P, the Hamiltonian is # = P?/2m, and the form of Schrodinger’s equation is preserved.

Equally, the operator equation in the Heisenberg picture, see Eq. (4), preserves form under time reversal or
reversal of motion,
do i o0 d(-0) (—i)

& Rt R g g PEt

(12)

A change of sign for the operators and complex conjugation leaves the equation invariant. The mentioned symmetry
can also be associated with usual Nother symmetries [9].

B. Diatomic wave function

For diatomic molecules, symmetry properties allow one to invoke simplifications when evaluating the laboratory
wave-function in terms of rotated coordinates [11]. For internuclear geometry, the spherical polar coordinates are
r, ¢, . and one (arbitrary) electron is described by cylindrical coordinates 2. x. ¢. For coordinate rotation one uses

Euler angles «, 3, v, and without loss of generality on can choose o = ¢, 3 = 6/, x = v [11]. The result is the
Wigner-Witmer eigenfunction (WWE) for diatomic molecules [40],

J

(P, C, X, T2y - s ry, 7,0, 6 |nvd M) = QZJ(/). ¢ty T, T [n0) Do (6.6, x). (13)

The usual total AM quantum numbers are J and M, and the electronic-vibrational eigenfunction is explicitly written
by extracting v from the collection of quantum numbers, n. The WWE exactly separates ¢, #. y. The quantum

numbers J, M, () refer to the total AM. The sumover () in Eq. (13) originates from the usual abstract transformation,
J
|TM) = ) |JQ) (JQ|IM), (14)

Q=—J

where () is the magnetic quantum number along the rotated, or new z -axis. The sum in Eq. (14) ensures that the
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quantum numbers for total AM are J and M. In Hund’s case a [41], () describes the projection of the total AM,
within L-S coupling. Hund’s case a eigenfunctions form a basis, therefore, from a computational point of view, these
eigenfunctions form a complete (sufficient) set. In various approximate descriptions and for specific diatomic molecules,
it may be desirable to use other Hund cases.

From the rotation operator R(a, 3,~). with the Euler angles «. 3, ~. one finds for Dmatrix elements,

Diio(a, B,7) = (JM| R(a, B8,7) | JU*. (15)

D-matrices are the usual mathematical tool for transformation from one basis to another, but the D-matrix cannot

represent an eigenfunction due to presence of two magnetic quantum numbers M and €2, so the sum over €} is
needed in the transformed coordinates.

Diatomic spectra composed of line positions and line strengths are based on WWE [11] instead of eigenfunctions
used for the Born-Oppenheimer approximation. Extensive experimental studies confirm agreement of computed
spectra with measured emission spectra from laser-induced optical plasma [11].

C. Examples of diatomic spectra

Typical spectra of some diatomic molecules of general interest are presented. Figure 1 illustrates OH molecular
spectra for different spectral resolutions. Figures 2, 3 show computed C, Swan spectra for the vibrational sequences
Av = —1,+1. The OH spectra, Fig. 1, is a superposition of 0-0 (band head near 306 nm), 1-1 (band head near 312
nm), and 2-2 (band head near 318 nm) vibrational transition along with rotational contributions. Four C, vibrational
peaks, Figs. 2, 3, are clearly discernible. Rotational contributions for the selected spectral resolution, A\, appear to
have beats (especially Fig. 2) that however are purely coincidental.

Relative Intensity

305 310 315 320
Wavelength [nm]

FIG. 1. Computed spectrum of the A?> ¥ —> X?ITuv Band of OH, T = 4 kK, (top) spectral resolutions of AX =0.32 nm (Ar =32
cm™) and (bottom) idealized resolution for the stick spectrum AXx = 0.002 nm (Ar = 0.2 cm?) of the Ar = 0 sequence [12].
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FIG. 2. C, Swan d3Hg—)a3Hu band Ar = -1 sequence, T=8 kK, AX = 0.13 nm (Ar =6 cm?) [12].
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FIG. 3. C, Swan d3Hg%a3Huband A = +1 sequence, T=8 kK, Ax =0.18 nm (Ar =6 cm?) [12].

The details for the computation, line strength data for C, Swan bands, and programs are published [42]. Computation
of diatomic spectra utilizes high resolution data for determination of molecular constants of selected molecular
transitions from an upper to a lower energy level. Numerical solution of the Schrodinger equation for potentials yield
r-centroids associated with vibrational transitions, viz. Frank-Condon factors. Calculated rotational factors are
interpreted as selection rules because these factors are zero for forbidden transitions, viz. Honl-London factors.
Honl-London factors in traditional molecular spectroscopy involve selection rules that may require use of anomalous
commutators and use of two magnetic quantum numbers M and €2 for a given total angular momentum J. Anomalous
selection rules and two quantum numbers for angular momentum J appear to be associated with approximations. The
published line strength data [42, 43] are derived consistent with standard quantum mechanics, in other words, without
anomalous commutators and without states that have two magnetic quantum numbers associated with angular
momentum.

The published program package [42] also includes a worked high-temperature cyanide example, the Boltzmann
equilibrium spectrum program (BESP) for computation of equilibrium spectra and the Nelder-Mead temperature
(NMT) routine that utilizes a non-linear fitting algorithm. The OH line strength data have been made available
recently [43].

Various reported studies of plasma spectra, including astrophysics plasma, and of molecular laser-induced
breakdown spectroscopy (LIBS) [42-45] illustrate nice comparisons of recorded and of computed diatomic spectra.
In LIBS, plasma generated by focusing coherent radiation is analyzed primarily in visible/optical or in near-uv to
near-ir regions. After initiation of optical breakdown with typically 10 nanosecond, 100 mJ laser pulses focused in
standard ambient temperature and pressure (SATP) air or in gas mixtures [44], molecule formation including for
example OH inair, C, in carbon monoxide, CN in 1:1 molar N,:CO, mixture, leads to recombination radiation that is
typically measured using time-resolved optical emission laser spectroscopy. When using a metallic target, other
diatomic molecules can be investigated, e.g., TiO or AlO, and molecular spectra can be computed from line strength
data [42].

4. DISCUSSION

Angular momentum operators are well defined in quantum mechanics theory, including the fact that there is an
inherent limit in measurement of its components. Another way of formulating this could be: There are only two
quantum numbers needed for description of angular momentum, usually the total angular momentum and its projection
onto a quantization axis. The use of the correspondence principle to ensure compatibility with classical mechanics
equations of motion brings about ad hoc hypothesis of a negative sign for the commutators, as originally communicated
by Oskar Klein in 1929. Subsequent application of reversed angular momentum coupling continues to find support in
analytic description of molecules that also includes modeling of quantum mechanic vector-operators as vectors.
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5. CONCLUSIONS

Quantum mechanics theory already ensures how to mathematically describe angular momentum, not supporting
heuristic conclusions involving reversed angular momentum concepts, nor occurrence of more than two quantum
numbers for the total angular momentum of diatomic molecules. Consistent application of standard quantum mechanics
theory is preferred, including avoidance of a priori use of separating electronic, vibrational, rotational wave functions.
Subsequent to implementation of diatomic molecular symmetries, line strengths for selected diatomic molecules as
function of wavelength are in agreement with results from optical emission spectroscopy. The computed and fitted
diatomic spectra nicely match within reasonable error bars, but without invoking heuristic selection rules that may be
affected by initial approximations or by spurious use of reversal of angular momentum.
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