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ABSTRACT: Previously published analytical results for the effects of a high-frequency laser field on hydrogen Rydberg
atoms demonstrated that the unperturbed elliptical orbit of the Rydberg electron, generally is engaged simultaneously in
the precession of the orbital plane about the direction of the laser field and in the precession within the orbital plane.
These results were obtained while disregarding relativistic effects. In the present paper we analyze the relativistic effect
for hydrogenic Rydberg atoms or ions in a high-frequency linearly-polarized laser field, the effect being an additional
precession of the electron orbit in its own plane. For the general case, where the electron orbit is not perpendicular to the
direction of the laser field, we showed that the precession of the electron orbit within its plane can vanish at some critical
polar angle 0_of the orbital plane. We calculated analytically the dependence of the critical angle on the angular momentum
of the electron and on the parameters of the laser field. Finally, for the particular situation, where the electron orbit is
perpendicular to the direction of the laser field, we demonstrated that the relativistic precession and the precession due
to the laser field occur in the opposite directions. As a result, the combined effect of these two kinds of the precession
is smaller than the absolute value of each of them. We showed that by varying the ratio of the laser field strength F to the
square of the laser field frequency ®, one can control the precession frequency of the electron orbit and even make the
precession vanish, so that the elliptical orbit of the electron would become stationary. This is a counterintuitive result.
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1. INTRODUCTION

Analytical studies of effects of a high-frequency laser field on various Rydberg atoms and ions — the studies using the
method of separating rapid and slow subsystems — have been presented in the literature: see, e.g., book [1] and
references therein. In particular, analytical results for hydrogen Rydberg atoms were presented in paper [2] for the
case of the linear polarization of the high-frequency laser field and in paper [3] for the cases of the elliptical or
circular polarization of the high-frequency laser field.

Specifically, in paper [2] it was shown that the unperturbed elliptical orbit of the Rydberg electron generally is
engaged simultaneously in the precession of the orbital plane about the direction of the laser field and in the precession
within the orbital plane, the corresponding precession frequencies being calculated analytically. In paper [2] it was
also pointed out that the situation has a celestial analogy: it is mathematically equivalent to the motion of a satellite
around an oblate planet (such as, e.g., the Earth), the results for the latter system being presented, e.g., in book [4].
Later in paper [5] it was demonstrated that there is also another celestial analogy: it is mathematically equivalent also
to the motion of a planet around a circular binary star.

As for paper [3], their authors showed that the case of the circular polarization of the high-frequency laser field
is mathematically equivalent to the motion of a satellite around a (fictitious) prolate planet, the results for the latter
system being presented, e.g., in book [6]. The orbit of the electron in this case is also engaged simultaneously in the
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precession of the orbital plane about the direction of the laser field and in the precession within the orbital plane, the
corresponding precession frequencies being calculated analytically [3].

The authors of paper [3] obtained analytical results also for the situation where the high-frequency laser field is
elliptically-polarized in the plane of the electron orbit. They demonstrated that this situation is mathematically equivalent
to a problem of celestial mechanics, where a satellite moves in an equatorial orbit about a slightly non-spherical
planet. For this case the plane of the orbit does not change its orientation over the course of time: the only precession
that exists is the precession of the periapsis (and apoapsis) of the ellipse in the orbital plane.

All of the above analytical results were obtained while disregarding relativistic effects. In the present paper we
study the role of the relativistic effect for hydrogenic Rydberg atoms or ions in a high-frequency linearly-polarized
laser field, the effect being an additional (relativistic) precession of the electron orbit in its own plane. In the general
case, where the electron orbit is not perpendicular to the direction of the laser field, there can exist a critical polar
angle 0_ of the orbital plane, for which the precession within the plane vanishes and only the precession of the orbital
plane remains. We study the dependence of the critical angle both on the angular momentum of the electron and on
the laser field parameters.

For the particular situation, where the electron orbit is perpendicular to the direction of the laser field, we show
that the relativistic precession and the precession due to the laser field occur in the opposite directions, so that their
combined effect is smaller than the absolute value of each of them. Moreover, we show the existence and calculate
the specific value of the laser field parameters, for which the two precessions cancel each other out, so that the
elliptical orbit of the electron becomes stationary. This is a counterintuitive result.

2. ANALYTICAL CALCULATIONS FOR THE GENERAL CASE

We study a hydrogen atom or a hydrogen-like ion of charge Z which is subjected to a high-frequency linearly-
polarized laser field of amplitude F, directed along the z-axis, and frequency ®. The interaction of the laser field with
Rydberg states can be described classically. Relativistic effects are taken into account. The Hamiltonian of the
system is therefore

Ze?

H = Hy + zFcoswt, Hy = /p2c? + m2c* — mc? - (1)

where m is the electron mass, € is the elementary charge, p is the momentum of the electron, r is the distance from
the nucleus to the electron, and c is the speed of light. Atomic units (m = e =3 = 1) are used throughout this study.

In the absence of the laser field, we approximate the time-independent part of the Hamiltonian for the case p << mc:

/ p? Z p* p* Z
_ 2 B _a & F F £
Hy=c 1+C2 c = T "8 7 (2)

From the non-relativistic Hamiltonian,

Hyp R = Ep 3)

where p, is the non-relativistic momentum of the electron and E | is its energy, we express p,

5 Z
po = 2(Ep + ;) 4)
and substitute it in the second term in Eq. (2), thus obtaining the further approximation:
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where H, is the Hamiltonian of the system without the relativistic correction. Therefore, the penultimate term in Eq.
(5) is the perturbing term due to the relativistic effects. (The last term in Eq. (5) is constant and thus does not affect
the motion.) In book [7], a relativistic treatment of the Kepler problem is presented. The effect of the relativistic
correction on the orbit dynamics is the precession of the orbit in its plane with the frequency (scaled by the Kepler
frequency o, )

£ 1 i Z?
Wk r 72 2267 (6)
L%c?

where L is the angular momentum of the electron (this result follows from Eq. (10a) in book [7]); we refer to the
quantity (6) as the scaled relativistic precession. The precession is positive, i.e., its angular velocity has the same sign
as the angular velocity of the Kepler motion.

Now we consider the above-mentioned system without the relativistic correction subjected to a linearly-polarized
laser field of amplitude F and frequency @ which is much greater than the highest frequency of the unperturbed
system. For such systems, it is appropriate to use the formalism of effective potentials [1, 8-10]. As a result, the
Hamiltonian H, in Eq. (5) acquires a time-independent term. The zeroth-order effective potential,

2

1 F
Uo =73 [V, [V,H,]] = vl (7)

where V = zF and [P, Q] are the Poisson brackets, is a coordinate-independent energy shift, so it does not affect the
dynamics of the system. The first-order effective potential gives the first non-vanishing effect on the system:

1 a(l+ E—S)(Scosze -1
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where a = ZF*/(40*); as E << ¢, we can neglect the term E /c* in (8). The first term of U, is a perturbation of the
Coulomb potential which makes the system mathematically equivalent to a satellite rotating around the oblate Earth
[4], whose motion has the following property: the unperturbed elliptic orbit undergoes simultaneously two precessions,
one of them being the precession of the orbit in its plane, and the other being the precession of the orbital plane about
the vector F. Both precession frequencies are of the same order of magnitude and are much smaller than the Kepler
frequency.

Without the relativistic correction, the first-order effective potential given in Eq. (8) gives rise to two simultaneous
effects on the Kepler orbit, as mentioned above. By using Egs. (1.7.10) and (1.7.11) from book [4], we obtain the
scaled frequencies of the precession of the orbit in its plane (“pip” stands for “precession in plane”) and the precession
of the plane about the direction of the laser field (“pop” stands for “precession of plane”):

Qpyp  3aZ L
e = ﬁ(l — 5sin 9) (9)
e 3aZ
pop :
—— = ——sinb
wy L (10)

where 0 is the angle between the orbital plane and the laser field. The precession of the orbital plane is realized by the
plane’s rotation around the vector F, while its angle with the vector stays the same. For the case considered in the
previous section, 8 = m/2, the orbit plane precesses parallel to itself, therefore, the angular velocities from Egs. (9)
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and (10) are both parallel to the laser field.

When the relativistic precession is taken into account, it creates an additional term for the precession in the
plane. Thus, the plane of the orbit of the electron in this case undergoes the precession given by (10), while the orbit
precesses in its own plane with the scaled frequency

Qpip | D _3aZ | coogyy 2 11
b Tmp gH o ) s (1

Without the relativistic effects, the critical angle 6_ at which there is no precession in the plane is given by arcsin(1/5'2) = 26.6".
The relativistic effects increase the value of this critical angle: its value is given by

1 4Aw*l?

0. = arcsin 3 + 1op2c2 (12)

Figure 1 shows the value of the critical angle in degrees depending on the angular momentum of the electron, for
selected values of the laser field strength and frequency.
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Fig. 1. Dependence of the critical angle 0_at which the precession in the orbital plane vanishes, on the angular momentum of
the electron, for the laser field amplitude F = 2 (solid line) and F = 5 (dashed line) and the frequency o = 10.

From Eq. (12), we see that the situation when the precession in the orbital plane vanishes is possible when

F
L<—cV3 (13)

w2

i.e., the relativistic correction puts an upper limit on the value of the angular momentum of the electron when the
vanishing of the precession in the orbital plane is possible, for the given values of the laser field strength and

frequency. For example, when
w > /Fm@ (14)

the precession in the orbital plane never vanishes for any L > 1; for example, if F = 2, then for the laser field
frequency ® > 21.8 the precession in the plane never vanishes for any L > 1.

3. THE CASE OF THE ELECTRON ANGULAR MOMENTUM COLLINEAR WITH THE LASER FIELD

Now we consider the situation when the angular momentum of the electron is collinear to the laser field, i.e., 6 = /2. In
this case, the perturbation takes the following form:

a

Uy(r) =
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The calculation of the 1/r"-perturbation for the Kepler orbit can be found in work [11] (the treatment for the cases n = 2
and n = 3 can be found also in the textbook [12]). For the Coulomb potential —o/r perturbed by the potential p/r¥, the orbit
undergoes a precession with the perihelion advance

T
5§D = ZmBi Lok (1 + ecos@)*2dp)
= EY LP @® @ (16)
0
with the substituted quantities
i - 2E,I2
P =t~ ma? (17

the first of which is the semi-latus rectum of the unperturbed elliptical orbit and second is its eccentricity. The ratio
of the precession frequency due to the perturbation to the Kepler frequency given by Eq. (16) is therefore

o0 3aZ 3Z2F?
wx | IF At 18

to which we refer as scaled high-frequency precession. The precession caused by the high-frequency laser field is
negative (its angular velocity is of the opposite sign to that of the Kepler motion). The ratio of the magnitudes of the
precessions is

0, 202t
O, 3C2F? (19)

For example, for the values of the laser field amplitude F = 2 and frequency o = 10, the ratio in Eq. (19) is of the order
of unity for L being in the approximate range between 3 and 6. Due to their opposite directions, the combined effect
of the relativistic and high-frequency precessions is always less by absolute value than the greater precession by
absolute value, and the two effects may cancel each other.

Figure 2 shows the dependence of the absolute value of both corrections and of the combined effect of the two
on the value of the angular momentum L of the electron for the nuclear charge Z = 6, the laser field amplitude F =2
and frequency o = 10.
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Fig. 2. The scaled relativistic precession (dashed line), the absolute value of the scaled high-frequency precession (dotted line),
and their combined effect (solid line) for Z=6, F =2 and o = 10.

The high-frequency laser field cancels the relativistic effect when
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For example, for L = 3, the laser field with F =2 and o = 10.5778 will make the orbit’s precession vanish. Figure 2
shows the critical value of the frequency of the laser field of selected amplitudes at which the precession of the
electron orbit vanishes, depending on the angular momentum of the electron. As we see, the critical value of the laser
field frequency stays much greater than the Kepler frequency of the electron 1/L° and is therefore within the validity
range of the method of effective potentials.
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Fig. 3. Dependence of the critical value of the laser field frequency, at which the precession of the electronic orbit vanishes, on
the angular momentum of the electron, for the laser field amplitude F = 2 (solid line) and F = 5 (dashed line).

L

Thus, by varying the ratio of the laser field strength F to the square of the laser field frequency m, one can control
the precession frequency of the electron orbit and even make the precession vanish (according to Eq. (20)), so that
the elliptical orbit of the electron would become stationary. This is a counterintuitive result.

4. CONCLUSIONS

We analyzed the relativistic effect for hydrogenic Rydberg atoms or ions in a high-frequency linearly-polarized
laser field. For the general case, where the electron orbit is not perpendicular to the direction of the laser field, we
showed that the precession of the electron orbit within its plane can vanish at some critical polar angle 0, of the
orbital plane. We calculated analytically the dependence of the critical angle on the angular momentum of the
electron and on the parameters of the laser field.

For the particular situation and where the electron angular momentum is collinear with the laser field, we
demonstrated that the relativistic precession and the precession due to the laser field occur in the opposite directions.
As a result, the combined effect of these two kinds of the precession is smaller than the absolute value of each of
them. We showed that by varying the ratio of the laser field strength F to the square of the laser field frequency ,
one can control the precession frequency of the electron orbit and even make the precession vanish, so that the
elliptical orbit of the electron would become stationary. This is a counterintuitive result.
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