
PGI® Tools Guide
Parallel Tools for Scientists and Engineers

All rights reserved.
The Portland Group™
STMicroelectronics
Two Centerpointe Drive, Suite 320
Lake Oswego, OR 97035

While every precaution has been taken in the preparation of this document, The Portland Group™, a wholly-owned subsidiary of STMicroelectronics, makes no warranty

for the use of its products and assumes no responsibility for any errors that may appear, or for damages resulting from the use of the information contained herein. The

Portland Group retains the right to make changes to this information at any time, without notice. The software described in this document is distributed under license from

STMicroelectronics and may be used or copied only in accordance with the terms of the license agreement. No part of this document may be reproduced or transmitted in any

form or by any means, for any purpose other than the purchaser's personal use without the express written permission of The Portland Group.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this manual, The

Portland Group was aware of a trademark claim. The designations have been printed in caps or initial caps. Thanks is given to the Parallel Tools Consortium and, in particular,

to the High Performance Debugging Forum for their efforts.

PGF95, PGF95, PGC++, PVF, CDK and The Portland Group are trademarks and PGI, PGHPF, PGF77, PGCC, Cluster Development Kit, PGPROF, and PGDBG are registered

trademarks of STMicroelectronics, Inc. Other brands and names are the property of their respective owners. The use of STLport, a C++ Library, is licensed separately and

license, distribution and copyright notice can be found in the online documentation for a given release of the PGI compilers and tools.

PGI® Tools Guide
Copyright © 2004 – 2007 STMicroelectronics, Inc.

All rights reserved.

Printed in the United States of America

First Printing: Release 5.2, June 2004

Second Printing: Release 6.0, March 2005

Third Printing: Release 6.1, December 2005

Fourth Printing: Release 6.2, August 2006

Fifth Printing: Release 7.0-1, December, 2006

Sixth Printing: Release 7.0-2, February, 2007

Seventh Printing: Release 7.1, October, 2007

Technical support: http://www.pgroup.com/support/

Sales: sales@pgroup.com

Web: http://www.pgroup.com

iii

Contents
Preface .. xiii

Intended Audience .. xiii

Supplementary Documentation ... xiii

Compatibility and Conformance to Standards .. xiii

Organization ... xiv

Conventions .. xv

Related Publications .. xvi

System Requirements .. xvii

1. The PGDBG Debugger ... 1

Definition of Terms ... 1

Building Applications for Debug ... 2

PGDBG Invocation and Initialization .. 2

Invoking PGDBG ... 2

Selecting a Version of Java ... 3

PGDBG Command-Line Options .. 3

PGDBG Graphical User Interface ... 4

Main Window ... 5

Source Panel .. 12

Source Panel Pop-Up Menus ... 17

Subwindows ... 19

PGDBG Command Language ... 26

Constants ... 27

Symbols ... 27

Scope Rules ... 27

Register Symbols ... 27

Source Code Locations ... 28

Lexical Blocks .. 28

Statements .. 29

Events .. 30

Expressions .. 32

PGDBG Commands .. 33

Notation Used in Command Sections .. 33

PGI® Tools Guide

iv

Commands Summary ... 34

PGDBG Command Reference .. 38

Process Control .. 39

Process-Thread Sets .. 42

Events .. 42

Program Locations .. 49

Printing Variables and Expressions .. 51

Symbols and Expressions ... 53

Scope .. 56

Register Access ... 57

Memory Access ... 58

Conversions .. 60

Miscellaneous ... 61

Signals ... 66

Control-C ... 66

Signals Used Internally by PGDBG ... 66

Signals Used by Linux Libraries ... 66

Register Symbols ... 66

X86 Register Symbols .. 67

AMD64/EM64T Register Symbols ... 67

SSE Register Symbols ... 69

Debugging Fortran .. 70

Fortran Types ... 70

Arrays .. 70

Operators ... 70

Name of the Main Routine ... 70

Fortran Common Blocks .. 70

Nested Subroutines .. 71

Fortran 90 Modules .. 71

Debugging C++ .. 72

Calling C++ Instance Methods .. 72

Debugging with Core Files .. 73

Debugging Parallel Programs ... 74

Summary of Parallel Debugging Features .. 74

Basic Process and Thread Naming ... 74

Multi-Thread and OpenMP Debugging .. 75

Multi-Process MPI Debugging ... 76

MPICH Support for MPICH-1 .. 78

MPICH Support for MPICH-2 and MVAPICH .. 78

Thread and Process Grouping and Naming ... 79

PGDBG Debug Modes .. 79

Threads-only Debugging ... 80

Process-only Debugging ... 80

Multilevel Debugging ... 80

Process/Thread Sets .. 81

p/t-set Notation ... 81

PGI® Tools Guide

v

Dynamic vs. Static p/t-sets .. 82

Current vs. Prefix p/t-set .. 83

p/t-set Commands ... 83

Command Set ... 86

Process and Thread Control ... 89

Configurable Stop Mode ... 89

Configurable Wait Mode ... 90

Status Messages .. 92

The PGDBG Command Prompt .. 93

Parallel Events .. 94

Parallel Statements .. 95

OpenMP Debugging ... 96

Serial vs. Parallel Regions .. 96

The PGDBG OpenMP Event Handler ... 97

Debugging OpenMP Private Data ... 97

MPI Debugging ... 98

Process Control .. 98

Process Synchronization ... 99

MPI Message Queues ... 99

MPI Groups .. 100

MPI Listener Processes .. 100

SSH and RSH .. 101

2. The PGPROF Profiler ... 103

Introduction ... 103

Definition of Terms ... 104

Compilation .. 105

Program Execution .. 107

Profiler Invocation and Initialization .. 111

Selecting a Version of Java .. 111

Command Line Options .. 111

Measuring Time .. 112

Profile Data .. 113

Caveats (Precision of Profiling Results) .. 114

Graphical User Interface ... 116

The PGPROF GUI Layout ... 116

Profile Navigation .. 120

PGPROF Menus ... 123

Selecting and Sorting Profile Data .. 131

Scalability Comparison ... 134

Viewing Profiles with Hardware Event Counters ... 137

Command Language ... 138

Command Usage ... 138

Index .. 141

vi

vii

Figures
1.1. Default Appearance of PGDBG GUI ... 5

1.2. PGDBG Program I/O Window ... 6

1.3. PGDBG GUI with All Control Panels Visible ... 7

1.4. Process Grid with Inner Thread Grid ... 10

1.5. PGDBG Help Utility ... 12

1.6. Data Pop-up Menu ... 19

1.7. Opening a Subwindow with a Pop-up Menu ... 21

1.8. Memory Subwindow .. 23

1.9. Disassembler Subwindow ... 24

1.10. Registers Subwindow ... 25

1.11. Custom Subwindow ... 26

1.12. Focus Group Dialog Box .. 85

1.13. Focus in the GUI .. 86

1.14. OpenMP Private Data in PGDBG GUI .. 98

1.15. Messages Subwindow ... 100

2.1. Profiler Window ... 118

2.2. Profiler Window with Visible Histogram ... 119

2.3. PGPROF with Visible Process/Thread Selector ... 119

2.4. Example Routine Level Profile .. 121

2.5. Example Line Level Profile ... 122

2.6. Example Instruction Level Profile .. 123

2.7. Bar Chart Color Dialog Box .. 126

2.8. Font Chooser Dialog Box ... 126

2.9. PGPROF Help ... 127

2.10. PGPROF with Max, Avg, Min rows ... 128

2.11. Source Lines with Multiple Profile Entries ... 130

2.12. Selecting Profile Entries with Coverage Greater Than 3% ... 133

2.13. Profile of an Application Run with 1 Process ... 135

2.14. Profile with Visible Scale Column ... 136

2.15. Profile with Hardware Event Counter ... 137

viii

ix

Tables
1.1. Thread State Is Described Using Color .. 8

1.2. PGDBG Operators ... 32

1.3. PGDBG Commands ... 34

1.4. General Registers .. 67

1.5. x87 Floating-Point Stack Registers ... 67

1.6. Segment Registers ... 67

1.7. Special Purpose Registers .. 67

1.8. General Registers .. 68

1.9. Floating-Point Registers ... 68

1.10. Segment Registers ... 68

1.11. Special Purpose Registers .. 68

1.12. SSE Registers .. 69

1.13. Thread State Is Described Using Color ... 76

1.14. MPICH Support .. 78

1.15. PGDBG Debug Modes .. 79

1.16. p/t-set Commands ... 83

1.17. PGDBG Parallel Commands .. 87

1.18. PGDBG Stop Modes ... 89

1.19. PGDBG Wait Modes ... 90

1.20. PGDBG Wait Behavior .. 91

1.21. PGDBG Status Messages ... 92

2.1. Default Bar Chart Colors .. 125

x

xi

Examples
1.1. Thread IDs in Threads-only Debug Mode ... 80

1.2. Process IDs in process-only debug mode ... 80

1.3. Thread IDs in multilevel debug mode .. 80

1.4. p/t-sets in Threads-only Debug Mode .. 81

1.5. p/t-sets in Process-only Debug Mode ... 82

1.6. p/t-sets in Multilevel Debug Mode ... 82

1.7. Defining a Dynamic p/t-set ... 82

1.8. Defining a Static p/t-set ... 82

xii

xiii

Preface
This guide describes how to use the PGPROF profiler and PGDBG debugger to tune and debug serial and

parallel applications built with The Portland Group (PGI) Fortran, C, and C++ for X86, AMD64 and EM64T

processor-based systems. It contains information about how to use the tools, as well as detailed reference

information on commands and graphical interfaces.

Intended Audience
This guide is intended for application programmers, scientists and engineers proficient in programming with

the Fortran, C, and/or C++ languages. The PGI tools are available on a variety of operating systems for the X86,

AMD64, and EM64T hardware platforms. This guide assumes familiarity with basic operating system usage.

Supplementary Documentation
See http://www.pgroup.com/docs.htm for the PGDBG documentation updates. Documentation delivered

with PGDBG should be accessible on an installed system by accessing $PGI/docs/index.htm. See http://

www.pgroup.com/faq/index.htm for frequently asked PGDBG questions and answers.

Compatibility and Conformance to Standards
The PGI compilers and tools run on a variety of systems. They produce and/or process code that conforms to

the ANSI standards for FORTRAN 77, Fortran 95, C, and C++ and includes extensions from MIL-STD-1753,

VAX/VMS Fortran, IBM/VS Fortran, SGI Fortran, Cray Fortran, and K&R C. PGF77, PGF90, PGCC ANSI C, and

C++ support parallelization extensions based on the OpenMP defacto standard. PGHPF supports data parallel

extensions based on the High Performance Fortran (HPF) defacto standard. The PGI Fortran Reference

Manual describes Fortran statements and extensions as implemented in the PGI Fortran compilers. PGDBG

permits debugging of serial and parallel (multi-threaded, OpenMP and/or MPI) programs compiled with PGI

compilers. PGPROF permits profiling of serial and parallel (multi-threaded, OpenMP and/or MPI) programs

compiled with PGI compilers.

For further information, refer to the following:

• American National Standard Programming Language FORTRAN, ANSI X3. -1978 (1978).

• ISO/IEC 1539:1991, Information technology – Programming Languages – Fortran, Geneva, 1991 (Fortran

90).

PGI® Tools Guide

xiv

• ISO/IEC 1539:1997, Information technology – Programming Languages – Fortran, Geneva, 1997 (Fortran

95).

• High Performance Fortran Language Specification, Revision 1.0, Rice University, Houston, Texas (1993),

http://www.crpc.rice.edu/HPFF.

• High Performance Fortran Language Specification, Revision 2.0, Rice University, Houston, Texas (1997),

http://www.crpc.rice.edu/HPFF.

• OpenMP Application Program Interface, Version 2.5, May 2005, http://www.openmp.org.

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming Language

Fortran, ANSI x.3-1978, MIL-STD-1753 (November 9, 1978).

• American National Standard Programming Language C, ANSI X3.159-1989.

• ISO/IEC 9899:1999, Information technology – Programming Languages – C, Geneva, 1999 (C99).

• HPDF Standard (High Performance Debugging Forum) http://www.ptools.org/hpdf/draft/intro.html

Organization
This manual is organized as follows:

Chapter 1, “The PGDBG Debugger”

This chapter describes PGDBG, a symbolic debugger for Fortran, C, C++ and assembly language

programs.

“Definition of Terms,” on page 1 through “PGDBG Invocation and Initialization,” on page 2

describe how to build a target application for debug and invoke PGDBG.

“PGDBG Graphical User Interface,” on page 4 describes how to use the PGDBG graphical user

interface (GUI).

“PGDBG Command Language,” on page 26 through “PGDBG Command Reference,” on page 38

provide detailed information about the PGDBG command language, which can be used from the

command-line user interface or from the command panel of the graphical user interface.

“Signals,” on page 66 through “Debugging with Core Files,” on page 73 give some detail on how

PGDBG interacts with signals, how to access registers, language-specific issues, and debugging with core

files.

“Debugging Parallel Programs ,” on page 74 through “MPI Debugging,” on page 98 describe the

parallel debugging capabilities of PGDBG and how to use them.

Chapter 2, “The PGPROF Profiler”

The PGPROF Profiler chapter describes the PGPROF Profiler. This tool analyzes data generated during

execution of specially compiled C, C++, F77, F95, and HPF programs.

Preface

xv

Conventions
This guide uses the following conventions:

italic

is used for commands, filenames, directories, arguments, options and for emphasis.

Constant Width

is used in examples and for language statements in the text, including assembly language statements.

[item1]

in general, square brackets indicate optional items. In this case item1 is optional. In the context of p/t-

sets, square brackets are required to specify a p/t-set.

{ item2 | item 3}

braces indicate that a selection is required. In this case, you must select either item2 or item3.

filename ...

ellipsis indicate a repetition. Zero or more of the preceding item may occur. In this example, multiple

filenames are allowed.

FORTRAN

Fortran language statements are shown in the text of this guide using a reduced fixed point size.

C/C++

C/C++ language statements are shown in the test of this guide using a reduced fixed point size.

The PGI compilers and tools are supported on both 32-bit and 64-bit variants of the Linux and Windows

operating systems on a variety of x86-compatible processors. There are a wide variety of releases and

distributions of each of these types of operating systems. The PGI User’s Guide defines the following terms with

respect to these platforms:

x86

a processor designed to be binary compatible with i386/i486 and previous generation processors from

Intel* Corporation.

IA32

an Intel Architecture 32-bit processor designed to be binary compatible with x86 processors, but

incorporating new features such as streaming SIMD extensions (SSE) for improved performance.

AMD64

a 64-bit processor from AMD designed to be binary compatible with IA32 processors, and incorporating

new features such as additional registers and 64-bit addressing support for improved performance and

greatly increased memory range.

EM64T

a 64-bit IA32 processor with Extended Memory 64-bit Technology extensions that are binary compatible

with AMD64 processors. This includes the Intel Pentium 4, Intel Xeon, and Intel core 2 processors.

linux86

32-bit Linux operating system running on an x86, AMD64 or EM64T processor-based system, with 32-bit

GNU tools, utilities and libraries used by the PGI compilers to assemble and link for 32-bit execution.

PGI® Tools Guide

xvi

linux86-64

64-bit Linux operating system running on an AMD64 or EM64T processor-based system, with 64-bit and

32-bit GNU tools, utilities and libraries used by the PGI compilers to assemble and link for execution in

either linux86 or linux86-64 environments. The 32-bit development tools and execution environment

under linux86-64 are considered a cross development environment for x86 processor-based applications.

Mac OS X

collectively, all osx86 and osx86-64 platforms supported by the PGI compilers.

MPI

Message Passing Interface (MPI); computer software used in computer clusters that allows many

computers to communicate with one another. An industry-standard application programming interface

designed for rapid data exchange between processors in a cluster application.

MSMPI

MSMPI provides a standard messaging implementation of MPI for the Windows platform based on

MPICH2, an open source implementation of MPI 2.0 started by the Argonne National Laboratory. For more

information, see msdn.microsoft.com/msdnmag/issues/06/04/ClusterComputing/default.aspx.

SFU

Services for Unix, a 32-bit-only predecessor of SUA, the Subsystem for Unix Applications. See SUA.

SUA

Subsystem for UNIX-based Applications (SUA) is source-compatibility subsystem for compiling and

running custom UNIX-based applications on a computer running 32-bit or 64-bit Windows server-class

operating system. It provides an operating system for Portable Operating System Interface (POSIX)

processes. SUA supports a package of support utilities (including shells and >300 Unix commands),

case-sensitive file names, and job control. The subsystem installs separately from the Windows kernel to

support UNIX functionality without any emulation.

Windows Compute Cluster Server

A version of Microsoft Windows Server operating system that provides high-performance cluster

technology, such as MPI, job scheduling, and cluster administration.

Win32

any of the 32-bit Microsoft* Windows* Operating Systems (XP/2000/Server 2003) running on an x86,

AMD64 or EM64T processor-based system. On these targets, the PGI compiler products include additional

tools and libraries needed to build executables for 32-bit Windows systems.

Win64

any of the 64-bit Microsoft* Windows* Operating Systems (XP Professional /Windows Server 2003 x64

Editions) running on an AMD64 or EM64T processor-based system.

Related Publications
The following documents contain additional information related to the X86 architecture and the compilers and

tools available from The Portland Group.

• PGI Fortran Reference Manual describes the FORTRAN 77, Fortran 90/95, and HPF statements, data

types, input/output format specifiers, and additional reference material related to the use of PGI Fortran

compilers.

Preface

xvii

• System V Application Binary Interface Processor Supplement by AT&T UNIX System Laboratories, Inc.

(Prentice Hall, Inc.).

• FORTRAN 95 HANDBOOK, Complete ANSI/ISO Reference (The MIT Press, 1997).

• Programming in VAX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• The C Programming Language by Kernighan and Ritchie (Prentice Hall).

• C: A Reference Manual by Samuel P. Harbison and Guy L. Steele Jr. (Prentice Hall, 1987).

• The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Stroustrup, AT&T Bell Laboratories,

Inc. (Addison-Wesley Publishing Co., 1990)

• PGI User’s Guide, PGI Tools Guide, PGI Release Notes, FAQ, Tutorials, http://www.pgroup.com/

• MPI-CH http://www.unix.mcs.anl.gov/MPI/mpich /

• OpenMP http://www.openmp.org/

• Ptools (Parallel Tools Consortium) http://www.ptools.org/

• PAPI (Performance Application Program Interface) http://icl.cs.utk.edu/papi/

• HPDF (High Performance Debugging Forum) Standard http://www.ptools.org/hpdf/draft/intro.html

System Requirements
• Linux or Windows (See http://www.pgroup.com/faq/install.htm for supported releases)

• Intel x86 (and compatible), AMD Athlon or AMD64, or Intel EM64T or Core2 processor

xviii

1

Chapter 1. The PGDBG Debugger
PGDBG is a symbolic debugger for Fortran, C, C++ and assembly language programs. It provides typical

debugger features, such as execution control using breakpoints and single-stepping, as well as examination

and modification of application variables, memory locations, and registers. In addition, PGDBG supports

debugging of certain types of parallel applications, depending on the operating system on the target machine.

• linux86 and linux86-64:

• Multi-threaded and OpenMP Linux applications.

• MPI applications on Linux clusters.

• Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes on Linux

clusters.

• Win32 and Win64:

• Multi-threaded and OpenMP Windows applications.

• MSMPI applications on Window Corporate Cluster Server.

• Hybrid applications, which use multiple threads or OpenMP as well as multiple MPI processes on Linux

clusters.

• Windows Subsystem for Unix Applications (SFU, SUA32 and SUA64) and Mac OS X:

• Multi-threaded and OpenMP Windows applications.

Multi-threaded and OpenMP applications may be run using more threads than the available number of CPUs,

and MPI applications may allocate more than one process to a cluster node. PGDBG supports debugging the

listed types of applications regardless of how well the number of threads match the number of CPUs or how

well the number of processes match the number of cluster nodes.

Definition of Terms

Host

The system on which PGDBG executes. This will generally be the system where source and executable files

reside, and where compilation is performed.

PGI® Tools Guide

2

Target

A program being debugged.

Target Machine

The system on which a target runs. This may or may not be the same system as the host.

For an introduction to terminology used to describe parallel debugging, refer to “Summary of Parallel

Debugging Features,” on page 74.

Building Applications for Debug
To build an application for debug, compile with the –g option. With this option, the compiler will generate

information about the symbols and source files in the program and include it in the executable file. The –g

option also sets the compiler optimization to level zero (no optimization) unless you specify optimization

options (such as –O, -fast, or –fastsse) on the command line. Optimization options take effect whether they

are listed before or after –g on the command line. Programs built with –g and optimization levels higher

than –O0 can be debugged, but due to transformations made to the program during optimization, source-

level debugging may not be reliable. Machine-level debugging (e.g., accessing registers, viewing assembly

code, etc.) will be reliable, even with optimized code. Programs built without –g can be debugged; however,

information about types, local variables, arguments and source file line numbers will not be available.

In programs built with both –g and optimization levels higher than –O0, some optimizations may be disabled

or otherwise affected by the –g option, possibly changing the program behavior. An alternative option, -gopt,

can be used to build programs with full debugging information, but without modifying program optimizations.

Unlike –g, the –gopt option does not set optimization to level zero.

To build an application for debug on Windows platforms, applications must be linked with the –g option as

well as compiled with -g. This will result in the generation of debug information stored in a ‘.dwf’ file and a

‘.pdb’ file. The PGI compiler driver should always be used to link applications; the linker should never be

invoked directly.

PGDBG Invocation and Initialization
PGDBG includes both a command-line interface and a graphical user interface (GUI). Text commands are

entered one line at a time through the command-line interface. The GUI interface supports command entry

through a point-and-click interface, a view of source and assembly code, a full command-line interface panel,

and several other graphical elements and features. “PGDBG Command Language,” on page 26 through

“PGDBG Command Reference,” on page 38 describe in detail how to use the PGDBG command-line

interface. “PGDBG Graphical User Interface,” on page 4 describes how to use the PGDBG GUI.

Invoking PGDBG

PGDBG is invoked using the pgdbg command as follows:

% pgdbg arguments target arg1 arg2 ... argn

where arguments may be any of the command-line arguments described in “PGDBG Command-Line

Options,” on page 3. See “Invoking PGDBG for MPI Debugging,” on page 76 for instructions on how to

debug an MPI program [Linux and Windows CCS Only].

Chapter 1. The PGDBG Debugger

3

The target parameter is the name of the program executable file being debugged. The arguments arg1

arg2 … argn are the command-line arguments to the target program. Invoking PGDBG as described starts

the PGDBG Graphical User Interface (GUI) (See “PGDBG Graphical User Interface,” on page 4). For users

who prefer to use a command-line interface, PGDBG may be invoked with the –text parameter, as described in

“PGDBG Command-Line Options,” on page 3 and “PGDBG Command Language,” on page 26.

Note that the command shell will interpret any I/O redirection specified on the PGDBG command line. Refer to

“Process Control,” on page 39 for a description of how to redirect I/O using the run command.

Both 32-bit and 64-bit applications are supported. In general, the PATH is set to the native architecture. If the

PATH environment variable is set to use the 32-bit PGI tools, a 64-bit application can be debugged by invoking

PGDBG with the –tp option. Conversely, if the PATH environment variable is set to use the 64-bit PGI tools, a

32-bit application can be debugged by invoking PGDBG with the –tp option. Refer to “PGDBG Command-Line

Options,” on page 3 for details.

Once PGDBG is started, it reads symbol information from the executable file, then loads the application into

memory. For large applications this process can take a few moments.

If an initialization file named .pgdbgrc exists in the current directory or in the home directory (as defined

by the environment variable HOME), it is opened and PGDBG executes the commands in the file. The

initialization file is useful for defining common aliases, setting breakpoints and for other startup commands. If

an initialization file is found in the current directory, then the initialization file in the home directory, if there

is one, is ignored. However, a script command placed in the initialization file may execute the initialization file

in the home directory, or execute PGDBG commands in any other file (for example in the file .dbxinit for users

who have an existing dbx debugger initialization file).

After processing the initialization file, PGDBG is ready to process commands. Normally, a session begins by

setting one or more breakpoints, using the break, stop or trace commands, and then issuing a run command

followed by cont, step, trace or next.

Selecting a Version of Java

The PGDBG graphical user interface (GUI) depends on Java. PGDBG command line mode (pgdbg -text) does

not depend on Java. PGDBG requires that the Java Virtual Machine be a specific minimum version or above.

By default, PGDBG will use the version of Java installed with your PGI software; if you chose not to install Java

when installing your PGI software, PGDBG will look for Java on your PATH. Both of these can be overridden by

setting the PGI_JAVA environment variable to the full path of the Java executable you wish to use. For example,

on a Linux system using the bash shell:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

PGDBG Command-Line Options

The pgdbg command accepts several command line arguments that must appear on the command line before

the name of the program being debugged. The valid options are:

-dbx

Start the debugger in dbx mode, which provides a dbx-like debugger command language.

PGI® Tools Guide

4

-s startup

The default initialization file is ~/.pgdbgrc. The –s option specifies an alternate initialization file

startup.

-c “command”

Execute the debugger command command (command must be in double quotes) before executing the

commands in the startup file.

-r

Run the debugger without first waiting for a command. If the program being debugged runs successfully,

the debugger terminates. Otherwise, the debugger is invoked and stops when an exception occurs.

-mpi

Debug an MPI application (except for MPICH-1).

-text

Run the debugger using a command-line interface (CLI). The default is for the debugger to launch in

graphical user interface (GUI) mode.

-tp px, -tp k8-32

Debug a 32-bit program running on under a 64-bit operating system. This option is valid under the 64-bit

version of PGDBG only.

-tp p7-64, -tp k8-64

Debug a 64-bit program running under a 64-bit operating system. This option is valid under the 64-bit

version of PGDBG only.

–help

Display a list of command-line arguments (this list).

–I <directory>

Adds <directory> to the list of directories that PGDBG uses to search for source files. This option may

be used multiple times to add multiple directories to the search path.

PGDBG Graphical User Interface
The default user interface used by PGDBG is a Graphical User Interface (GUI). There may be minor variations

in the appearance of the PGDBG GUI from host to host, depending on the type of display hardware available,

the settings for various defaults and the window manager used. Except for differences caused by those factors,

the basic interface remains the same across all systems.

Chapter 1. The PGDBG Debugger

5

Figure 1.1. Default Appearance of PGDBG GUI

Main Window

Figure 1.1, “Default Appearance of PGDBG GUI” shows the main window of PGDBG GUI when it is invoked

for the first time. This window appears when PGDBG starts and remains throughout the debug session. The

initial size of the main window is approximately 700 x 600. It can be resized according to the conventions of

the window manager. Changes in window size and other settings are saved and used in subsequent invocations

of PGDBG. To prevent this, uncheck the Save Settings on Exit item under the Settings menu. See “Main Window

Menus,” on page 11, for information on the Settings menu.

There are three horizontal divider bars (controlled by small up and down arrow icons) at the top of the GUI in

Figure 1.1. These dividers hide the following optional control panels: Command Prompt, Focus Panel, and the

Process/Thread Grid. Figure 1.3, “PGDBG GUI with All Control Panels Visible”, shows the main window with

these controls visible. The GUI remembers which control panels are visible when you exit and redisplays them

when you reopen PGDBG. Below the dividers is the Source Panel, described in “Source Panel,” on page 10.

PGI® Tools Guide

6

A second window named the Program I/O window is displayed when PGDBG is started. Any input or output

performed by the target program is entered and/or displayed in this window.

Figure 1.2. PGDBG Program I/O Window

On Windows platforms this window is instantiated behind the PGDBG main window in order to maintain input

focus in the main window.

Chapter 1. The PGDBG Debugger

7

Figure 1.3. PGDBG GUI with All Control Panels Visible

Command Prompt Panel

The components of the main window (from top to bottom as seen in Figure 1.3) are:

• Command Prompt Panel

• Focus Panel

• Process/Thread Grid

• Source Panel

PGI® Tools Guide

8

The Command Prompt Panel provides an interface in which to use the PGDBG command language. Commands

entered in this window are executed, and the results are displayed. See “PGDBG Commands,” on page 33,

for a list of commands that can be entered in the command prompt panel. The GUI also supports a “free

floating” version of this window. To use the “free floating” command prompt window, select the Command

Window check box under the Window menu (“Source Panel Menus,” on page 12). Users who use only GUI

controls may leave this panel hidden.

Focus Panel

The Focus Panel can be used in a parallel debugging session to specify subsets of processes and/or threads

known as p/t-sets. P/t-sets allow application of debugger commands to a subset of threads and/or processes.

P/t-sets are displayed in the table labeled Focus (Figure 1.3). In Figure 1.3, the Focus table contains one p/t-

set called All that represents all processes/threads. P/t-sets are covered in more detail in “p/t-set Notation,” on

page 81. Within the PGDBG GUI, select a p/t set using a left mouse click on the desired group in the Focus

table. The selected group is known as the Current Focus. By default, the Current Focus is set to all processes/

threads. Note that this panel has no real use in serial debugging (debugging one single-threaded process).

For non-MPI applications, p/t-sets are used only for distinguishing threads.

Process/Thread Grid

The Process/Thread Grid is another component of the interface used for parallel debugging. All active target

processes and threads are listed in the Process/Thread Grid. If the target application consists of multiple

processes, the grid is labeled Process Grid. If the target application is a single multi-threaded process, the

grid is labeled Thread Grid. The colors of each element in the grid represent the state of the corresponding

component of the target application; for example, green means running and red means stopped. The colors

and their meanings are defined in Table 1.1.

On Windows platforms, the Process/Thread Grid is used only for distinguishing threads.

Table 1.1. Thread State Is Described Using Color

Option Description
Stopped Red

Signaled Blue

Running Green

Exited Black

Killed Black

In the Process/Thread Grid, each element is labeled with a numeric process identifier (see “Process-only

Debugging,” on page 80) and represents a single process. Each element is a button that can be pushed to

select the corresponding process as the Current Process. The Current Process is highlighted with a thick black

border.

For single-process/multi-threaded (e.g., OpenMP) targets, the grid is called the Thread Grid. Each element in

the thread grid is labeled with a numeric thread identifier (see “Threads-only Debugging,” on page 80).

As with the process grid, clicking on an element in the thread grid selects that element as the Current Thread,

which is highlighted with a thick black border.

Chapter 1. The PGDBG Debugger

9

For multi-process/multi-threaded (hybrid) targets, the grid is labeled the Process Grid. Selecting a process in

the grid will reveal an inner thread grid as illustrated in Figure 1.4, “Process Grid with Inner Thread Grid”.

In this figure, process 0 has four threads labeled 0.0, 0.1, 0.2, and 0.3; where the integer to the left of the

decimal point is the process identifier and the integer to the right of the decimal point is the thread identifier.

See “Multilevel Debugging,” on page 80 for more information on processes/thread identifiers.

For a text representation of the Process/Thread grid, select the Summary tab under the grid. The text

representation is essentially the output of the threads debugger command (see “Process Control,” on page

39). When debugging a multi-process or multi-threaded application, the Summary panel will also include a

Context Selector (as described in “Source Panel Pop-Up Menus,” on page 17). Use the Context Selector to

view a summary on a subset of processes/threads. By default, a summary of all the processes/threads displays.

Use the slider to the right of the grid to zoom in and out of the grid. Currently, the grid supports up to 1024

elements. If the slider is not visible, increase the size of the Process/Thread grid’s panel.

PGI® Tools Guide

10

Figure 1.4. Process Grid with Inner Thread Grid

Source Panel

The Source Panel displays the source code for the current location. The current location is marked by an

arrow icon under the PC column. Source line numbers are listed under the Line No. column. Figure 1.4 shows

some of the line numbers grayed-out. A grayed-out line number indicates that its respective source line is non-

executable. Some examples of non-executable source lines are comments, non-applicable preprocessed code,

some routine prologs, and some variable declarations. A line number in a black font represent an executable

source line. Breakpoints may be set at any executable source line by clicking the left mouse button under the

Event column of the source line. The breakpoints are marked by stop sign icons. An existing breakpoint may

Chapter 1. The PGDBG Debugger

11

be deleted by clicking the left mouse button on the stop sign icon. The source panel is described in greater

detail in “Source Panel,” on page 12.

Main Window Menus

The main window includes three menus located at the top of the window: File, Settings, and Help. Below is a

summary of each menu in the main window.

• File Menu

• Open Target… – Select this option to begin a new debugging session. After selecting this option, select

the program to debug (the target) from the file chooser dialog. The current target is closed and replaced

with the target that you selected from the file chooser. Press the Cancel button in the file chooser to abort

the operation. See the debug command in “Process Control,” on page 39 for more information.

• Attach to Target… – Select this option to attach to a running process. You can attach to a target running

on a local or a remote host. See also the attach command in “Process Control,” on page 39.

• Detach Target – Select this option to end the current debug session. This command does not terminate

the target application. See the detach command in “Process Control,” on page 39 for more

information.

• Exit – End the current debug session and close all the windows.

• Settings Menu

• Font… – This option displays the font chooser dialog box. Use this dialog box to select the font and

size used in the Command Prompt Panel, Focus Panel, and Source Panel. The default font is named

monospace and the default size is 12.

• Show Tool Tips – Select this check box to enable tool tips. Tool tips are small temporary messages that

pop-up when you position the mouse pointer over a component in the GUI. They provide additional

information on what a particular component does. Unselect this check box to turn them off.

• Restore Factory Settings – Select this option to restore the GUI to its initial state as shown in Figure 1.1,

“Default Appearance of PGDBG GUI,” on page 5.

• Restore Saved Settings – Select this option to restore the GUI to the state that it was in at the start of the

debug session.

• Save Settings on Exit – By default, the PGDBG will save the state (size and settings) of the GUI when you

exit. Uncheck this option to prevent PGDBG from saving the GUI state. This option must be unchecked

prior to every exit since PGDBG will always default to saving GUI state. When PGDBG saves state, it stores

the size of the main window, the location of the main window on the desktop, the location of each

control panel divider, the tool tips preference, the font and size used. The GUI state is not shared across

host machines.

• Help Menu

• PGDBG Help… – This option starts up PGDBG’s integrated help utility as illustrated in Figure 1.5. The

help utility includes a summary of every PGDBG command. To find a command, use one of the following

tabs in the left panel: The “book” tab presents a table of contents, the “index” tab presents an index

of commands, and the “magnifying glass” tab presents a search engine. Each help page (displayed on

PGI® Tools Guide

12

the right) may contain hyperlinks (denoted in underlined blue) to terms referenced elsewhere in the

help engine. Use the arrow buttons to navigate between visited pages. Use the printer buttons to print the

current help page.

• About PGDBG… – This option displays a dialog box with version and copyright information on PGDBG.

It also contains sales and support points of contact.

Figure 1.5. PGDBG Help Utility

Source Panel

As described in “Source Panel,” on page 12, the source panel is located at the bottom of the GUI; below the

Command Prompt, Focus Panel, and Process/Thread Grid. Use the source panel to control the debug session,

step through source files, set breakpoints, and browse source code. The source panel descriptions are divided

into the following categories: Menus, Buttons, Combo Boxes, Messages, and Events.

Source Panel Menus

The source panel contains the following four menus: Data, Window, Control, and Options. In the descriptions

below, keyboard shortcuts will be indicated by keystroke combinations (e.g., Control P) enclosed in

parentheses.

Data Menu

The items under this menu are enabled when a data item is selected in the source panel. Selecting

and printing data in the source panel is explained in detail in “Source Panel,” on page 12. See also

“Printing Variables and Expressions,” on page 51.

Print

Print the value of the selected item. (Control P).

Chapter 1. The PGDBG Debugger

13

Print *

Dereference and print the value of the selected item.

String

Treat the selected value as a string and print its value.

Bin

Print the binary value of the selected item.

Oct

Print the octal value of the selected item.

Hex

Print the hex value of the selected item.

Dec

Print the decimal value of the selected item.

Ascii

Print the ASCII value of the selected item.

Addr

Print the address of the selected item.

Type Of

Print data type information for the selected item.

Window Menu

The items under this menu select various subwindows associated with the target application. Subwindows

are explained in greater detail in “Source Panel Pop-Up Menus,” on page 17.

Registers

Display the registers subwindow. See also the regs command in “Register Access,” on page 57.

Stack

Display the stack subwindow. See also the stacktrace command in “Program Locations,” on page

49.

Locals

Display a list of local variables that are currently in scope. See also the names command in “Scope,”

on page 56.

Custom

Bring up a custom subwindow.

Disassembler

Bring up the PGDBG Disassembler subwindow.

Memory

Bring up the memory dumper subwindow.

Messages

[MPI Debugging Only] Display the MPI message queues. See “MPI Message Queues,” on page 99

for more information on MPI message queues.

PGI® Tools Guide

14

Events

Display a list of currently active breakpoints, watchpoints, etc.

Command Window

When this menu item’s check box is selected, the GUI will display a “free floating” version of the

command prompt window. See “PGDBG Commands,” on page 33 for a description of each

command that can be entered in the command prompt.

Control Menu

The items under this menu control the execution of the target application. Many of the items under this

menu have a corresponding button associated with them (see “Source Panel Buttons,” on page 15).

Arrive

Return the source pane to the current PC location. See the arrive command in “Program Locations,”

on page 49 (Control A).

Up

Enter scope of routine up one level in the call stack. See the up command in “Scope,” on page 56

(Control U).

Down

Enter scope of routine down one level in the call stack. See the down command in “Scope,” on page

56 (Control D).

Run

Run or Rerun the target application. See the run and rerun commands in “Process Control,” on page

39 (Control R).

Run Arguments

Opens a dialog box that allows adding to or modifying the target’s runtime arguments.

Halt

Halt the running processes or threads. See the halt command in “Process Control,” on page 39

(Control H).

Call…

Open a dialog box to request a routine to call. See “Symbols and Expressions,” on page 53 for

more information on the call command.

Cont

Continue execution from the current location. See the cont command in “Process Control,” on page

39 (Control G).

Step

Continue and stop after executing one source line, stepping into called routines. See the step

command in “Process Control,” on page 39 (Control S).

Next

Continue and stop after executing one source line, stepping over called routines. See the next

command in “Process Control,” on page 39 (Control N).

Chapter 1. The PGDBG Debugger

15

Step Out

Continue and stop after returning to the caller of the current routine. See the stepout command in

“Process Control,” on page 39 (Control O).

Stepi

Continue and stop after executing one machine instruction, stepping into called routines. See the

stepi command in “Process Control,” on page 39 (Control I).

Nexti

Continue and stop after executing one machine instruction, stepping over called routines. See the

nexti command in “Process Control,” on page 39 (Control T).

Options Menu

This menu contains additional items that assist in the debug process.

Search Forward…

Select this option to perform a forward keyword search in the source panel (Control F).

Search Backward…

Select this option to perform a backward keyword search in the source panel (Control B).

Search Again

Select this option to repeat the last keyword search that was performed on the source panel (Control

E).

Locate Routine…

When this option is selected, PGDBG will query for the name of the routine that you wish to find. If

PGDBG has symbol and source information for that routine, it will display the routine in the source

panel. See also “Source Panel Pop-Up Menus,” on page 17.

Set Breakpoint…

When this option is selected, PGDBG will query for the name of a routine for setting a breakpoint. The

GUI will then set a breakpoint at the first executable source line in the specified routine.

Disassemble

Disassemble the data selected in the source panel. See also “Source Panel Pop-Up Menus,” on page

17.

Cascade Windows

If one or more subwindows are open, this option can be used to automatically stack subwindows in

the upper left-hand corner of the desktop (Control W).

Refresh

Repaint the process/thread grid and source panels (Control L).

Source Panel Buttons

There are nine buttons located above the source panel’s menus. Most of these buttons function like the same

button on the Control menu.

Run

Same as the Run item under the Control menu.

PGI® Tools Guide

16

Halt

Same as the Halt item under the Control menu.

Cont

Same as the Cont item under the Control menu.

Next

Same as the Next item under the Control menu.

Step

Same as the Step item under the Control menu.

Stepo

Same as the Step Out item under the Control menu.

Nexti

Same as the Nexti item under the Control menu.

Stepi

Same as the Stepi item under the Control menu.

Back

Reset the source panel view to the current PC location (denoted by the left arrow icon under the PC

column).

Source Panel Combo Boxes

Depending on the state of the debug session, the source panel may contain one or more combo boxes. A

combo box is a combination text field and list component. In its closed or default state, it presents a text field

of information with a small down arrow icon to its right. When the down arrow icon is selected by a left mouse

click, the box opens and presents a list of choices that can be selected.

The source panel, as shown in Figure 1.3, contains five combo boxes labeled All, Thread 0, omp.c, #0 main

line: 12 in “omp.c” address: 0x4011f6, and Source. These combo boxes are called the Apply Selector, Context

Selector, Source File Selector, Scope Selector, and Display Mode Selector respectively. Below is a description

of each combo box.

• Use the Apply Selector to select the set of processes and/or threads on which to operate. Any command

entered in the source panel will be applied to this set of processes/threads. These commands include setting

breakpoints, selecting items under the Control menu, pressing one of the nine buttons mentioned in“Source

Panel Buttons,” on page 15, and so on. Depending on whether you are debugging a multi-threaded,

multi-process, or multi-process/multi-threaded (hybrid) target, the following options are available:

All

All processes/threads receive commands entered in the source panel (default).

Current Thread

Commands are applied to the current thread ID only.

Current Process

Commands are applied to all threads that are associated with the current process.

Chapter 1. The PGDBG Debugger

17

Current Process.Thread

Commands are applied to the current thread on the current process only.

Focus

Commands are applied to the focus group selected in the Focus Panel (described in “Main Window,”

on page 5). Refer to “Process/Thread Sets,” on page 81for more information on this advanced

feature.

This combo box is not displayed when debugging a serial program.

• The function of the Context Selector is the same as for the Process/Thread Grid; it is used to change the

current Process, Thread, or Process.Thread ID currently being debugged. This combo box is not displayed

when debugging a serial program.

• By default, the Source File Selector displays the source file that contains the current target location. It can

be used to select another file for viewing in the Source Panel. When this combo box is closed, it displays the

name of the source file displayed in the Source Panel. To select a different source file, open the combo box

and select a file from the list. If the source file is available, the source file will appear in the Source Panel.

• The Scope Selector displays the scope of the current Program Counter (PC). Open the combo box and

select a different scope from the list or use the up and down buttons located on the right of the combo box.

The up button is equivalent to the up debugger command and the down button is equivalent to the down

debugger command. See “Scope,” on page 56 for more information on the up and down commands.

• The Display Mode Selector is used to select three different source display modes: Source, Disassembly, and

Mixed. The Source mode shows the source code of the current source file indicated by the File Selector.

This is the default display mode if the source file is available. The Disassembly mode shows the machine

instructions of the current routine. This is the default display mode if the source file is not available. The

Mixed mode shows machine instructions annotated with source code. This mode is available only if the

source file is available.

Source Panel Messages

The source panel contains two message areas. The top center indicates the current process/thread ID (e.g.,

Thread 0 in Figure 1.7) and the bottom left displays status messages (e.g., Stopped at line 12… in Figure 1.7).

Source Panel Events

Breakpoints are displayed under the Event column in the source panel. The stop sign icon denotes a

breakpoint. Breakpoints are added through the source panel by clicking the left mouse button on the

desired source line under the Event column. Clicking the left mouse button over a stop sign will delete the

corresponding breakpoint. Selecting the Events item under the Window menu will display a global list of Events

(e.g., breakpoints, watchpoints, etc.).

Source Panel Pop-Up Menus

The PGDBG source panel supports two pop-up menus to provide quick access to commonly used features. One

pop-up menu is used to invoke subwindows. It is accessed using a right mouse-click in a blank or vacant area

of the source panel. See “Subwindows,” on page 19 for more information on invoking subwindows using a

pop-up menu.

PGI® Tools Guide

18

The other pop-up menu is accessed by first highlighting some text in the source panel, then using a right

mouse click to bring up the menu. The selections offered by this pop-up menu take the selected text as input.

To select text in the source panel, first click on the line of source containing the text. This will result in the

display of a box surrounding the source line. Next, hold down the left mouse button and drag the cursor, or

mouse pointer, across the text to be selected. The text should then be highlighted.

Once the text is highlighted, menu selections from the Source Panel menus or from the Source Panel pop-up

menu will use the highlighted text as input. In Figure 1.6, the variable myid has been highlighted and the pop-

up menu is being used to print its value as a decimal integer. The data type of selected data items may also be

displayed using the pop-up menu.

Chapter 1. The PGDBG Debugger

19

Figure 1.6. Data Pop-up Menu

The pop-up menu provides the Disassemble, Call, and Locate selections, which use selected routine names as

input. The Disassemble item opens a disassembler subwindow for the selected routine. The Call item can be

used to manually call the selected routine. The Locate option displays the source code in which the selected

routine is defined. Please see the description for each of these items in “Source Panel Menus,” on page 12

for more information.

Subwindows

A subwindow is defined as any PGDBG GUI component that is not embedded in the main window described

in “Main Window,” on page 5. One example of a subwindow is the Program I/O window introduced

PGI® Tools Guide

20

in Figure 1.2. Other examples of subwindows can be found under the source panel’s Window menu. These

include the Registers, Stack, Locals, Custom, Disassembler, Memory, Messages, Events, and Command Window

subwindows. With the exception of the Command Window, all of these subwindows are controlled by similar

mechanisms. The standard subwindow control mechanisms are described in “Standard Subwindow Controls,”

on page 20. Specific details of other subwindows are described in subsequent sections. See the description

of the Window menu, “Source Panel Menus,” on page 12 for more information on each subwindow.

The Window menu can be used to bring up a subwindow. An alternative mechanism is to click the right mouse

button over a blank spot in the source panel to invoke a pop-up menu (Figure 1.7), which can be used to

select a subwindow. The subwindow that gets displayed is specific to the current process and/or thread. For

example, in Figure 1.7, selecting Registers will display the registers for thread 0, which is the current thread.

Standard Subwindow Controls

The PGDBG graphical user interface supports a number of subwindows for displaying detailed information

about the target application state. These subwindows include the memory subwindow, the disassembler

subwindow, the registers subwindow, the custom subwindow (used for displaying the output of arbitrary

commands), and the messages subwindow (used for displaying MPI state).

Figure 1.8 shows the memory subwindow. This subwindow shows all of the possible controls that are available

in a PGDBG subwindow. Not all subwindows will have all of the components shown in this figure. However,

nearly all will have the following components: File menu, Options menu, Reset button, Close Button, Update

button, and the Lock/Unlock toggle button.

Chapter 1. The PGDBG Debugger

21

Figure 1.7. Opening a Subwindow with a Pop-up Menu

The File menu contains the following items:

Save…

Save the text in this subwindow to a file.

Close

Close the subwindow.

The Options menu contains the following items:

Update

Clear and regenerate the data displayed in the subwindow.

PGI® Tools Guide

22

Stop

Interrupt processing. This option comes in handy during long listings that can occur in the Disassembler

and Memory subwindows. Control C is a hot key mapped to this menu item.

Reset

Clear the subwindow.

The Reset, Close, and Update buttons are synonymous with their menu item counterparts mentioned above.

The Lock/Unlock button, located in the lower right hand corner of a subwindow, toggles between a lock and

an unlock state. Figure 1.8 shows this button in an unlocked state with the button labeled Lock. Figure 1.9

shows this button in a locked state, with the button labeled Unlock. When the Lock/Unlock button is in its

unlocked state, subwindows will update themselves whenever a process or thread halts. This can occur after

a step, next, or cont command. To preserve the contents of a subwindow, click the left mouse button on the

Lock button to lock the display in the subwindow. Figure 1.9 shows an example of a locked subwindow. Note

that some of the controls in Figure 1.9 are disabled (grayed-out). After locking a subwindow, PGDBG will

disable any controls that affect the display until the subwindow is unlocked. To unlock the subwindow, click

the Unlock button. The toggle button will change to Lock and PGDBG will re-enable the other controls.

Besides the subwindow capabilities described above, subwindows may also have one to three input fields. If

the subwindow has one or more input fields, then they also contain Stop and Clear buttons. The Stop button

is synonymous with the Stop item in the Options menu described above. The Clear button erases the input

field(s).

For target applications with more than one process and/or thread, a Context Selector displays in the bottom

center as shown in Figure 1.8. The Context Selector can be used to view data specific to a particular process/

thread or a subset of process/threads when selecting Focus. Refer to “Process/Thread Sets,” on page 81 for

more information on Focus.

Chapter 1. The PGDBG Debugger

23

Figure 1.8. Memory Subwindow

Memory Subwindow

The memory subwindow displays a region of memory using a printf-like format descriptor. In the Memory

subwindow, inputs include the starting address in the Address field, the number of items in the Count field, and

a printf-like format string in the Format field. See the explanation of the PGDBG dump command (“Memory

Access,” on page 58) for a description of supported format strings. The Address field will accept a numeric

address or a symbolic variable name.

Disassembler Subwindow

Figure 1.9 shows the Disassembler subwindow. Use this subwindow to disassemble a routine (or a text

address) specified in the Request> input field. PGDBG will default to the current routine if you specify nothing

in the Request> input field. After a request is made to the Disassembler, the GUI will ask if you want to

“Display Disassembly in the Source window”. Choosing “yes” causes the Disassembler window to disappear

and the disassembly to appear in the source panel. Viewing the disassembly in the source panel allows setting

breakpoints at the machine instruction level. Choosing “no” will dump the disassembly in the Disassembler

subwindow as shown in Figure 1.9.

Specifying a text address (rather than a routine name) in the Request> field will cause PGDBG to disassemble

address locations until it runs out of memory or hits an invalid op code. This may cause very large machine

language listings. For that case, the subwindow provides a Stop button. Press the Stop button to interrupt

long listings that may occur with the Disassembler. Specify a count after the text address to limit the number

of instructions dumped to the subwindow. For example, entering 0xabcdef, 16 tells PGDBG to dump up to

16 instructions following address 0xabcdef. The Request> field accepts the same arguments as the disasm

command described in “Program Locations,” on page 49.

PGI® Tools Guide

24

Figure 1.9. Disassembler Subwindow

Registers Subwindow

Figure 1.10 illustrates the Registers subwindow. As mentioned earlier, view the registers on one or more

processes and threads using the Context Selector. The Registers subwindow is essentially a graphical

representation of the regs debugger command (see “Register Access,” on page 57).

Chapter 1. The PGDBG Debugger

25

Figure 1.10. Registers Subwindow

Custom Subwindow

Figure 1.11 illustrates the Custom subwindow. The Custom subwindow is useful for repeatedly executing a

sequence of debugger commands whenever a process/thread halts on a new location or when pressing the

Update button. The commands, entered in the edit box labeled “Command>”, can be any debugger command

mentioned in “PGDBG Commands,” on page 33, including a semicolon-delimited list of commands.

PGI® Tools Guide

26

Figure 1.11. Custom Subwindow

Messages Subwindow

The Messages subwindow is used for debugging MPI applications. Refer to “MPI Message Queues,” on page

99 for more information on the content and use of this subwindow.

PGDBG Command Language
PGDBG supports a command language that is capable of evaluating complex expressions. The command

language can be used by invoking the PGDBG command line interface with the –text option, or in the

command prompt panel of the PGDBG graphical user interface. The next three sections of this manual provide

information about how to use this command language. See “PGDBG Graphical User Interface,” on page 4

for instructions on using the PGDBG GUI.

Commands are named operations, which take zero or more arguments and perform some action. Commands

may also return values that may be used in expressions or as arguments to other commands.

Commands are entered one line at a time.You can place multiple commands on a single line by using the semi-

colon (;) as a delimiter.

Lines are delimited by a carriage return. Each line must consist of a command and its arguments, if any. The

command language is composed of commands, constants, symbols, locations, expressions, and statements.

There are two command modes: pgi and dbx. The pgi command mode maintains the original PGDBG

command interface. In dbx mode, the debugger uses commands compatible with the familiar dbx debugger.

Pgi and dbx commands are available in both command modes, but some command behavior may be slightly

Chapter 1. The PGDBG Debugger

27

different depending on the mode. The mode can be set when PGDBG is invoked by using command line

options, or while the debugger is running by using the pgienv command.

Constants

PGDBG supports C language style integer (hex, octal and decimal), floating point, character, and string

constants.

Symbols

PGDBG uses the symbolic information contained in the executable object file to create a symbol table for

the target program. The symbol table contains symbols to represent source files, subprograms (functions,

and subroutines), types (including structure, union, pointer, array, and enumeration types), variables, and

arguments. The PGDBG command line interface is case-sensitive with respect to symbol names; a symbol name

on the command line must match the name as it appears in the object file.

Scope Rules

Since several symbols in a single application may have the same name, scope rules are used to bind program

identifiers to symbols in the symbol table. PGDBG uses the concept of a search scope for looking up identifiers.

The search scope represents a routine, a source file, or global scope. When the user enters a name, PGDBG

first tries to find the symbol in the search scope. If the symbol is not found, the containing scope, (source file,

or global) is searched, and so forth, until either the symbol is located or the global scope is searched and the

symbol is not found.

Normally, the search scope will be the same as the current scope, which is the routine where execution is

currently stopped. The current scope and the search scope are both set to the current routine each time

execution of the target program stops. However, the enter command can be used to change the search scope.

A scope qualifier operator @ allows selection of out-of-scope identifiers. For example, if f is a routine with a

local variable i, then:

 f@i

represents the variable i local to f. Identifiers at file scope can be specified using the quoted file name with this

operator, for example:

 "xyz.c"@i

represents the variable i defined in file xyz.c.

Register Symbols

In order to provide access to the system registers, PGDBG maintains symbols for them. Register names

generally begin with $ to avoid conflicts with program identifiers. Each register symbol has a default type

associated with it, and registers are treated like global variables of that type, except that their address may not

be taken. See “Register Symbols,” on page 66 for a complete list of the register symbols.

PGI® Tools Guide

28

Source Code Locations

Some commands must refer to source code locations. Source file names must be enclosed in double quotes.

Source lines are indicated by number, and may be qualified by a quoted filename using the scope qualifier

operator.

Thus:

break 37

sets a breakpoint at line 37 of the current source file, and

break "xyz.c"@37

sets a breakpoint at line 37 of the source file xyz.c.

A range of lines is indicated using the range operator ":". Thus,

list 3:13

lists lines 3 through 13 of the current file, and

list "xyz.c"@3:13

lists lines 3 through 13 of the source file xyz.c.

Some commands accept both line numbers and addresses as arguments. In these commands, it is not always

obvious whether a numeric constant should be interpreted as a line number or an address. The description

for these commands says which interpretation is used. However, PGDBG provides commands to convert from

source line to address and vice versa. The line command converts an address to a line, and the addr command

converts a line number to an address.

For example, the following syntax means “line 37”:

line 37

The following syntax means "address 0x1000":

addr 0x1000

The following syntax means "the address associated with line 37":

addr {line 37}

The following syntax means "the line associated with address 0x1000":

line {addr 0x1000}

Lexical Blocks

Line numbers are used to name lexical blocks. The line number of the first instruction contained by a lexical

block is used to indicate the start scope of the lexical block.

In the following example, there are two variables named var. One is declared in function main, and the other

is declared in the lexical block starting at line 5. The lexical block has the unique name "lex.c"@main@5.

The variable var declared in "lex.c"@main@5 has the unique name "lex.c"@main@5@var. The output of the

whereis command that follows shows how these identifiers can be distinguished.

lex.c:
1 main()

Chapter 1. The PGDBG Debugger

29

2 {
3 int var = 0;
4 {
5 int var = 1;
6 printf("var %d\n",var);
7 }
8 printf("var %d\n",var)
9 }

pgdbg> n
Stopped at 0x8048b10, function main, file
/home/demo/pgdbg/ctest/lex.c,
line 6
#6: printf("var %d\n",var);
pgdbg> print var
1
pgdbg> which var
"lex.c"@main@5@var
pgdbg> whereis var
variable: "lex.c"@main@var
variable: "lex.c"@main@5@var
pgdbg> names "lex.c"@main@5
var = 1

Statements

Although PGDBG command line input is processed one line at a time, statement constructs allow multiple

commands per line, as well as conditional and iterative execution. The statement constructs roughly

correspond to the analogous C language constructs. Statements may be of the following forms.

• Simple Statement: A command and its arguments. For example:

print i

• Block Statement: One or more statements separated by semicolons and enclosed in curly braces. Note:

these may only be used as arguments to commands or as part of if or while statements. For example:

if(i>1) {print i; step }

• If Statement: The keyword if, followed by a parenthesized expression, followed by a block statement,

followed by zero or more else if clauses, and at most one else clause. For example:

if(i>j) {print i} else if(i<j) {print
j} else {print "i==j"}

• While Statement: The keyword while, followed by a parenthesized expression, followed by a block

statement. For example:

while(i==0) {next}

Multiple statements may appear on a line separated by a semicolon. For example:

break main; break xyz; cont; where

sets breakpoints in routines main and xyz, continues, and prints the new current location. Any value returned

by the last statement on a line is printed.

Statements can be parallelized across multiple threads of execution. See “Parallel Statements,” on page 95

for details.

PGI® Tools Guide

30

Events

Breakpoints, watchpoints and other mechanisms used to define the response to certain conditions are

collectively called events.

• An event is defined by the conditions under which the event occurs and by the action taken when the event

occurs.

• A breakpoint occurs when execution reaches a particular address. The default action for a breakpoint is

simply to halt execution and prompt the user for commands.

• A watchpoint occurs when the value of an expression changes.

• A hardware watchpoint occurs when the specified memory location is accessed or modified.

PGDBG supports five basic commands for defining events. Each command takes a required argument and may

also take one or more optional arguments. The basic commands are break, watch, hwatch, track and do. The

command break takes an argument specifying a breakpoint location. Execution stops when that location is

reached. The watch command takes an expression argument. Execution stops and the new value is printed

when the value of the expression changes. The hwatch command takes a data address argument (this can be

an identifier or variable name). Execution stops when memory at that address is written.

The track command is like watch except that execution continues after the new value is printed. The do

command takes a list of commands as an argument. The commands are executed whenever the event occurs.

The five event commands share a common set of optional arguments. The optional arguments provide the

ability to make the event definition more specific. They are:

at line

Event occurs at indicated line.

at addr

Event occurs at indicated address.

in routine

Event occurs throughout indicated routine.

if (condition)

Event occurs only when condition is true.

do {commands}

When event occurs execute commands.

The optional arguments may appear in any order after the required argument and should not be delimited by

commas.

For example:

watch i at 37 if(y>1)

This event definition says to stop and print the value of I whenever line 37 is executed and the value of y is

greater than 1.

do {print xyz} in f

Chapter 1. The PGDBG Debugger

31

This event definition says that at each line in the routine f print the value of xyz.

break func1 if (i==37) do {print
a[37]; stack}

This event definition says to print the value of a[37] and do a stack trace when i is equal to 37 in routine

func1.

Event commands that do not explicitly define a location will occur at each source line in the program. For

example:

do {where}

prints the current location at the start of each source line, and

track a.b

prints the value of a.b at the start of each source line if the value has changed.

Events that occur at every line can be useful, but they can make program execution very slow. Restricting an

event to a particular address minimizes the impact on program execution speed, and restricting an event that

occurs at every line to a single routine causes execution to be slowed only when that routine is executed.

PGDBG supports instruction level versions of several commands (for example breaki, watchi, tracki, and doi).

The basic difference in the instruction version is that these commands will interpret integers as addresses

rather than line numbers, and events will occur at each instruction rather than at each line.

When multiple events occur at the same location, all event actions will be taken before the prompt for input.

Defining event actions that resume execution is allowed but discouraged, since continuing execution may

prevent or defer other event actions. For example, the following syntax creates an ambiguous situation:

break 37 do {continue}

break 37 do {print i}

It is not clear whether i should ever be printed.

Events only occur after the continue and run commands. They are ignored by step, next, call, and other

commands.

Identifiers and line numbers in events are bound to the current scope when the event is defined.

For example, the following command sets a breakpoint at line 37 in the current file.

break 37

The following command tracks the value of whatever variable i is currently in scope.

track i

If i is a local variable, then it is wise to add a location modifier (at or in) to restrict the event to a scope where

i is defined.

Scope qualifiers can also specify lines or variables that are not currently in scope. Events can be parallelized

across multiple threads of execution. See “Parallel Events,” on page 94 for details.

PGI® Tools Guide

32

Expressions

The debugger supports evaluation of expressions composed of constants, identifiers, commands that return

values, and operators. Table 1.2, “PGDBG Operators” shows the C language operators that are supported. The

operator precedence is the same as in the C language.

To use a value returned by a command in an expression, the command and arguments must be enclosed in

curly braces. For example:

breaki {pc}+8

invokes the pc command to compute the current address, adds 8 to it, and sets a breakpoint at that address.

Similarly, the following command compares the start address of the current routine with the start address of

routine xyz. It prints the value 1 if they are equal and 0 if they are not.

print {addr {func}}=={addr
xyz}

The @ operator, introduced previously, may be used as a scope qualifier. Its precedence is the same as the C

language field selection operators ".", and "->" .

PGDBG recognizes a range operator ":" which indicates array sub-ranges or source line ranges. For example,

print a[1:10]

prints elements 1 through 10 of the array a, and

list 5:10

lists source lines 5 through 10, and

list "xyz.c"@5:10

lists lines 5 through 10 in file xyz.c. The precedence of ':' is between '||' and '='.

The general format for the range operator is [lo : hi : step] where:

lo

is the array or range lower bound for this expression.

hi

is the array or range upper bound for this expression.

step

is the step size between elements.

An expression can be evaluated across many threads of execution by using a prefix p/t-set. See “Current vs.

Prefix p/t-set,” on page 83 for details.

Table 1.2. PGDBG Operators

Operator Description Operator Description
* indirection <= less than or equal

. direct field selection >= greater than or equal

-> indirect field selection != not equal

Chapter 1. The PGDBG Debugger

33

Operator Description Operator Description
[] ``C’’ array index && logical and

() routine call || logical or

& address of ! logical not

+ add | bitwise or

(type) cast & bitwise and

- subtract ~ bitwise not

/ divide ^ bitwise exclusive or

* multiply << left shift

= assignment >> right shift

== comparison () FORTRAN array index

<< left shift % FORTRAN field selector

>> right shift

PGDBG Commands
The following two sections contain information about PGDBG debugger commands.

• Command Summary contains an alphabetical listing of all the commands, with a brief description of each.

• PGDBG Command Reference contains the detailed description of each command, grouped by category of

use.

Notation Used in Command Sections

The command sections that follow use these conventions for the command names and arguments, when the

command accepts one.

• Command names may be abbreviated by omitting the portion of the command name enclosed in brackets

([]).

• Argument names are chosen to indicate what kind of argument is expected.

• Arguments enclosed in brackets([]) are optional.

• Two or more arguments separated by a vertical line (|) indicate that any one of the arguments is acceptable.

• An ellipsis (...) indicates an arbitrarily long list of arguments.

• Other punctuation (commas, quotes, etc.) should be entered as shown.

For example:

lis[t] [count | lo:hi | routine | line,count]

indicates that the command list may be abbreviated to lis, and that it can be invoked without any arguments or

with one of the following: an integer count, a line range, a routine name, or a line and a count.

PGI® Tools Guide

34

Commands Summary
This section contains a brief summary of the PGDBG debugger commands. For more detailed information on

a command, see the section number associated with the command. If you are viewing an online version of this

manual, select the hyperlink under the selection category to jump to that section in the manual.

Table 1.3. PGDBG Commands

Name Arguments Category
arri[ve] “Program Locations,” on page 49

att[ach] <pid> [<exe>] | [<exe> <host>] “Process Control,” on page 39

ad[dr] [n | line | func | var | arg] “Conversions,” on page 60

al[ias] [name [string]] “Miscellaneous,” on page 61

asc[ii] exp [,...exp] “Printing Variables and Expressions,” on

page 51

as[sign] var=exp “Symbols and Expressions,” on page

53

bin exp [,...exp] “Printing Variables and Expressions”

b[reak] [line | func] [if (condition)] [do

{commands}]

“Events,” on page 42

breaki [addr | func] [if (condition)] [do

{commands}]

“Events,” on page 42

breaks “Events,” on page 42

call func [(exp,...)] “Symbols and Expressions,” on page

53

catch [number [,number...]] “Events,” on page 42

cd [dir] “Program Locations,” on page 49

clear [all | func | line | addr {addr}] “Events,” on page 42

c[ont] “Process Control,” on page 39

cr[ead] addr “Memory Access,” on page 58

de[bug] “Process Control,” on page 39

dec exp [,...exp] “Printing Variables and Expressions,” on

page 51

decl[aration] name “Symbols and Expressions,” on page

53

decls [func | "sourcefile" | {global}] “Scope,” on page 56

defset name [p/t-set] “Process-Thread Sets,” on page 42

del[ete] event-number | all | 0 | event-number

[,.event-number.]

“Events,” on page 42

Chapter 1. The PGDBG Debugger

35

Name Arguments Category
det[ach “Process Control,” on page 39

dir[ectory] [pathname] “Miscellaneous,” on page 61

dis[asm] [count | lo:hi | func | addr, count] “Program Locations,” on page 49

disab[le] event-number | all “Printing Variables and Expressions,” on

page 51

display exp [,...exp] “Printing Variables and Expressions,” on

page 51

do {commands} [at line | in func] [if

(condition)]

“Events,” on page 42

doi {commands} [at addr | in func] [if

(condition)]

“Events,” on page 42

down “Scope,” on page 56

dr[ead] addr “Memory Access,” on page 58

du[mp] address, count, "format-string" “Memory Access,” on page 58

edit [filename | func] “Program Locations,” on page 49

enab[le] event-number | all “Events,” on page 42

en[ter] func | "sourcefile" | {global} “Scope,” on page 56

entr[y] func “Symbols and Expressions,” on page

53

fil[e] “Program Locations”

files “Scope,” on page 56

focus [p/t-set] “Process-Thread Sets,” on page 42

fp “Register Access,” on page 57

fr[ead] addr “Memory Access,” on page 58

func[tion] [addr | line] “Conversions,” on page 60

glob[al] “Global Commands,” on page 88

halt [command] “Process Control,” on page 39

he[lp] “Miscellaneous,” on page 61

hex Exp [,...exp] “Printing Variables and Expressions,” on

page 51

hi[story] [num] “Miscellaneous”

hwatch addr [if (condition)] [do {commands}] “Events,” on page 42

hwatchb[oth] addr [if (condition)] [do {commands}] “Events,” on page 42

hwatchr[ead] addr [if (condition)] [do {commands}] “Events,” on page 42

ignore [number [,number...]] “Events,” on page 42

PGI® Tools Guide

36

Name Arguments Category
ir[ead] addr “Memory Access,” on page 58

language “Miscellaneous,” on page 61

lin[e] [n | func | addr] “Conversions,” on page 60

lines routine “Program Locations,” on page 49

lis[t] [count | line,count | lo:hi | routine] “Program Locations,” on page 49

log filename “Miscellaneous,” on page 61

lv[al] exp “Symbols and Expressions,” on page

53

mq[dump] “Memory Access”

names [func | "sourcefile" | {global}] “Scope”

n[ext] [count] “Process Control,” on page 39

nexti [count] “Process Control,” on page 39

nop[rint] exp “Miscellaneous,” on page 61

oct exp [,...exp] “Printing Variables and Expressions,” on

page 51

pc “Register Access,” on page 57

pgienv [command] “Miscellaneous,” on page 61

p[rint] exp1 [,...expn] “Printing Variables and Expressions,” on

page 51

printf "format_string", expr,...expr “Printing Variables and Expressions,” on

page 51

proc [number] “Process Control,” on page 39

procs “Process Control,” on page 39

pwd “Program Locations,” on page 49

q[uit] “Process Control,” on page 39

regs “Register Access,” on page 57

rep[eat] [first, last] | [first: last:n] | [num] | [-num] “Miscellaneous,” on page 61

rer[un] [arg0 arg1 ... argn] [< inputfile] [>

outputfile]

“Process Control,” on page 39

ret[addr] “Register Access,” on page 57

ru[n] [arg0 arg1 ... argn] [< inputfile] [>

outputfile]

“Process Control,” on page 39

rv[al] expr “Symbols and Expressions,” on page

53

sco[pe] “Scope,” on page 56

Chapter 1. The PGDBG Debugger

37

Name Arguments Category
scr[ipt] filename “Miscellaneous,” on page 61

set var = ep “Symbols and Expressions,” on page

53

setenv name | name value “Miscellaneous,” on page 61

sh[ell] arg0 [... argn] “Miscellaneous,” on page 61

siz[eof] name “Symbols and Expressions,” on page

53

sle[ep] time “Miscellaneous,” on page 61

source filename “Miscellaneous,” on page 61

sp “Register Access,” on page 57

sr[ead] addr “Memory Access,” on page 58

stackd[ump] [count] “Program Locations,” on page 49

stack[trace] [count] “Program Locations,” on page 49

stat[us] “Events”

s[tep] [count | up] “Process Control,” on page 39

stepi [count | up] “Process Control,” on page 39

stepo[ut] “Process Control,” on page 39

stop [at line | in func] [var] [if (condition)]

[do {commands}]

“Events,” on page 42

stopi [at addr | in func] [var] [if (condition)]

[do {commands}]

“Events,” on page 42

sync [func | line] “Process Control,” on page 39

synci [func | addr] “Process Control,” on page 39

str[ing] exp [,...exp] “Printing Variables and Expressions,” on

page 51

thread number “Process Control,” on page 39

threads “Process Control,” on page 39

track expression [at line | in func] [if

(condition)] [do {commands}]

“Events,” on page 42

tracki expression [at addr | in func] [if

(condition)] [do {commands}]

“Events,” on page 42

trace [at line | in func] [var| func] [if

(condition)] do {commands}

“Events,” on page 42

tracei [at addr | in func] [var] [if (condition)]

do {commands}

“Events,” on page 42

PGI® Tools Guide

38

Name Arguments Category
type expr “Symbols and Expressions,” on page

53

unal[ias] name “Miscellaneous,” on page 61

undefset [name | -all] “Process-Thread Sets,” on page 42

undisplay [all | 0 | exp] “Printing Variables and Expressions,” on

page 51

unb[reak] line | func | all “Events,” on page 42

unbreaki addr | func | all “Events,” on page 42

up “Scope,” on page 56

use [dir] “Miscellaneous,” on page 61

viewset name “Process-Thread Sets,” on page 42

wait [any | all | none] “Process Control,” on page 39

wa[tch] expression [at line | in func] [if

(condition)] [do {commands}]

“Events,” on page 42

watchi expression [at addr | in func]

[if(condition)] [do {commands}]

“Events,” on page 42

whatis [name] “Symbols and Expressions,” on page

53

when [at line | in func] [if (condition)] do

{commands}

“Events,” on page 42

wheni [at addr | in func] [if(condition)] do

{commands}

“Events,” on page 42

w[here] [count] “Program Locations,” on page 49

whereis name “Symbols and Expressions,” on page

53

whichsets [p/t-set] “Process-Thread Sets,” on page 42

which name “Scope,” on page 56

/ / [string] / “Program Locations,” on page 49

? ?[string] ? “Program Locations,” on page 49

! History modification “Miscellaneous,” on page 61

^ History modification “Miscellaneous,” on page 61

PGDBG Command Reference
This section describes the PGDBG command set in detail, grouping the commands by these categories:

Process Control Program Locations Scope Conversions

Chapter 1. The PGDBG Debugger

39

Process-Thread Sets Printing Variables and

Expressions

Register Access Miscellaneous

Events Symbols and Expressions Memory Access

In addition to the notation rules outlined in“Notation Used in Command Sections,” on page 33, the

arguments here are in italics.

Process Control

The following commands, together with the breakpoints described in the next section, control the execution of

the target program. PGDBG lets you easily group and control multiple threads and processes. See “Process and

Thread Control” for more details.

attach
att[ach] pid [exe] | [exe host]

Attach to a running process with process ID pid. If the process is not running on the local host, then specify

the absolute path of the executable file exe and the host machine name host. For example, attach 1234

will attempt to attach to a running process whose process ID is 1234 on the local host. On a remote host, you

may enter something like attach 1234 /home/demo/a.out myhost. In this example, PGDBG tries to

attach to a process ID 1234 called /home/demo/a.out on a host named myhost.

PGDBG will attempt to infer the arguments of the attached target application. If PGDBG fails to infer the

argument list, then the program behavior is undefined if the run or rerun command is executed on the

attached process. This means that run and rerun should not be used for most attached MPI programs.

The stdio channel of the attached process remains at the terminal from which the program was originally

invoked.

cont
c[ont]

Continue execution from the current location.

debug
de[bug] [target [arg1 _ argn]]

Load the specified target program with optional command line arguments.

detach
det[ach]

Detach from the current running process.

halt
halt

Halt the running process or thread.

PGI® Tools Guide

40

next
n[ext] [count]

Stop after executing one source line in the current routine. This command steps over called routines. The

count argument stops execution only after executing count source lines.

nexti
nexti [count]

Stop after executing one instruction in the current routine. This command steps over called routines. The

count argument stops execution only after executing count instructions.

proc
proc [id]

Set the current process to the process identified by id. When issued with no argument, proc lists the current

program location of the current thread of the current process. See “Multi-Process MPI Debugging,” on page

76, for information on how processes are numbered.

procs
procs

Print the status of all active processes. Each process is listed by its logical process ID.

quit
q[uit]

Terminate the debugging session.

rerun
rer[un]
rer[un] [arg0 arg1 ... argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

The rerun command is the same as run except if no args are specified, the previously used target arguments

are not re-used.

run
ru[n]
ru[n] [arg0 arg1 ...argn] [< inputfile] [[> | >& | >> | >>&] outputfile]

Execute program from the beginning. If arguments arg0, arg1, and so on are specified, they are set up as the

command line arguments of the program. Otherwise, the arguments for the previous run command are used.

Standard input and standard output for the target program can be redirected using < or > and an input or

output filename.

step
s[tep]

Chapter 1. The PGDBG Debugger

41

s[tep] count
s[tep] up

Stop after executing one source line. This command steps into called routines. The count argument stops

execution after executing count source lines. The up argument stops execution after stepping out of the current

routine (see stepout). In a parallel region of code, step applies only to the currently active thread.

stepi
stepi
stepi count
stepi up

Stop after executing one instruction. This command steps into called routines. The count argument stops

execution after executing count instructions. The up argument stops the execution after stepping out of the

current routine (see stepout). In a parallel region of code, stepi applies only to the currently active thread.

stepout
stepo[ut]

Stop after returning to the caller of the current routine. This command sets a breakpoint at the current return

address, and does a continue. To work correctly, it must be possible to compute the value of the return

address. Some routines, particularly terminal (or leaf) routines at higher optimization levels, may not set up

a stack frame. Executing stepout from such a routine causes the breakpoint to be set in the caller of the most

recent routine that set up a stack frame. This command halts execution immediately upon return to the calling

routine.

sync/synci
sync
synci

Advance the current process/thread to a specific program location; ignoring any user defined events.

thread
thread [number]

Set the current thread to the thread identified by number; where number is a logical thread id in the current

process’ active thread list. When issued with no argument, thread lists the current program location of the

currently active thread.

threads
threads

Print the status of all active threads. Threads are grouped by process. Each process is listed by its logical

process id. Each thread is listed by its logical thread id.

wait
wait [any | all | none]

Return the PGDBG prompt only after specific processes or threads stop.

PGI® Tools Guide

42

Process-Thread Sets

The following commands deal with defining and managing process thread sets. See “Process/Thread Sets,” on

page 81, for a detailed discussion of process-thread sets.

defset
defset name [p/t-set]

Assign a name to a process/thread set. Define a named set. This set can later be referred to by name. A list of

named sets is stored by PGDBG.

focus
focus [p/t-set]

Set the target process/thread set for commands. Subsequent commands will be applied to the members of this

set by default.

undefset
undefset [name | -all]

Remove a previously defined process/thread set from the list of process/thread sets. The debugger-defined p/t-

set [all] cannot be removed.

viewset
viewset name

List the members of a process/thread set that currently exist as active threads or list defined p/t-sets.

whichsets
whichsets [p/t-set]

List all defined p/t-sets to which the members of a process/thread set belong.

Events

The following commands deal with defining and managing events. See “Parallel Events,” on page 94, for a

general discussion of events and the optional arguments.

break
b[reak]
b[reak] line [if condition)] [do {commands}]
b[reak] routine [if(condition)] [do {commands}]

When no arguments are specified, the break command prints the current breakpoints. Otherwise, set

a breakpoint at the indicated line or routine. If a routine is specified, and the routine was compiled for

debugging, then the breakpoint is set at the start of the first statement in the routine (after the routine’s

prologue code). If the routine was not compiled for debugging, then the breakpoint is set at the first

instruction of the routine, prior to any prologue code. This command interprets integer constants as line

numbers. To set a breakpoint at an address, use the addr command to convert the constant to an address, or

use the breaki command.

Chapter 1. The PGDBG Debugger

43

When a condition is specified with if, the breakpoint occurs only when the specified condition is true. If do is

specified with a command or several commands as an argument, the command or commands are executed

when the breakpoint occurs.

The following examples set breakpoints at line 37 in the current file, line 37 in file xyz.c, the first executable

line of routine main, address 0xf0400608, the current line, and the current address, respectively.

break 37

break "xyz.c"@37

break main

break {addr 0xf0400608}

break {line}

break {pc}

The following more sophisticated command stops when routine xyz is entered only if the argument n is

greater than 10.

break xyz if(xyz@n > 10)

The next command prints the value of n and performs a stack trace every time line 100 in the current file is

reached.

break 100 do {print n; stack}

breaki
breaki
breaki routine [if (condition)] [do {commands}]
breaki addr [if (condition)] [do {commands}]

When no arguments are specified, the breaki command prints the current breakpoints. Otherwise, set a

breakpoint at the indicated address or routine. If a routine is specified, the breakpoint is set at the first address

of the routine. This means that when the program stops at this breakpoint the prologue code which sets up

the stack frame will not yet have been executed, so values of stack arguments may not yet be correct. Integer

constants are interpreted as addresses. To specify a line, use the line command to convert the constant to a

line number, or use the break command.

The if and do arguments are interpreted in the same way as for the break command. The next set of examples

set breakpoints as indicated: at address 0xf0400608, line 37 in the current file, line 37 in file xyz.c, the

first executable address of routine main, the current line, and the current address, respectively:

breaki 0xf0400608
breaki {line 37}
breaki "xyz.c"@37
breaki main
breaki {line}
breaki {pc}

Similarly, when n is greater than 3, the following command stops and prints the new value of n at address

0x6480:

breaki 0x6480 if(n>3) do {print "n=", n}

PGI® Tools Guide

44

breaks
breaks

Display all the existing breakpoints.

catch
catch
catch [sig:sig]
catch [sig [, sig...]]

When no arguments are specified, the catch command prints the list of signals being caught. With the sig:sig

argument, catch the specified range of signals. With a list, catch signals with the specified number(s). When

signals are caught, PGDBG intercepts the signal and does not deliver it to the target application. The target runs

as though the signal was never sent.

clear
clear
clear all
clear routine
clear line
clear addr {addr}

When no arguments are specified, the clear command clears all breakpoints at the current location.

With all argument, clears all breakpoints. With routine argument, clears all breakpoints from first

statement in the specified routine named routine. With line number argument, clears breakpoints from line

number line. With address specified, clears breakpoints from the address addr.

When no arguments are specified, the clear command clears all breakpoints at the current location.

delete
del[ete] event-number
del[ete] 0
del[ete] all
del[ete] event-number [, event-number...]

Delete the event event-number or all events (delete 0 is the same as delete all). Multiple event numbers can be

supplied if they are separated by commas.

disable
disab[le]
disab[le] event-number
disab[le] all

When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command disables the event event-number or all events. Disabling an event definition

suppresses actions associated with the event, but leaves the event defined so that it can be used later.

do
do {commands} [if (condition)]
do {commands} at line [if (condition)]

Chapter 1. The PGDBG Debugger

45

do {commands} in routine [if (condition)]

Define a do event. This command is similar to watch except that instead of defining an expression, it defines a

list of commands to be executed. Without the optional arguments at or in, the commands are executed at each

line in the program. The at argument with a line specifies the commands to be executed each time that line is

reached. The in argument with a routine specifies the commands are executed at each line in the routine. The

if option has the same meaning as in watch. If a condition is specified, the do commands are executed only

when condition is true.

doi
doi {commands} [if (condition)]
doi {commands} at addr [if (condition)]
doi {commands} in routine [if (condition)]

Define a doi event. This command is similar to watchi except that instead of defining an expression, it defines a

list of commands to be executed. If an address (addr) is specified, then the commands are executed each time

that the specified address is reached. If a routine (routine) is specified, then the commands are executed at

each instruction in the routine. If neither is specified, then the commands are executed at each instruction in

the program. The if option has the same meaning as for the do command above.

enable
enab[le] event-number | all

When no arguments are specified, the disable command prints both enabled and disabled events.

With arguments, this command enables the event event-number or all events.

hwatch
hwatch addr | var [if (condition)] [do {commands}]

Define a hardware watchpoint. This command uses hardware support to create a watchpoint for a particular

address or variable. The event is triggered by hardware when the byte at the given address is written. This

command is only supported on systems that provide the necessary hardware and software support.

Note

Only one hardware watchpoint can be defined at a time.

When the if option is specified, the event action will only be triggered if the expression is true. When the do

option is specified, then the commands will be executed when the event occurs.

hwatchr
hwatchr[ead] addr | var [if (condition)] [do {commands}]

Define a hardware read watchpoint. This event is triggered by hardware when the byte at the given address

or variable is read. As with hwatch, system hardware and software support must exist for this command to be

supported. The if and do options have the same meaning as for the hwatch command.

hwatchb
hwatchb[oth] addr | var [if (condition)] [do {commands}]

PGI® Tools Guide

46

Define a hardware read/write watchpoint. This event is triggered by hardware when the byte at the given

address or variable is either read or written. As with hwatch, system hardware and software support must exist

for this command to be supported. The if and do options have the same meaning as for the hwatch command.

ignore
ignore
ignore [sig:sig]
ignore [sig [, sig...]]

When no arguments are specified, the ignore command will print the list of signals being ignored. With the

sig:sig argument it will ignore the specified range of signals, and with a list of signals it will ignore signals with

the specified number. When a particular signal number is ignored, signals with that number sent to the target

application are not intercepted by PGDBG. They are delivered to the target. See also catch.

status
stat[us]

Display all the event definitions, including an event number by which the event can be identified.

stop
stop varstop at line [if (condition)][do {commands}] stop in routine [if
(condition)][do {commands}]
stop if (condition)

Set a breakpoint at the indicated routine or line. Break when the value of the indicated variable var changes.

The at keyword and a number specifies a line number. The in keyword and a routine name specifies the first

statement of the specified routine. With the if keyword, the debugger stops when the condition is true.

stopi
stopi var
stopi at address [if (condition)][do {commands}]
stopi in routine [if (condition)][do {commands}]
stopi if (condition)

Set a breakpoint at the indicated address or routine. Break when the value of the indicated variable var

changes. The at keyword and a number specifies an address to stop at. The in keyword and a routine name

specifies the first address of the specified routine to stop at. With the if keyword, the debugger stops when

condition is true.

track
track expression [at line | in func] [if (condition)][do {commands}]

Define a track event. This command is equivalent to watch except that execution resumes after the new value of

the expression is printed.

tracki
tracki expression [at addr | in func] [if (condition)][do {commands}]

Define an instruction level track event. This command is equivalent to watchi except that execution resumes

after the new value of the expression is printed.

Chapter 1. The PGDBG Debugger

47

trace
trace var [if (condition)][do {commands}]
trace routine [if (condition)][do {commands}]
trace at line [if (condition)][do {commands}]
trace in routine [if (condition)][do {commands}]

With the var argument, activate source line tracing when var changes. When a routine is specified, activate

source line tracing and trace when in subprogram routine. With the at keyword, activate source line tracing

to display the specified line each time it is executed. With in, activate source line tracing when in the specified

routine. If condition is specified, trace is on only if the condition evaluates to true. The do keyword defines

a list of commands to execute at each trace point. Use the command pgienv speed secs to set the time in

seconds between trace points. Use the clear command to remove tracing for a line or routine.

tracei
tracei var [if (condition)][do {commands}]
tracei routine [if (condition)][do {commands}]
tracei at addr [if (condition)][do {commands}]
tracei in routine [if (condition)][do {commands}]

With the var argument, activate instruction tracing when var changes. When a routine is specified, activate

instruction tracing and trace when in subprogram routine. With the at keyword, activate instruction tracing

to display the specified line each time it is executed. With in, activate instruction tracing when in the specified

routine. If condition is specified, trace is on only if the condition evaluates to true. The do keyword defines

a list of commands to execute at each trace point.

Use the command pgienv speed secs to set the time in seconds between trace points. Use the clear

command to remove tracing for a line or routine.

unbreak
unb[reak] line
unb[reak] routine
unb[reak] all

Remove a breakpoint from the statement line, the routine routine, or remove all breakpoints.

unbreaki
unbreaki addr
unbreaki routine
unbreaki all

Remove a breakpoint from the address addr, the routine routine, or remove all breakpoints.

watch
wa[tch] expression
wa[tch] expression [if (condition)][do {commands}]
wa[tch] expression at line [if (condition)][do {commands}]
wa[tch] expression in routine [if (condition)][do {commands}]

Define a watch event. The given expression is evaluated, and subsequently, each time the value of the

expression changes, the program stops and the new value is printed. If a particular line is specified, the

PGI® Tools Guide

48

expression is only evaluated at that line. If a routine routine is specified, the expression is evaluated at each

line in the routine. If no location is specified, the expression will be evaluated at each line in the program. If a

condition is specified, the expression is evaluated only when the condition is true. If commands are specified,

they are executed whenever the expression is evaluated and the value changes.

The watched expression may contain local variables, although this is not recommended unless a routine or

address is specified to ensure that the variable will only be evaluated when it is in the current scope.

NOTE

Using watchpoints indiscriminately can dramatically slow program execution.

Using the at and in options speeds up execution by reducing the amount of single-stepping and expression

evaluation that must be performed to watch the expression. For example:

watch i at 40

will barely slow program execution at all, while

watch i

will slow execution considerably.

watchi
watchi expression
watchi expression [if (condition)][do {commands}]
watchi expression at addr [if (condition)][do {commands}]
watchi expression in routine [if (condition)][do {commands}]

Define an instruction level watch event. This is just like the watch command except that the at option interprets

integers as addresses rather than line numbers and the expression is evaluated at every instruction rather

than at every line.

This command is useful if line number information is limited (i.e. code not compiled ‘-g’ or assembly code). It

causes programs to execute more slowly than watch.

when
when do {commands} [if (condition)]
when at line do {commands} [if (condition)]
when in routine do {commands} [if (condition)]

Execute commands at every line in the program, at a specified line in the program or in the specified routine.

If the optional condition is specified, commands are executed only when the expression evaluates to true.

wheni
wheni do {commands} [if (condition)]
wheni at addr do {commands} [if (condition)]
wheni in routine do {commands} [if (condition)]

Execute commands at each address in the program. If an addr is specified, the commands are executed each

time the address is reached. If a routine is specified, the commands are executed at each line in the routine. If

the optional condition is specified, commands are executed whenever the expression is evaluated true.

Chapter 1. The PGDBG Debugger

49

Events can be parallelized across multiple threads of execution. See “Parallel Events,” on page 94, for

details.

Program Locations

This section describes PGDBG program location commands.

arrive
arri[ve]

Print location information for the current location.

cd
cd [dir]

Change to the $HOME directory or to the specified directory dir.

disasm
dis[asm]
dis[asm] count
dis[asm] lo:hi
dis[asm] routine
dis[asm] addr, count

Disassemble memory. If no argument is given, disassemble four instructions starting at the current address. If

an integer count is given, disassemble count instructions starting at the current address. If an address range

(lo:hi) is given, disassemble the memory in the range. If a routine name is given, disassemble the entire

routine. If the routine was compiled for debugging (-g), and source code is available, the source code will be

interleaved with the disassembly. If an address and a count are given, disassemble count instructions starting at

address addr.

edit
edit
edit filename
edit routine

If no argument is supplied, edit the current file starting at the current location. With a filename argument, edit

the specified file filename. With the func argument, edit the file containing routine routine. This command uses

the editor specified by the environment variable $EDITOR.

In the PGDBG GUI, command line editors like vi are launched in the Program I/O Window. On Windows

platforms, arguments to the editor may need to be quoted to account for spaces in pathnames.

file

file [filename]

Change the source file to the file filename and change the scope accordingly. With no argument, print the

current file.

lines

lines routine

PGI® Tools Guide

50

Print the lines table for the specified routine.

list
lis[t]
lis[t] count
lis[t] line,num
lis[t] lo:hi
lis[t] routine

With no argument, list 10 lines centered at the current source line. If a count is given, list count lines centered

at the current source line. If a line and count are given, list number lines starting at line number line. In dbx

mode, this option lists lines from start to number. If a line range is given, list the indicated source lines in the

current source file (this option is not valid in the dbx environment). If a routine name is given, list the source

code for the indicated routine.

pwd
pwd

Print the current working directory.

stacktrace
stack[trace] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if

that information is available). This command also prints the names and values of the arguments, if available. If

a count is specified, display a maximum of count stack frames.

stackdump
stackd[ump] [count]

Print a formatted dump of the stack. This command displays a hex dump of the stack frame for each active

routine. This command is a machine-level version of the stacktrace command. If a count is specified, display a

maximum of count stack frames.

where
w[here] [count]

Print a stacktrace. For each active routine print the routine name, source file, line number, current address (if

that information is available). This command also prints the names and values of the arguments, if available. If

a count is specified, display a maximum of count stack frames.

/ (search forward)
/ [string] [/]

Search forward for a string (string) of characters in the current source file. With just /, search for the next

occurrence of string in the current source file.

? (search backward)
 ?[string] [?]

Chapter 1. The PGDBG Debugger

51

Search backward for a string (string) of characters in the current source file. With just ?, search for the

previous occurrence of string in the current source file.

Printing Variables and Expressions

This section describes PGDBG commands used for printing and setting variables.

print
p[rint] exp1 [,...expn]

Evaluate and print one or more expressions. This command is invoked to print the result of each line of

command input. Values are printed in a format appropriate to their type. For values of structure type, each

field name and value is printed. Character pointers are printed as a hex address followed by the character

string.

Character string constants print out literally using a comma-separated list. For example:

pgdbg> print "The value of i is ", i

Prints this:

"The value of i is", 37

The array sub-range operator : prints a range of an array. The following examples print elements 0 through 9

of the array a:

C/C++ example 1:

pgdbg> print a[0:9]
a[0:4]: 0 1 2 3 4
a[5:9]: 5 6 7 8 9

FORTRAN example 1:

pgdbg> print a(0:9)
a(0:4): 0 1 2 3 4
a(5:9): 5 6 7 8 9

Note that the output is formatted and annotated with index information. PGDBG formats array output into

columns. For each row, the first column prints an index expression which summarizes the elements printed

in that row. Elements associated with each index expression are then printed in order. This is especially useful

when printing slices of large multidimensional arrays.

PGDBG also supports strided array expressions. Below are examples for C/C++ and FORTRAN.

C/C++ example 2:

pgdbg> print a[0:9:2]
a[0:8] 0 2 4 6 8

FORTRAN example 2:

pgdbg> print a(0:9:2)
a(0:8): 0 2 4 6 8

The print statement may be used to display members of derived types in FORTRAN or structures in C/C++.

Below are examples.

PGI® Tools Guide

52

C/C++ example 3:

 typedef struct tt {
 int a[10];
 }TT;
 TT d = {0,1,2,3,4,5,6,7,8,9};
 TT * p = &d;

 pgdbg> print d.a[0:9:2]
 d.a[0:8:2]: 0 2 4 6 8

 pgdbg> print p->a[0:9:2]
 p->a[0:7:2]: 0 2 4 6
 p->a[8]: 8

FORTRAN example 3:

 type tt
 integer, dimension(0:9) :: a
 end type
 type (tt) :: d
 data d%a / 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 /

 pgdbg> print d%a(0:9:2)
 d%a(0:8:2): 0 2 4 6 8

printf
printf "format_string", expr,...expr

Print expressions in the format indicated by the format string. Behaves like the C library function printf. For

example:

pgdbg> printf "f[%d]=%G",i,f[i]
f[3]=3.14

The pgienv command with the stringlen argument sets the maximum number of characters that will print with

a print command. For example, the char declaration below:

char *c="a whole bunch of chars over
1000 chars long....";

By default, the print c command will only print the first 512 (or stringlen) bytes. Printing of C strings is usually

terminated by the terminating null character. This limit is a safeguard against unterminated C strings.

ascii

asc[ii] exp [,...exp]

Evaluate and print as an ascii character. Control characters are prefixed with the '^' character; for example, 3

prints as ^c. Otherwise, values that can not be printed as characters are printed as integer values prefixed by

`\'. For example, 250 prints as \250.

bin

bin exp [,...exp]

Evaluate and print the expressions. Integer values are printed in binary.

Chapter 1. The PGDBG Debugger

53

dec
dec exp [,...exp]

Evaluate and print the expressions. Integer values are printed in decimal.

display
display
display exp [,...exp]

Without arguments, list the expressions for PGDBG to automatically display at breakpoints. With an argument

or several arguments, print expression exp at every breakpoint. See also: undisplay.

hex
hex exp [,...exp]

Evaluate and print expressions as hexadecimal integers.

oct
oct exp [,...exp]

Evaluate and print expressions as octal integers.

string
str[ing] exp [,...exp]

Evaluate and print expressions as null-terminated character strings. This command will print a maximum of 70

characters.

undisplay
undisplay 0
undisplay all
undisplay exp [,...exp]

Remove all expressions specified by previous display commands. With an argument or several arguments,

remove the expression exp from the list of display expressions.

Symbols and Expressions

This section describes the commands that deal with symbols and expressions.

assign
as[sign] var = exp

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly for the

current scope. For example, given a C variable declared ‘int * i’, the command ‘set *i = 9999’ could be used to

assign the value 9999 to it.

call
call routine [(exp,...)]

PGI® Tools Guide

54

Call the named routine. C argument passing conventions are used. Breakpoints encountered during execution

of the routine are ignored. Fortran functions and subroutines can be called, but the argument values will

be passed according to C conventions. PGDBG may not always be able to access the return value of a

Fortran function if the return value is an array. In the example below, PGDBG calls the routine foo with four

arguments:

pgdbg> call foo(1,2,3,4)

If a signal is caught during execution of the called routine, PGDBG will stop the execution and ask if you want

to cancel the call command. For example, suppose a command is issued to call foo as shown above, and for

some reason a signal is sent to the process while it is executing the call to foo. In this case, PGDBG will print

the following prompt:

PGDBG Message: Thread [0] was signalled
while executing a function reachable from the most recent PGDBG
command line call to foo. Would you like to cancel this command
line call? Answering yes will revert the register state of Thread [0] back
to the state it had prior to the last call to foo from the command
line. Answering no will leave Thread [0] stopped
in the call to foo from the command line
Please enter 'y' or 'n' > y
Command line call to foo cancelled

Answering yes to this question will return the register state of each thread back to the state they had before

invoking the call command. Answering no to this question will leave each thread at the point they were at when

the signal occurred.

Note: Answering no to this question and continuing execution of the called routine may produce unpredictable

results.

declaration
decl[aration] name

Print the declaration for the symbol based on its type according to symbol table. The symbol must be a

variable, argument, enumeration constant, routine, a structure, union, enum, or typedef tag.

For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

the decl command will provide the following output:

pgdbg> decl I
int i
pgdbg> decl iar
int iar[10]
pgdbg> decl val
struct abc val

pgdbg> decl abc
struct abc {
 int a;
 char b[4];
 struct abc *c;
};

Chapter 1. The PGDBG Debugger

55

entry
entr[y]
entr[y] routine

Return the address of the first executable statement in the program or specified routine. This is the first

address after the routine's prologue code.

lval
lv[al] expr

Return the lvalue of the expression expr. The lvalue of an expression is the value it would have if it appeared

on the left hand of an assignment statement. Roughly speaking, an lvalue is a location to which a value can be

assigned. This may be an address, a stack offset, or a register.

rval
rv[al] expr

Return the rvalue of the expression expr. The rvalue of an expression is the value it would have if it appeared

on the right hand of an assignment statement. The type of the expression may be any scalar, pointer, structure,

or function type.

set
set var=expression

Set variable var to the value of expression. The variable var can be any valid identifier accessed properly for the

current scope. For example, given a C variable declared ‘int * i’, the command ‘set *i = 9999’ could be used to

assign the value 9999 to it.

sizeof
siz[eof] name

Return the size, in bytes, of the variable type name. If name refers to a routine, sizeof will return the size in

bytes of the subprogram.

type
type expr

Return the type of the expression. The expression may contain structure reference operators (. , and ->),

dereference (*), and array index ([]) expressions. For example, given the C declarations:

int i, iar[10];
struct abc {int a; char b[4]; struct
abc *c;}val;

the type command will provide the following output:

pgdbg> type i
int
pgdbg> type iar
int [10]
pgdbg> type val
struct abc

PGI® Tools Guide

56

pgdbg> type val.a
int

pgdbg> type val.abc->b[2]
char

pgdbg> whatis
whatis name

With no arguments, print the declaration for the current routine. With argument name, print the declaration

for the symbol name.

Scope

The following commands deal with program scope. See “Scope Rules,” on page 27, for a discussion of

scope meaning and conventions.

decls
decls routine
decls "sourcefile"
decls {global}

Print the declarations of all identifiers defined in the indicated scope. If no scope is given, print the

declarations for global scope.

down
down [number]

Enter scope of routine down one level or number levels on the call stack.

enter
en[ter]
en[ter] routine
en[ter] "sourcefile"
en[ter] {global}

Set the search scope to be the indicated symbol, which may be a routine, source file or global. Using enter with

no argument is the same as using enter global.

files
files

Return the list of known source files used to create the executable file.

global
glob[al]

Return a symbol representing global scope. This command is useful in combination with the scope operator @

to specify symbols with global scope.

names
names

Chapter 1. The PGDBG Debugger

57

names routine
names "sourcefile"
names {global}

Print the names of all identifiers defined in the indicated scope. If no scope is specified, use the search scope.

scope
sco[pe]

Return a symbol for the search scope. The search scope is set to the current routine each time program

execution stops. It may also be set using the enter command. The search scope is always searched first for

symbols.

up
up [number]

Enter scope of routine up one level or number levels on the call stack.

whereis
whereis name

Print all declarations for name.

which
which name

Print full scope qualification of symbol name.

Register Access

System registers can be accessed by name. See “Register Symbols,” on page 66, for the complete set

of registers and how to refer to them in PGDBG. A few commands exist for convenient access to common

registers.

fp
fp

Return the current value of the frame pointer.

pc
pc

Return the current program address.

regs
regs [format]

Print a formatted display of the names and values of the integer, float, and double registers. If the format

parameter is omitted, then PGDBG will print all of the registers. Otherwise, regs accepts the following optional

parameters:

PGI® Tools Guide

58

f

Print floats as single precision values (default)

d

Print floats as double precision values

x

Add hexadecimal representation of float values

retaddr
ret[addr]

Return the current return address.

sp
sp

Return the current value of the stack pointer.

Memory Access

The following commands display the contents of arbitrary memory locations. Note that for each of these

commands, the addr argument may be a variable or identifier.

cread
cr[ead]addr

Fetch and return an 8-bit signed integer (character) from the specified address.

dread
dr[ead]addr

Fetch and return a 64 bit double from the specified address.

dump
du[mp] address, count, "format-string"

This command dumps the contents of a region of memory. The output is formatted according to a printf-like

format descriptor. Starting at the indicated address, values are fetched from memory and displayed according

to the format descriptor. This process is repeated count times.

Interpretation of the format descriptor is similar to printf. Format specifiers are preceded by %.

The meaning of the recognized format descriptors is as follows:

 %d, %D, %o, %O, %x, %X, %u, %U

Fetch and print integral values as decimal, octal, hex, or unsigned. Default size is machine dependent. The size

of the item read can be modified by either inserting 'h', or 'l' before the format character to indicate half word

or long word. For example, if your machine’s default size is 32-bit, then %hd represents a 16-bit quantity.

Alternatively, a 1, 2, or 4 after the format character can be used to specify the number of bytes to read.

Chapter 1. The PGDBG Debugger

59

%c

Fetch and print a character.

 %f, %F, %e, %E, %g, %G

Fetch and print a float (lower case) or double (upper case) value using printf f, e, or g format.

 %s

Fetch and print a null terminated string.

%p<format-chars>

Interpret the next object as a pointer to an item specified by the following format characters. The pointed-to

item is fetched and displayed. Examples:

 %px

Pointer to int. Prints the value of the pointer, the pointed-to address, and the contents of the pointed-to

address, which is printed using hexadecimal format.

 %i

Fetch an instruction and disassemble it.

 %w, %W

Display address about to be dumped.

 %z<n>, %Z<n>, %z<-n>, %Z<-n>

Display nothing but advance or decrement current address by n bytes.

 %a<n>, %A<n>

Display nothing but advance current address as needed to align modulo n.

fread
fr[ead]addr

Fetch and print a 32-bit float from the specified address.

iread
ir[ead] addr

Fetch and print a signed integer from the specified address.

lread
lr[ead] addr

Fetch and print an address from the specified address.

mqdump
mq[dump]

PGI® Tools Guide

60

Dump MPI message queue information for the current process. Refer to “MPI Message Queues,” on page

99, for more information on mqdump.

sread
sr[ead]addr

Fetch and print a short signed integer from the specified address.

Conversions

The commands in this section are useful for converting between different kinds of values. These commands

accept a variety of arguments, and return a value of a particular kind.

addr
ad[dr]
ad[dr] n
ad[dr] line
ad[dr] routine
ad[dr] var
ad[dr] arg

Create an address conversion under these conditions:

• If an integer is given return an address with the same value.

• If a line is given, return the address corresponding to the start of that line.

• If a routine is given, return the first address of the routine.

• If a variable or argument is given, return the address where that variable or argument is stored.

For example:

breaki {line {addr 0x22f0}}

function
func[tion]
func[tion] addr
func[tion] line

Return a routine symbol. If no argument is specified, return the current routine. If an address is given, return

the routine containing addr. An integer argument is interpreted as an address. If a line is specified, return the

routine containing that line.

line
lin[e]
lin[e] nlin[e] routinelin[e] addr

Create a source line conversion. If no argument is given, return the current source line. If an integer n is given,

return it as a line number. If a routine is given, return the first line of the routine. If an address addr is given,

return the line containing that address.

Chapter 1. The PGDBG Debugger

61

For example, the following command returns the line number of the specified address:

line {addr 0x22f0}

Miscellaneous

The following commands provide shortcuts, mechanisms for querying, customizing and managing the PGDBG

environment, and access to operating system features.

alias

al[ias]
al[ias] name
al[ias] name string

Create or print aliases. If no arguments are given print all the currently defined aliases. If just a name is given,

print the alias for that name. If a name and string are given, make name an alias for string. Subsequently,

whenever name is encountered it will be replaced by string. Although string may be an arbitrary string, name

must not contain any space characters.

For example:

alias xyz print "x= ",x,"y= ",y,"z= ",z;
cont

creates an alias for xyz. Now whenever xyz is typed, PGDBG will respond as though the following command was

typed:

print "x= ",x,"y= ",y,"z= ",z;
cont

directory

dir[ectory] [pathname]

Add the directory pathname to the search path for source files. If no argument is specified, the currently

defined directories are printed. This command assists in finding source code that may have been moved or is

otherwise not found by the default PGDBG search mechanisms.

For example:

dir morestuff

adds the directory morestuff to the list of directories to be searched. Now, source files stored in morestuff are

accessible to PGDBG.

If the first character in pathname is ~, it will be substituted by $HOME.

help

help [command]

If no argument is specified, print a brief summary of all the commands. If a command name is specified, print

more detailed information about the use of that command.

PGI® Tools Guide

62

history
history [num]

List the most recently executed commands. With the num argument, resize the history list to hold num

commands.

History allows several characters for command substitution:

!! [modifier] Execute the previous command

! num [modifier] Execute command number num

!-num [modifier] Execute command -num from the most current command

!string [modifier] Execute the most recent command starting with string

!?string? [modifier] Execute the most recent command containing string

^ Quick history command substitution

^old^new^<modifier> this is equivalent to !:s/old/new/

The history modifiers may be:

:s/old/new/

Substitute the value new for the value old.

:p

Print but do not execute the command.

The command pgienv history off tells the debugger not to display the history record number. The command

pgienv history on tells the debugger to display the history record number.

language
language

Print the name of the language of the current file.

log
log filename

Keep a log of all commands entered by the user and store it in the named file. This command may be used in

conjunction with the script command to record and replay debug sessions.

noprint
nop[rint] exp

Evaluate the expression but do not print the result.

pgienv
pgienv [command]

Chapter 1. The PGDBG Debugger

63

Define the debugger environment. With no arguments, display the debugger settings.

help pgienv Provide help on pgienv

pgienv Display the debugger settings

pgienv dbx on Set the debugger to use dbx style commands

pgienv dbx off Set the debugger to use pgi style commands

pgienv history on Display the `history' record number with prompt

pgienv history off Do NOT display the `history' number with prompt

pgienv exe none Ignore executable’s symbolic debug information

pgienv exe symtab Digest executable’s native symbol table (typeless)

pgienv exe demand Digest executable’s symbolic debug information incrementally on

command

pgienv exe force Digest executable’s symbolic debug information when executable

is loaded

pgienv solibs none Ignore symbolic debug information from shared libraries

pgienv solibs symtab Digest native symbol table (typeless) from each shared library

pgienv solibs demand Digest symbolic debug information from shared libraries

incrementally on demand

pgienv solibs force Digest symbolic debug information from each shared library at

load time

pgienv mode serial Single thread of execution (implicit use of p/t-sets)

pgienv mode thread Debug multiple threads (condensed p/t-set syntax)

pgienv mode process Debug multiple processes (condensed p/t-set syntax)

pgienv mode multilevel Debug multiple processes and multiple threads

pgienv omp [on|off] Enable/Disable the PGDBG OpenMP event handler. This option

is disabled by default. The PGDBG OpenMP event handler,

when enabled, sets breakpoints at the beginning and end of

each parallel region. Breakpoints are also set at each thread

synchronization point. The handler coordinates threads across

parallel constructs to maintain source level debugging. This

option, when enabled, may significantly slow down program

performance. Enabling this option is recommended for localized

debugging of a particular parallel region only.

pgienv prompt <name> Set the command line prompt to <name>

pgienv promptlen <num> Set maximum size of p/t-set portion of prompt

pgienv speed <secs> Set the time in seconds <secs> between trace points

pgienv stringlen <num> Set the maximum # of chars printed for `char *'s

pgienv termwidth <num> Set the character width of the display terminal.

PGI® Tools Guide

64

pgienv logfile <name> Close logfile (if any) and open new logfile <name>

pgienv threadstop sync When one thread stops, the rest are halted in place

pgienv threadstop async Threads stop independently (asynchronously)

pgienv procstop sync When one process stops, the rest are halted in place

pgienv procstop async Processes stop independently (asynchronously)

pgienv threadstopconfig auto For each process, debugger sets thread stopping mode to 'sync' in

serial regions, and 'async' in parallel regions

pgienv threadstopconfig user Thread stopping mode is user defined and remains unchanged by

the debugger.

pgienv procstopconfig auto Not currently used.

pgienv procstopconfig user Process stop mode is user defined and remains unchanged by the

debugger.

pgienv threadwait none Prompt available immediately; no wait for running threads

pgienv threadwait any Prompt available when at least a single thread stops

pgienv threadwait all Prompt available only after all threads have stopped

pgienv procwait none Prompt available immediately; no wait for running processes

pgienv procwait any Prompt available when at least a single process stops

pgienv procwait all Prompt available only after all processes have stopped

pgienv threadwaitconfig auto For each process, the debugger will set the thread wait mode to

‘all’ in serial regions and ‘none’ in parallel regions. (default)

pgienv threadwaitconfig user The thread wait mode is user defined and will remain unchanged

by the debugger.

Choose which debug status messages to report. Accepts an integer

valued bit mask of the following values:

• 0x1 - Standard messaging (default). Report status information

on current process/thread only.

• 0x2 - Thread messaging. Report status information on all

threads of (current) processes.

• 0x4 - Process messaging. Report status information on all

processes.

• 0x8 - OpenMP messaging (default). Report OpenMP events.

• 0x10 - Parallel messaging (default). Report parallel events.

• 0x20 - Symbolic debug information. Report any errors

encountered while processing symbolic debug information

(e.g. STABS, DWARF). Pass 0x0 to disable all messages.

pgienv verbose <bitmask>

• Pass 0x0 to disable all messages.

repeat
rep[eat] [first, last]

Chapter 1. The PGDBG Debugger

65

rep[eat] [first,:last:n]
rep[eat] [num]
rep[eat] [-num]

Repeat the execution of one or more previous history list commands. With the num argument, re-execute the

command number num, or with -num, the last num commands. With the first and last arguments, re-execute

commands number first to last (optionally n times).

script

scr[ipt] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~

before the filename, it is expanded to the value of the environment variable HOME.

setenv

setenv name
setenv name value

Print value of environment variable name. With a specified value, set name to value.

shell

shell [arg0, arg1,... argn]

Fork a shell (defined by $SHELL) and give it the indicated arguments (the default shell is sh). If no arguments

are specified, an interactive shell is invoked, and executes until a "^D" is entered.

sleep

sle[ep] [time]

Pause for time seconds. If no time is specified, pause for one second.

source

sou[rce] filename

Open the indicated file and execute the contents as though they were entered as commands. If you use ~

before the filename, it is expanded to the value of $HOME.

unalias

unal[ias] name

Remove the alias definition for name, if one exists.

use

use [dir]

PGI® Tools Guide

66

Print the current list of directories or add dir to the list of directories to search. If the first character in

pathname is ~, it will be substituted with the value of $HOME.

Signals
PGDBG intercepts all signals sent to any of the threads in a multi-threaded program and passes them on

according to that signal's disposition as maintained by PGDBG (see the catch and ignore commands), except

for signals that cannot be intercepted or signals used internally by PGDBG.

Control-C

If the target application is not running, control-C can be used to interrupt long-running PGDBG commands.

For example, a command requesting disassembly of thousands of instructions might run for a long time, and it

can be interrupted by control-C. In such cases the target application is not affected.

If the target application is running, entering control-C at the PGDBG command prompt will halt execution of

the target. This is useful in cases where the target “hangs” due to an infinite loop or deadlock,

Sending a SIGINT (control-C) to a program while it is in the middle of initializing its threads (calling

omp_set_num_threads(), or entering a parallel region) may kill some of the threads if the signal is sent

before each thread is fully initialized. Avoid sending SIGINT in these situations. Note that when the number of

threads employed by a program is large, thread initialization may take a while.

Sending SIGINT (control-C) to a running MPI program is not recommended. See “MPI Listener Processes,”

on page 100, for details. Use the PGDBG halt command as an alternative to sending SIGINT to a running

program. The PGDBG command prompt must be available in order to issue a halt command. The PGDBG

command prompt is available while threads are running if pgienv threadwait none is set.

Signals Used Internally by PGDBG

SIGTRAP and SIGSTOP are used by Linux for communication of application events to PGDBG. Management of

these signals is internal to PGDBG. Changing the disposition of these signals in PGDBG (via catch and ignore)

will result in undefined behavior.

Signals Used by Linux Libraries

Some Linux thread libraries use SIGRT1 and SIGRT3 to communicate among threads internally. Other Linux

thread libraries, on systems that do not have support for real-time signals in the kernel, use SIGUSR1 and

SIGUSR2. Changing the disposition of these signals in PGDBG (via catch and ignore) will result in undefined

behavior.

Target applications built for sample-based profiling (compiled with ‘-pg’) generate numerous SIGPROF

signals. Although SIGPROF can be handled by PGDBG, debugging of applications built for sample-based

profiling is not recommended.

Register Symbols
This section describes the register symbols defined for X86 processors and EM64T/AMD64 processors

operating in compatibility or legacy mode.

Chapter 1. The PGDBG Debugger

67

X86 Register Symbols

This section describes the X86 register symbols.

Table 1.4. General Registers

Name Type Description
$edi unsigned General purpose

$esi unsigned General purpose

$eax unsigned General purpose

$ebx unsigned General purpose

$ecx unsigned General purpose

$edx unsigned General purpose

Table 1.5. x87 Floating-Point Stack Registers

Name Type Description
$d0 - $d7 80-bit IEEE Floating-point

Table 1.6. Segment Registers

Name Type Description
$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

Table 1.7. Special Purpose Registers

Name Type Description
$ebp 32-bit unsigned Frame pointer

$efl 32-bit unsigned Flags register

$eip 32-bit unsigned Instruction pointer

$esp 32-bit unsigned Privileged-mode stack pointer

$uesp 32-bit unsigned User-mode stack pointer

AMD64/EM64T Register Symbols

This section describes the register symbols defined for AMD64/EM64T processors operating in 64-bit mode.

PGI® Tools Guide

68

Table 1.8. General Registers

Name Type Description
$r8 - $r15 64-bit unsigned General purpose

$rdi 64-bit unsigned General purpose

$rsi 64-bit unsigned General purpose

$rax 64-bit unsigned General purpose

$rbx 64-bit unsigned General purpose

$rcx 64-bit unsigned General purpose

$rdx 64-bit unsigned General purpose

Table 1.9. Floating-Point Registers

Name Type Description
$d0 - $d7 80-bit IEEE Floating-point

Table 1.10. Segment Registers

Name Type Description
$gs 16-bit unsigned Segment register

$fs 16-bit unsigned Segment register

$es 16-bit unsigned Segment register

$ds 16-bit unsigned Segment register

$ss 16-bit unsigned Segment register

$cs 16-bit unsigned Segment register

Table 1.11. Special Purpose Registers

Name Type Description
$ebp 64-bit unsigned Frame pointer

$rip 64-bit unsigned Instruction pointer

$rsp 64-bit unsigned Stack pointer

$eflags 64-bit unsigned Flags register

Chapter 1. The PGDBG Debugger

69

Table 1.12. SSE Registers

Name Type Description
$mxcsr 64-bit unsigned SIMD floating-point control

$xmm0 - $xmm15 Packed 4x32-bit IEEE

Packed 2x64-bit IEEE

SSE floating-point registers

SSE Register Symbols

On AMD64/EM64T, Pentium III, and compatible processors, an additional set of SSE (Streaming SIMD

Enhancements) registers and a SIMD floating-point control and status register are available.

Each SSE register may contain four IEEE 754 compliant 32-bit single-precision floating-point values. The

PGDBG regs command reports these values individually in both hexadecimal and floating-point format. PGDBG

provides syntax to refer to these values individually, as members of a range, or all together. There is no

support for SSE2 or packed integers.

The component values of each SSE register can be accessed using the same syntax that is used for array

subscripting. Pictorially, the SSE registers can be thought of as follows:

127 96 95 64 63 32 31 0

$xmm0(3) $xmm0(2) $xmm0(1) $xmm0(0)

$xmm1(3) $xmm1(2) $xmm1(1) $xmm1(0)

$xmm7(3) $xmm7(2) $xmm7(1) $xmm7(0)

To access a $xmm0(3), the 32-bit single-precision floating point value that occupies bits 96 – 127 of SSE

register 0, use the following PGDBG command:

 pgdbg> print $xmm0(3)

To set $xmm2(0) to the value of $xmm3(2), use the following PGDBG command:

 pgdbg> set $xmm2(3) = $xmm3(2)

SSE registers can be subscripted with range expressions to specify runs of consecutive component values, and

access an SSE register as a whole. For example, the following are legal PGDBG commands:

 pgdbg> set $xmm0(0:1) = $xmm1(2:3)
 pgdbg> set $xmm6 = 1.0/3.0

The first command above initializes elements 0 and 1 of $xmm0 to the values in elements 2 and 3 respectively

in $xmm1. The second command above initializes all four elements of $xmm6 to the constant 1.0/3.0

evaluated as a 32-bit floating-point constant.

In most cases, PGDBG detects when the target environment supports the SSE registers. In the the event PGDBG

does not allow access to SSE registers on a system that should have them, set the PGDBG_SSE environment

variable to `on’ to enable SSE support.

PGI® Tools Guide

70

Debugging Fortran

Fortran Types

PGDBG displays Fortran type declarations using Fortran type names. The only exception is Fortran character

types, which are treated as arrays of the C type char.

Arrays

Fortran array subscripts and ranges are accessed using the Fortran language syntax convention, denoting

subscripts with parentheses and ranges with colons.

PGI compilers for the linux86-64 platform (AMD64 or Intel EM64T) support large arrays (arrays with an

aggregate size greater than 2GB). Large array support is enabled by compiling with ‘–mcmodel=medium

–Mlarge_arrays’. PGDBG provides full support for large arrays and large subscripts.

PGDBG supports arrays with non-default lower bounds. Access to such arrays uses the same subscripts that are

used in the target application.

PGDBG also supports adjustable arrays. Access to adjustable arrays may use the same subscripting that is used

in the target application.

Operators

In general, PGDBG uses C language style operators in expressions. The Fortran array index selector “()”

and the Fortran field selector “%” for derived types are supported. However, .eq., .ne., and so forth are

not supported. The analogous C operators ==, !=, etc. must be used instead. Note that the precedence of

operators matches the C language, which may in some cases be different than for Fortran. See Table 1.2 for a

complete list of operators and their definition.

Name of the Main Routine

If a PROGRAM statement is used, the name of the main routine is the name in the program statement.

Otherwise, the name of the main routine is __unnamed_. A routine symbol named _MAIN_ is defined with

start address equal to the start of the main routine. As a result,

break MAIN

can always be used to set a breakpoint at the start of the main routine.

Fortran Common Blocks

Each subprogram that defines a common block will have a local static variable symbol to define the common.

The address of the variable will be the address of the common block. The type of the variable will be a locally

defined structure type with fields defined for each element of the common block. The name of the variable will

be the common block name, if the common block has a name, or _BLNK_ otherwise.

For each member of the common block, a local static variable is declared which represents the common block

variable. Thus given declarations:

Chapter 1. The PGDBG Debugger

71

common /xyz/ integer a, real b

then the entire common block can be printed out using,

print xyz

Individual elements can be accessed by name. For example:,

print a, b

Nested Subroutines

To reference a nested subroutine qualify its name with the name of its enclosing routine using the scoping

operator @.

For example:

subroutine subtest (ndim)
integer(4), intent(in) :: ndim
integer, dimension(ndim) :: ijk
call subsubtest ()
contains
 subroutine subsubtest ()
 integer :: I
 i=9
 ijk(1) = 1
 end subroutine subsubtest
 subroutine subsubtest2 ()
 ijk(1) = 1
 end subroutine subsubtest2
end subroutine subtest
program testscope
integer(4), parameter :: ndim = 4
call subtest (ndim)
end program testscope

pgdbg> break subtest@subsubtest
breakpoint set at: subsubtest line: 8 in "ex.f90" address: 0x80494091
pgdbg> names subtest@subsubtest
i = 0
pgdbg> decls subtest@subsubtest
arguments:
variables:
integer*4 i;
pgdbg> whereis subsubtest
function: "ex.f90"@subtest@subsubtest

Fortran 90 Modules

To access a member mm of a Fortran 90 module M, qualify mm with M using the scoping operator @. If the

current scope is M, the qualification can be omitted.

For example:

module M
implicit none
real mm
contains

PGI® Tools Guide

72

subroutine stub
print *,mm
end subroutine stub
end module M

program test
use M
implicit none
call stub()
print *,mm
end program test

pgdbg> Stopped at 0x80494e3, function MAIN, file M.f90,
line 13
#13: call stub()
pgdbg> which mm
"M.f90"@m@mm
pgdbg> print "M.f90"@m@mm
0
pgdbg> names m
mm = 0
stub = "M.f90"@m@stub
pgdbg> decls m
real*4 mm;
subroutine stub();
pgdbg> print m@mm
0
pgdbg> break stub
breakpoint set at: stub line:6 in "M.f90" address: 0x8049446 1
pgdbg> c
Stopped at 0x8049446, function stub, file M.f90, line 6
 #6: print *,mm
pgdbg> print mm
0
pgdbg>

Debugging C++

Calling C++ Instance Methods

To use the call command to call a C++ instance method, the object must be explicitly passed as the first

parameter to the call. For example, given the following definition of class Person and the appropriate

implementation of its methods:

 class Person {
 public:
 char name[10];
 Person(char * name);
 void print();
 };
 main(){
 Person * pierre;
 pierre = new Person("Pierre");
 pierre->print();
 }

The instance method print on object Pierre is called as follows:

pgdbg> call Person::print(pierre)

Chapter 1. The PGDBG Debugger

73

Notice that pierre must be explicitly passed into the method (it is the this pointer), and the class name must

also be specified.

Debugging with Core Files
PGDBG supports debugging of core files on the linux86 and linux86-64 platforms. To invoke PGDBG for core

file debugging, use the following options:

$ pgdbg –core coreFileName programName

Core files are generated when a fatal exception occurs in an application. The shell environment in which the

application runs must be set up to allow core file creation. On many systems, the default user ulimit does not

allow core file creation. Check the ulimit as follows:

For sh/bash users:

$ ulimit -c

For csh/tcsh users:

% limit coredumpsize

If the core file size limit is zero or something too small for the application, it can be set to unlimited as follows:

For sh/bash users:

$ ulimit -c unlimited

For csh/tcsh users:

% limit coredumpsize unlimited

See the Linux shell documentation for more details. Some versions of Linux provide system-wide limits on core

file creation.

Core files (or core dumps) are generated when a program encounters an exception or fault. For example,

one common exception is the segmentation violation, which can be caused by referencing an invalid memory

address. The memory and register states of the program are written into a core file so that they can be

examined by a debugger.

The core file is normally written into the current directory of the faulting application. It is usually named core

or core.pid where pid is the process ID of the faulting thread. If the shell environment is set correctly and a

core file is not generated in the expected location, the system core dump policy may require configuration by a

system administrator.

Different versions of Linux handle core dumping slightly differently. The state of all process threads are written

to the core file in most modern implementations of Linux. In some new versions of Linux, if more than one

thread faults, then each thread’s state is written to separate core files using the core.pid file naming convention

mentioned above. In older versions of Linux, only one faulting thread is written to the core file.

If a program uses dynamically shared objects (i.e., shared libraries named lib*.so), as most programs on

Linux do, then accurate core file debugging requires that the program be debugged on the system where the

core file was created. Otherwise, slight differences in the version of a shared library or the dynamic linker

can cause erroneous information to be presented by the debugger. Sometimes a core file can be debugged

PGI® Tools Guide

74

successfully on a different system, particularly on more modern linux systems, but you should take care when

attempting this.

PGDBG supports all non-control commands when debugging core files. It will perform any command that does

not cause the program to run. Any command that causes the program to run will generate an error message in

PGDBG. Depending on the type of core file created, PGDBG may provide the status of multiple threads. PGDBG

does not support multi-process core file debugging.

Debugging Parallel Programs
This section gives an overview of how to use PGDBG to debug parallel applications. It provides some important

definitions and background information on how PGDBG represents processes and threads.

Summary of Parallel Debugging Features

PGDBG is a parallel application debugger capable of debugging multi-process MPI applications, multi-thread

and OpenMP applications, and hybrid multi-thread/multi-process applications that use MPI to communicate

between multi-threaded or OpenMP processes. On Windows platforms, only OpenMP/multi-thread debugging

is supported.

OpenMP and Multi-thread Support

PGDBG provides full control of threads in parallel regions. Commands can be applied to all threads, a single

thread, or a group of threads. Thread identification in PGDBG uses the native thread numbering scheme for

OpenMP applications; for other types of multi-threaded applications thread numbering is arbitrary. OpenMP

PRIVATE data can be accessed accurately for each thread. PGDBG provides understandable status displays

regarding per-thread state and location.

Advanced features provide for configurable thread stop modes and wait modes, allowing debugger operation

that is concurrent with application execution.

MPI and Multi-Process Support

PGDBG supports debugging of multi-process MPI applications, whether running on a single system or

distributed on multiple systems. MPI applications can be started under debugger control using the mpirun

command, or PGDBG can attach to a running, distributed MPI application. In either case all processes are

automatically brought under debugger control. Process identification uses the MPI rank within COMMWORLD.

Graphical Presentation of Threads and Processes

PGDBG graphical user interface components that provide support for parallelism are described in detail in

“PGDBG Graphical User Interface,” on page 4.

Basic Process and Thread Naming

Because PGDBG can debug multi-threaded applications, multi-process applications, and hybrid multi-

threaded/multi-process applications (only multi-thread on Windows platforms), it provides a convention for

uniquely identifying each thread in each process. This section gives a brief overview of this naming convention

and how it is used in order to provide adequate background for the subsequent sections. A more detailed

Chapter 1. The PGDBG Debugger

75

discussion of this convention, including advanced techniques for applying it, is provided in “Thread and

Process Grouping and Naming,” on page 79.

PGDBG identifies threads in an OpenMP application using the OpenMP thread IDs. Otherwise, PGDBG assigns

arbitrary IDs to threads, starting at zero and incrementing in order of thread creation.

PGDBG identifies processes in an MPI application using MPI rank (in communicator COMMWORLD).

Otherwise, PGDBG assigns arbitrary IDs to processes; starting at zero and incrementing in order of process

creation. Process IDs are unique across all active processes.

In a multi-threaded/multi-process application, each thread can be uniquely identified across all processes by

prefixing its thread ID with the process ID of its parent process. For example, thread 1.4 identifies the thread

with ID 4 in the process with ID 1.

An OpenMP application (single-process) logically runs as a collection of threads with a single process, process

0, as the parent process. In this context, a thread is uniquely identified by its thread ID. The process ID prefix

is implicit and optional. See “Threads-only Debugging,” on page 80.

An MPI program logically runs as a collection of processes, each made up of a single thread of execution.

Thread 0 is implicit to each MPI process. A process ID uniquely identifies a particular process, and thread ID

is implicit and optional. See “Process-only Debugging,” on page 80.

A hybrid, or multilevel, MPI/OpenMP program requires the use of both process and thread IDs to uniquely

identify a particular thread. See “Multilevel Debugging,” on page 80.

A serial program runs as a single thread of execution, thread 0, belonging to a single process, process 0. The

use of thread IDs and process IDs is unnecessary but optional.

Multi-Thread and OpenMP Debugging

PGDBG automatically attaches to new threads as they are created during program execution. PGDBG reports

when a new thread is created and the thread ID of the new thread is printed.

([1] New Thread)

The system ID of the freshly created thread is available through the threads command. The procs command

can be used to display information about the parent process.

PGDBG maintains a conceptual current thread. The current thread is chosen by using the thread command

when the debugger is operating in text mode (invoked with the -text option), or by clicking in the thread

grid when the GUI interface is in use (the default). A subset of PGDBG commands known as thread-level

commands, when executed, apply only to the current thread. See “Thread Level Commands,” on page 87,

for more information.

The threads command lists all threads currently employed by an active program. The threads command

displays each thread’s unique thread ID, system ID (Linux process ID), execution state (running, stopped,

signaled, exited, or killed), signal information and reason for stopping, and the current location (if stopped or

signaled). An arrow (=>) indicates the current thread. The process ID of the parent is printed in the top left

corner. The thread command changes the current thread.

pgdbg [all] 2> thread 3
pgdbg [all] 3> threads

PGI® Tools Guide

76

0 ID PID STATE SIGNAL LOCATION
=> 3 18399 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
 2 18398 Stopped SIGTRAP main line: 32 in "omp.c" address: 0x80490cf
 1 18397 Stopped SIGTRAP main line: 31 in "omp.c" address: 0x80490ab
 0 18395 Stopped SIGTRAP f line: 5 in "omp.c" address: 0x8048fa0

In the GUI, thread state is represented by a color in the process/thread grid.

Table 1.13. Thread State Is Described Using Color

Thread State Description Color
Stopped If all threads are stopped at breakpoints, or where

directed to stop by PGDBG

Red

Signaled If at least one thread is stopped due to delivery of a

signal

Blue

Running If at least one thread is running Green

Exited or Killed If all threads have been killed or exited Black

Multi-Process MPI Debugging

When installed as part of the PGI Cluster Development Kit (CDK) on Linux platforms, PGDBG supports multi-

process MPI debugging. The PGI CDK contains versions of MPICH and MPICH2 pre-configured to support

debugging cluster applications with PGDBG. Non-CDK MPI software must be configured to support PGDBG; see

http://www.pgroup.com/support/faq.htm for more information.

Invoking PGDBG for MPI Debugging

The command used to start MPI debugging under MPICH using the PGDBG GUI is:

% mpirun -np nprocs -dbg=pgdbg executable [arg1,...argn]

There are two ways to invoke PGDBG for debugging with non-MPICH-1 versions of MPI, such as MPICH-2 or

MVAPICH:

 % pgdbg -mpi[:<path>] <mpiexec_args> [-program_args arg1,...argn]

We should note that mpiexec should be found in PATH, if not then the pathname for mpiexec, or another

similar launcher, should be specified as <path> in -mpi[:<path>].

% mpiexec -np nprocs -pgi executable [arg1,...argn]

Note

mpiexec should be found in PATH. Otherwise, you should specify the pathname for mpiexec, or

another similar launcher, as <path> in -mpi[:<path>].

Note

For MPICH2, as with any other MPICH2 application, the mpdboot command must have been run.

The command used to start MPI debugging via mpirun or mpiexec using PGDBG in TEXT mode is the same,

except that the DISPLAY environment variable must be undefined in the shell that is invoking mpirun:

Chapter 1. The PGDBG Debugger

77

For sh/bash users:

$ unset DISPLAY

For csh/tcsh users:

% unsetenv DISPLAY

When an MPI debug session begins, PGDBG will stop the program at the first executable statement in the

program. Execution does not need to be started using the run command as it does with serial or multi-

threaded programs. Execution is started using one of the other control commands, such as cont, next, or step.

Note

You cannot restart an MPI application from within PGDBG. You must exit the debugger and start a

new debug session.

Using PGDBG for MPI Debugging

The initial MPI process is run locally; ‘local’ describes the host on which PGDBG is running. PGDBG

automatically attaches to new MPI processes as they are created by the running MPI application. PGDBG

displays an informational message as it attaches to the freshly created processes.

 ([1] New Process)

The MPI global rank is printed with the message. The procs command can be used to list the host and the PID

of each process by rank. The current process is indicated by an arrow (=>). The proc command can be used

to change the current process by process ID.

pgdbg [all] 0.0> proc 1; procs
Process 1: Thread 0 Stopped at 0x804a0e2, function main, file MPI.c, line 30
 #30: aft=time(&aft);
 ID IPID STATE THREADS HOST
 0 24765 Stopped 1 local
 => 1 17890 Stopped 1 red2.wil.st.com

The execution state of a process is described in terms of the execution state of its component threads. See

Table 1.13 for a description of how thread state is represented in the GUI.

The PGDBG command prompt displays the current process and the current thread. In the above example, the

current process was changed to process 1 by the proc 1 command and the current thread of process 1 is 0;

this is written as 1.0:

pgdbg [all] 1.0>

See “Process and Thread Control,” on page 89 for a complete description of the prompt format.

The following rules apply during a PGDBG debug session:

• PGDBG maintains a conceptual current process and current thread.

• Each active process has a thread set of size >=1.

• The current thread is a member of the thread set of the current process.

Certain commands, when executed, apply only to the current process or the current thread. See “Process Level

Commands,” on page 87 and “Thread Level Commands,” on page 87 for more information.

PGI® Tools Guide

78

A license file distributed with PGDBG restricts the total number of MPI processes that can be debugged. There

are internal limits on the number of threads per process that can be debugged.

MPICH Support for MPICH-1

PGDBG supports redirecting stdin, stdout, and stderr with the following MPICH switches:

Table 1.14. MPICH Support

Command Output
-stdout <file> Redirect standard output to <file>

-stdin <file> Redirect standard input from <file>

-stderr <file> Redirect standard error to <file>

PGDBG also provides support for the following MPICH switches:

Command Output
-nolocal PGDBG runs locally, but no MPI processes run locally

-all-local PGDBG runs locally, all MPI processes run locally

For information about how to configure an arbitrary installation of MPICH to use PGDBG, see the PGDBG

online FAQ at http://www.pgroup.com/support/faq.htm.

When PGDBG is invoked via mpirun the following PGDBG command line arguments are not accessible. A

workaround is listed for each.

Argument Workaround
-dbx Include 'pgienv dbx on' in .pgdbgrc file.

-s startup Use .pgdbgrc default script file and the script command.

-c "command" Use .pgdbgrc default script file and the script command.

-text Clear your DISPLAY environment variable before invoking mpirun.

-t <target> Add to the beginning of the PATH environment variable a path to the

appropriate PGDBG.

MPICH Support for MPICH-2 and MVAPICH

Rather than debugging an MPI application via "pgdbg -mpi", there may be situations where you may want to

run mpiexec separately from pgdbg, such as when the MPI job expects input from the user or when the user

wishes to collect output from multiple MPI jobs. For example, suppose that the user wishes to debug an MPI

job that would otherwise be invoked in this manner:

% mpiexec -np n executable ...

The user can start up pgdbg in one command window:

% pgdbg -mpi_listen:<port>

Chapter 1. The PGDBG Debugger

79

Then mpiexec can be invoked using this command, where host is the host name on which the debugger is

being invoked and port is any free IP port number.

% mpiexec -np n <full_path_for_pgserv> -mlup host:<port> executable ...

Tip

Choosing a random number for the port between 10000 and 40000 almost always works.

Debugging with pgdbg -mpi invokes each MPI process under PGDBG's debug agent, pgserv. Each debug

agent needs to communicate job size and process rank information to pgdbg on startup, which is determined

by inspecting environment variables set for debug agent by the MPI launcher. If pgserv does not recognize

which environment variables are being used to communicate size and rank information, then the user sees a

message similar to this:

 pgserv: Could not determine rank, See PGI Tools guide
 pgserv: for use with non-standard MPI launchers

In this case, the user should invoke printenv by the MPI launcher to determine which environment

variables are being used to communicate rank and size information. Then the user should set the environment

variables PGDBG_MPI_RANK_ENV and PGDBG_MPI_SIZE_ENV to the associated environment variable

names generated by launcher. If the MPI launcher is not using environment variables to communicate size and

rank information to MPI processes, then PGDBG cannot be used debug MPI jobs invoked with pgdbg -mpi.

Thread and Process Grouping and Naming
This section describes how to name a single thread, how to group threads and processes into sets, and how to

apply PGDBG commands to groups of processes and threads.

PGDBG Debug Modes

PGDBG can operate in four debug modes. The mode determines a short form for uniquely naming threads and

processes. The debug mode is set automatically or by the pgienv command.

Table 1.15. PGDBG Debug Modes

Debug Mode Program Characterization
Serial A single thread of execution

Threads-only A single process, multiple threads of execution

Process-only Multiple processes, each process made up of a single

thread of execution [Linux Only]

Multilevel Multiple processes, at least one process employing multiple

threads of execution [Linux Only]

PGDBG initially operates in serial mode reflecting a single thread of execution. Thread IDs can be ignored in

serial debug mode since there is only a single thread of execution.

The PGDBG prompt displays the ID of the current thread according to the current debug mode. See “The

PGDBG Command Prompt,” on page 93 for a description of the PGDBG prompt.

PGI® Tools Guide

80

The pgienv command is used to change debug modes manually.

pgienv mode [serial|thread|process|multilevel]

The debug mode can be changed at any time during a debug session.

Threads-only Debugging

Enter threads-only mode to debug a program with a single multi-threaded process. As a convenience the

process ID portion can be omitted. PGDBG automatically enters threads-only debug mode from serial debug

mode when it detects and attaches to new threads.

Example 1.1. Thread IDs in Threads-only Debug Mode

1 Thread 1 of process 0 (*.1)

* All threads of process 0 (*. *)

0.7 Thread 7 of process 0 (multilevel names are valid in

threads-only mode)

In threads-only debug mode, status and error messages are prefixed with thread IDs depending on context.

Process-only Debugging

Enter process-only mode to debug an application consisting of single-threaded processes. As a convenience,

the thread ID portion can be omitted. PGDBG automatically enters process-only debug mode from serial debug

mode when the target program returns from MPI_Init.

Example 1.2. Process IDs in process-only debug mode

0 All threads of process 0 (0.*)

* All threads of all processes (*.*)

1.0 Thread 0 of process 1 (multilevel names are valid in

process-only mode)

In process-only debug mode, status and error messages are prefixed with process IDs depending on context.

Multilevel Debugging

[Linux Only] The name of a thread in multilevel debug mode is the thread ID prefixed with its parent process

ID. This forms a unique name for each thread across all processes. This naming scheme is valid in all debug

modes. PGDBG changes automatically to multilevel debug mode from process-only debug mode or threads-

only debug mode when at least one MPI process creates multiple threads.

Example 1.3. Thread IDs in multilevel debug mode

0.1 Thread 1 of process 0

0.* All threads of process 0

* All threads of all processes

Chapter 1. The PGDBG Debugger

81

In multilevel debug, mode status and error messages are prefixed with process/thread IDs depending on

context.

Process/Thread Sets

A process/thread set (p/t-set) is used to restrict a debugger command to apply to just a particular set of

threads. A p/t-set is a set of threads drawn from all threads of all processes in the target program. Use p/t-set

notation (described in “p/t-set Notation,” on page 81) to define a p/t-set.

In the following sections, frequent reference is made to three named p/t-sets:

• The target p/t-set is the set of processes and threads to which a debugger command is applied. The target p/

t-set is initially defined by the debugger to be the set [all] which describes all threads of all processes.

• A prefix p/t-set is defined when p/t-set notation is used to prefix a debugger command. For the prefixed

command, the target p/t-set is the prefix p/t-set.

• The current p/t-set is the p/t set currently set in the PGDBG environment. The current p/t-set can be defined

using the focus command. The current p/t set is used as the target p/t-set unless a prefix p/t-set overrides it.

p/t-set Notation

The following set of rules describes how to use and construct p/t-sets:

Use a prefix p/t-set with a simple command:

[p/t-set prefix] command parm0, parm1, ...

Use a prefix p/t-set with a compound command:

[p/t-set prefix] simple-command [;simple-command ...]

p/t-id:

{integer|*}.{integer|*}

p/t-id optional notation when process-only or threads-only debugging is in effect (see the pgienv command):

{integer|*}

p/t-range:

p/t-id:p/t-id

p/t-list:

{p/t-id|p/t-range} [, {p/t-id|p/t-range} ...]

p/t-set:

[[!]{p/t-list|set-name}]

Example 1.4. p/t-sets in Threads-only Debug Mode

[0,4:6] Threads 0,4,5, and 6

[*] All threads

[*.1] Thread 1. Multilevel notation is valid in threads-only mode

[*.*] All threads

PGI® Tools Guide

82

Example 1.5. p/t-sets in Process-only Debug Mode

[0,2:3] Processes 0, 2, and 3 (equivalent to [0.*,2:3.*])

[*] All processes (equivalent to [*.*])

[0] Process 0 (equivalent to [0.*])

[*.0] Process 0. Multilevel syntax is valid in process-only mode.

[0:2.*] Processes 0, 1, and 2. Multilevel syntax is valid in process-only

debug mode.

Example 1.6. p/t-sets in Multilevel Debug Mode

[0.1,0.3,0.5] Thread 1,3, and 5 of process 0

[0.*] All threads of process 0

[1.1:3] Thread 1,2, and 3 of process 1

[1:2.1] Thread 1 of processes 1 and 2

[clients] All threads defined by named set clients

[1] Incomplete; invalid in multilevel debug mode

Dynamic vs. Static p/t-sets

The defset command can be used to define both dynamic and static p/t-sets. The members of a dynamic p/t-set

are those active threads described by the p/t-set at the time that p/t-set is used. A p/t-set is dynamic by default.

Threads and processes are created and destroyed as the target program runs and, therefore, membership in a

dynamic set varies as the target program executes.

Example 1.7. Defining a Dynamic p/t-set

defset clients [*.1:3] Defines a named set clients whose members are threads 1, 2,

and 3 of all processes that are currently active when clients is

used. Membership in clients changes as processes are created

and destroyed.

The members of a static p/t-set are those threads described by the p/t-set at the time that p/t-set is defined. Use

a ! to specify a static set. Membership in a static set is fixed at definition time.

Example 1.8. Defining a Static p/t-set

defset clients [!*.1:3] Defines a named set clients whose members are threads 1, 2,

and 3 of those processes that are currently active at the time of

the definition.

Chapter 1. The PGDBG Debugger

83

Note

p/t-sets defined with defset are not mode dependent and are valid in any debug mode.

Current vs. Prefix p/t-set

The current p/t-set is set by the focus command. The current p/t-set is described by the debugger prompt

(depending on debug mode; see “The PGDBG Command Prompt,” on page 93 for a description of the

PGDBG prompt). A p/t-set can be used to prefix a command to override the current p/t-set. The prefix p/t-set

becomes the target p/t-set for the command. The target p/t-set defines the set of threads that will be affected by

a command.

• In the following command line, the target p/t-set is the current p/t-set:

pgdbg [all] 0.0> cont
Continue all threads in all processes

• In contrast, a prefix p/t-set is used in the following command so the target p/t-set is the prefix p/t-set (note

the prefix p/t-set in bold:

pgdbg [all] 0.0> [0.1:2] cont
Continue threads 1 and 2 of process 0 only

In both of the above examples, the current p/t-set is the debugger-defined set [all]. In the first case, [all] is the

target p/t-set. In the second case, the prefix p/t-set overrides [all] and becomes the target p/t-set. The continue

command is applied to all active threads in the target p/t-set. Using a prefix p/t-set does not change the current

p/t-set.

p/t-set Commands

The following commands can be used to collect threads into logical groups.

• defset and undefset can be used to manage a list of named p/t-sets.

• focus is used to set the current p/t-set.

• viewset is used to view the active members described by a particular p/t-set, or to list all the defined p/t-sets.

• whichsets is used to describe the p/t-sets to which a particular process/thread belongs.

Table 1.16. p/t-set Commands

Command Description
defset Define a named p/t-set. This set can later be referred to by name. A

list of named sets is stored by PGDBG.

focus Set the target process/thread set for commands. Subsequent

commands will be applied to the members of this set by default.

undefset Undefine a previously defined process/thread set. The set is removed

from the list. The debugger-defined p/t-set [all] cannot be removed.

viewset List the members of a process/thread set that currently exist as active

threads, or list all the defined p/t-sets.

PGI® Tools Guide

84

Command Description
whichsets List all defined p/t-sets to which the members of a process/thread set

belongs.

Examples of the p/t-set commands in the previous table follow.

Use defset to define the p/t-set initial is to contain only thread 0:

pgdbg [all] 0> defset initial [0]
"initial" [0] : [0]

Change the current p/t-set to initial using the focus command:

pgdbg [all] 0> focus [initial]
[initial] : [0]
[0]

Advance the thread. Because the code is not using a prefix p/t-set, the target p/t-set is the current p/t-set, which

is initial:

pgdbg [initial] 0> next

The whichsets command shows that thread 0 is a member of two defined p/t-sets:

pgdbg [initial] 0> whichsets [initial]
Thread 0 belongs to:
all
initial

The viewset command displays all threads that are active and are members of defined p/t-sets:

pgdbg [initial] 0> viewset
"all" [*.*] : [0.0,0.1,0.2,0.3]
"initial" [0] : [0]

The focus command can be used to set the current p/t-set back to [all]:

pgdbg [initial] 0> focus [all]
[all] : [0.0,0.1,0.2,0.3]
[*.*]

The undefset command undefines the initial p/t-set:

pgdbg [all] 0> undefset initial
p/t-set name "initial" deleted.

The examples above illustrate how to manage named p/t-sets using the command-line interface. A similar

capability is available in the PGDBG GUI. “Focus Panel,” on page 8, contains information about the Focus

Panel. The Focus Panel, shown in Figure 1.3, contains a table labeled Focus with two columns: a Name column

and a p/t-set column. The entries in this table are p/t-sets exactly like the p/t-sets used in the command line

interface.

To create a p/t set in the Focus Panel , left-click the Add button. This opens a dialog box similar to the one in

Figure 1.12. Enter the name of the p/t-set in the Focus Name text field and the p/t-set in the p/t-set text field.

Click the left mouse button on the OK button to add the p/t-set. The new p/t-set will appear in the Focus Table.

Clicking the Cancel button or closing the dialog box will abort the operation. The Clear button will clear the

Focus Name and p/t-set text fields

Chapter 1. The PGDBG Debugger

85

To select a p/t-set, click the left mouse button on the desired p/t-set in the table. The selected p/t-set is also

known as the Current Focus. PGDBG will apply all commands entered in the Source Panel to the Current

Focus when you choose Focus in the Apply Selector (“Source Panel Combo Boxes,” on page 16). Current

Focus can also be used in a GUI subwindow. Choose Current Focus in a subwindow’s Context Selector

(“Subwindows,” on page 19) to display data for the Current Focus only.

To modify an existing p/t-set, select the desired group in the Focus Table and left-click the Modify button. A

dialog box similar to that in Figure 1.12 will appear, except that the Focus Name and p/t-set text fields will

contain the selected group’s name and p/t-set respectively. You can edit the information in these text fields and

click OK to save the changes.

To remove an existing p/t-set, select the desired item in the Focus Table and left-click the Remove button.

PGDBG will display a dialog box asking for confirmation of the request for removal of the selected p/t-set. Left-

click the Yes button to confirm or the No button to cancel the operation.

It should be noted that p/t-sets defined in the Focus Panel of the PGDBG GUI are only used by the Apply

and Context Selectors in the GUI. They do not affect focus in the Command Prompt Panel. Conversely, focus

changes made in the Command Prompt Panel affect only the Command Prompt Panel and not the rest of the

PGDBG GUI.

For example, in Figure 1.12 there is a p/t-set named “process 0 odd numbered threads”. The p/t-set is [0.1,

0.3] which indicates threads 1 and 3 in process 0. Table 1.13 shows this p/t-set in the Focus Table. We also

chose Focus in the Apply Selector. Any command issued in the Source Panel is applied to the Current Focus,

or thread 1 and 3 on process 0 only. All other threads will remain idle until either the All p/t-set is selected

in the Focus Panel or All is selected in the Apply Selector. Note that “process 0 odd numbered threads” is not

available in the Command Prompt Panel.

Figure 1.12. Focus Group Dialog Box

PGI® Tools Guide

86

Figure 1.13. Focus in the GUI

Command Set

For the purpose of parallel debugging, the PGDBG command set is divided into three disjoint subsets

according to how each command reacts to the current p/t-set. Process level and thread level commands can be

parallelized. Global commands cannot be parallelized.

Chapter 1. The PGDBG Debugger

87

Table 1.17. PGDBG Parallel Commands

Commands Action
Process Level Commands Parallel by current p/t-set or prefix p/t-set [Linux Only]

Thread Level Commands Parallel by prefix p/t-set. Ignores current p/t-set

Global Commands Non-parallel commands

Process Level Commands

The process level commands are the PGDBG control commands.

The PGDBG control commands apply to the active members of the current p/t-set by default. A prefix set can be

used to override the current p/t-set. The target p/t-set is the prefix p/t-set if present.

cont next step stepout synci

halt nexti stepi sync wait

Apply the next command to threads 1 and 2 of process 0:

pgdbg [all] 0.0> focus [0.1:2]
pgdbg [0.1:2] 0.0> next

Apply the next command to thread 3 of process 0 using a prefix p/t-set:

pgdbg [all] 0.0> [0.3] n

Thread Level Commands

The following commands are not concerned with the current p/t-set. When no p/t-set prefix is used, these

commands execute in the context of the current thread of the current process by default. That is, thread level

commands ignore the current p/t-set. Thread level commands can be applied to multiple threads by using a

prefix p/t-set. When a prefix p/t-set is used, the commands in this section are executed in the context of each

active thread described by the prefix p/t-set. The target p/t-set is the prefix p/t-set if present, or the current

thread (not the current p/t-set) if no prefix p/t set exists. The thread level commands are:

addr dump noprint sp

ascii entry oct sread

assign fp pc stack

bin fread pf stackdump

break* func print string

cread hex regs watch

dec hwatch retaddr watchi

decl iread rval whatis

disasm line scope where

do lines set track

PGI® Tools Guide

88

doi lval sizeof tracki

dread

* breakpoints and variants: (stop, stopi, break, breaki) if no prefix p/t-set is specified, [all] is used

(overriding current p/t-set).

The following occurs when a prefix p/t-set is used:

• The threads described by the prefix are sorted per process by thread ID in increasing order.

• The processes are sorted by process ID in increasing order, and duplicates are removed.

• The command is then applied to the threads in the resulting list in order.

Without a prefix p/t-set, the print command executes in the context of the current thread of the current

process, thread 0.0, printing rank 0:

pgdbg [all] 0.0> print myrank
0

With a prefix p/t-set, the thread members of the prefix are sorted and duplicates are removed. The print

command iterates over the resulting list:

pgdbg [all] 0.0> [2:3.*,1:2.*] print myrank
[1.0] print myrank:
1
[2.0] print myrank:
2
[2.1] print myrank:
2
[2.2] print myrank:
2
[3.0] print myrank:
3
[3.2] print myrank:
3
[3.1] print myrank:
3

Global Commands

The rest of the PGDBG commands ignore threads and processes, or are defined globally for all threads across

all processes. The current p/t-set and prefix p/t-set (if any) are ignored.

The following is a list of commands that are defined globally.

? / alias arrive

breaks call fatch cd

debug defset delete directory

disable display edit enable

files focus funcs help

history ignore log

Chapter 1. The PGDBG Debugger

89

pgienv proc procs pwd

quit repeat rerun run

script shell source

status thread threads unalias

unbreak undefset use viewset

wait whereis whichsets

Process and Thread Control

PGDBG supports thread and process control (e.g. step, next, cont ...) everywhere in the program. Threads and

processes can be advanced in groups anywhere in the program. Recall that multi-process MPI debugging is

supported only on Linux platforms.

The PGDBG control commands are:

cont next step stepout synci

halt nexti stepi sync wait

To describe those threads to be advanced, set the current p/t-set or use a prefix p/t-set.

A thread inherits the control operation of the current thread when it is created. If the current thread single-

steps over an _mp_init call (found at the beginning of every OpenMP parallel region) using the next

command, then all threads created by _mp_init will step into the parallel region as if by the next command.

A process inherits the control operation of the current process when it is created. So if the current process

returns from a call to MPI_Init under the control of a cont command, the new process will do the same.

Configurable Stop Mode

PGDBG supports configuration of how threads and processes stop in relation to one another. PGDBG defines

two new pgienv environment variables, threadstop and procstop, for this purpose. PGDBG defines two stop

modes, synchronous (sync) and asynchronous (async).

Table 1.18. PGDBG Stop Modes

Command Result
sync Synchronous stop mode; when one thread stops at a breakpoint (event),

all other threads are stopped soon after.

async Asynchronous stop mode; each thread runs independently of the other

threads. One thread stopping does not affect the behavior of another.

Thread stop mode is set using the pgienv command as follows:

pgienv threadstop [sync|async]

Process stop mode is set using the pgienv command as follows:

PGI® Tools Guide

90

pgienv procstop [sync|async]

PGDBG defines the default to be asynchronous for both thread and process stop modes. When debugging

an OpenMP program, PGDBG automatically enters synchronous thread stop mode in serial regions, and

asynchronous thread stop mode in parallel regions.

The pgienv environment variables threadstopconfig and procstopconfig can be set to automatic (auto) or user

defined (user) to enable or disable this behavior:

pgienv threadstopconfig [auto|user]
pgienv procstopconfig [auto|user]

Selecting the user-defined stop mode prevents the debugger from changing stop modes automatically.

Automatic stop configuration is the default for both threads and processes.

Configurable Wait Mode

Wait mode describes when PGDBG will accept the next command. The wait mode is defined in terms of

the execution state of the program. Wait mode describes to the debugger which threads/processes must

be stopped before it will accept the next command. In certain situations, it is desirable to be able to enter

commands while the program is running and not stopped at an event. The PGDBG prompt will not appear

until all processes/threads are stopped. However, a prompt may be available before all processes/threads have

stopped. Pressing <enter> at the command line will bring up a prompt if it is available. The availability of the

prompt is determined by the current wait mode and any pending wait commands (described below).

PGDBG accepts a compound statement at each prompt. Each compound statement is a sequence of semicolon-

separated commands, which are processed immediately in order. The wait mode describes when to accept

the next compound statement. PGDBG supports three wait modes, which can be applied to processes and/or

threads.

Table 1.19. PGDBG Wait Modes

Command Result
all The prompt is available only after all threads have stopped since the

last control command.

any The prompt is available only after at least one thread has stopped

since the last control command.

none The prompt is available immediately after a control command is

issued.

• Thread wait mode describes which threads PGDBG waits for before accepting new commands.

• Process wait mode describes which processes PGDBG waits for before accepting new commands.

Thread wait mode is set using the pgienv command as follows:

pgienv threadwait [any|all|none]

Process wait mode is set using the pgienv command as follows:

Chapter 1. The PGDBG Debugger

91

pgienv procwait [any|all|none]

If process wait mode is set to none, then thread wait mode is ignored.

In TEXT mode, PGDBG defaults to:

threadwait all
procwait any

If the target program goes MPI parallel, then procwait is changed to none automatically by PGDBG.

If the target program goes thread parallel, then threadwait is changed to none automatically by PGDBG. The

pgienv environment variable threadwaitconfig can be set to automatic (auto) or user defined (user) to enable

or disable this behavior.

pgienv threadstopconfig [auto|user]

Selecting the user defined wait mode prevents the debugger from changing wait modes automatically.

Automatic wait mode is the default thread wait mode.

PGDBG defaults to the following in GUI mode:

threadwait none
procwait none

Setting the wait mode may be necessary when invoking the debugger using the -s (script file) option in GUI

mode (to ensure that the necessary threads are stopped before the next command is processed).

PGDBG also provides a wait command that can be used to insert explicit wait points in a command stream.

Wait uses the target p/t-set by default, which can be set to wait for any combination of processes/threads. The

wait command can be used to insert wait points between the commands of a compound command.

The threadwait and procwait pgienv variables can be used to configure the behavior of wait (see pgienv usage

in “Configurable Wait Mode,” on page 90).

The following table describes the behavior of wait. In the example in the table:

• S is the target p/t-set

• P is the set of all processes described by S and p is a single process

• T is the set of all threads described by S and t is a single thread

Table 1.20. PGDBG Wait Behavior

Command threadwait procwait Wait Set
wait all all Wait for T

wait all any

none

Wait for all threads in at least one p in P

wait any

none

all Wait for T

PGI® Tools Guide

92

Command threadwait procwait Wait Set
wait any

none

any

none

Wait for all t in T for at least one p in P

wait all all all Wait for T

wait all all any

none

Wait for all threads of at least one p in P

wait all any

none

all Wait for T

wait all any

none

any

none

Wait for all t in T for at least one p in P

wait any all all Wait for at least one thread for each process p in P

wait any all any

none

Wait for at least one t in T

wait any any

none

all Wait for at least one thread in T for each process p in P

wait any any

none

any

none

Wait for at least one t in T

wait none all

any

none

all

any

none

Wait for no threads

Status Messages

PGDBG can produce a variety of status messages during a debug session. This feature can be useful in text

mode in the absence of the graphical aids provided by the GUI. Use the pgienv command to enable or disable

the types of status messages produced by setting the verbose environment variable to an integer-valued bit

mask using pgienv:

pgienv verbose <bitmask>

The values for the bit mask listed in the following table control the type of status messages desired.

Table 1.21. PGDBG Status Messages

Value Type Information
0x1 Standard Report status information on current process/thread only. A

message is printed when the current thread stops and when

Chapter 1. The PGDBG Debugger

93

Value Type Information
threads and processes are created and destroyed. Standard

messaging is the default and cannot be disabled.

0x2 Thread Report status information on all threads of current processes.

A message is reported each time a thread stops. If process

messaging is also enabled, then a message is reported for each

thread across all processes. Otherwise, messages are reported

for threads of the current process only.

0x4 Process Report status information on all processes. A message is

reported each time a process stops. If thread messaging is also

enabled, then a message is reported for each thread across all

processes. Otherwise, messages are reported for the current

thread only of each process.

0x8 SMP Report SMP events. A message is printed when a process enters

or exits a parallel region, or when the threads synchronize. The

PGDBG OpenMP handler must be enabled.

0x16 Parallel Report process-parallel events (default).

0x32 Symbolic

debug

information

Report any errors encountered while processing symbolic

debug information (e.g. ELF, DWARF2).

The PGDBG Command Prompt

The PGDBG command prompt reflects the current debug mode, as described in “PGDBG Debug Modes,” on

page 79.

In serial debug mode, the PGDBG prompt looks like this:

pgdbg>

In threads-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current thread:

pgdbg [all] 0>
Current thread is 0

In process-only debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current process:

pgdbg [all] 0>
Current process is 0

In multilevel debug mode, PGDBG displays the current p/t-set in square brackets followed by the ID of the

current thread prefixed by the id of its parent process:

pgdbg [all] 1.0>
Current thread 1.0

The pgienv promptlen variable can be set to control the number of characters devoted to printing the current

p/t-set at the prompt.

PGI® Tools Guide

94

Parallel Events

This section describes how to use a p/t-set to define an event across multiple threads and processes. Events,

such as breakpoints and watchpoints, are user-defined events. User-defined events are thread-level commands,

described in “Thread Level Commands,” on page 87.

Breakpoints, by default, are set across all threads of all processes. A prefix p/t-set can be used to set

breakpoints on specific processes and threads. For example:

i) pgdbg [all] 0> b 15
ii) pgdbg [all] 0> [all] b 15
iii) pgdbg [all] 0> [0.1:3] b 15

(i) and (ii) are equivalent. (iii) sets a breakpoint only in threads 1,2,3 of process 0.

By default, all other user events are set for the current thread only. A prefix p/t-set can be used to set user

events on specific processes and threads. For example:

i) pgdbg [all] 0> watch glob
ii) pgdbg [all] 0> [*] watch glob

(i) sets a data breakpoint for glob on thread 0 only. (ii) sets a watchpoint for glob on all threads that are

currently active.

When a process or thread is created, it inherits all of the breakpoints defined for the parent process or thread.

All other events must be defined explicitly after the process or thread is created. All processes must be stopped

to add, enable, or disable a user event.

Events may contain if and do clauses. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0}

The breakpoint will fire only if glob is non-zero. The do clause is executed if the breakpoint fires. The if and do

clauses execute in the context of a single thread. The conditional in the if clause and the body of the do execute

in the context of a single thread, the thread that triggered the event. The conditional definition as above can be

restated as follows:

[0] if (glob!=0) {[0] set f = 0}
[1] if (glob!=0) {[1] set f = 0}
...

When thread 1 hits func, glob is evaluated in the context of thread 1. If glob evaluates to non-zero, f is bound

in the context of thread 1 and its value is set to 0.

Control commands can be used in do clauses, however they only apply to the current thread and are only well

defined as the last command in the do clause. For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c}

If the wait command appears in a do clause, the current thread is added to the wait set of the current process.

For example:

pgdbg [all] 0> [*] break func if (glob!=0) do {set f = 0; c; wait}

Chapter 1. The PGDBG Debugger

95

if conditionals and do bodies cannot be parallelized with prefix p/t-sets. For example, an illegal command

would be:

pgdbg [all] 0> break func if (glob!=0) do {[*] set f = 0} ILLEGAL

This is illegal. The body of a do statement cannot be parallelized.

Parallel Statements

This section describes how to use a p/t-set to define a statement across multiple threads and processes.

Parallel Compound/Block Statements

Each command in a compound statement is executed in order. The target p/t-set is applied to all statements in

a compound statement. The following two examples (i) and (ii) are equivalent:

i) pgdbg [all] 0>[*] break main; cont; wait; print f@11@i
ii) pgdbg [all] 0>[*] break main; [*]cont; [*]wait; [*]print f@11@i

Use the wait command if subsequent commands require threads to be stopped as the print command above

does.

The threadwait and procwait environment variables do not affect how commands within a compound statement

are processed. These pgienv environment variables describe to PGDBG under what conditions (runstate of

program) it should accept the next (compound) statement.

Parallel If, Else Statements

A prefix p/t-set can be used to parallelize an if statement. An if statement executes in the context of the current

thread by default. The following example:

pgdbg [all] 0> [*] if (i==1) {break func; c; wait} else {sync func2}

is equivalent to the following pseudo-code:

 for the subset of [*] where (i==1)
 break func; c; wait; for the subset of [*] where (i!=1) sync func2

Parallel While Statements

A prefix p/t-set can be used to parallelize a while statement. A while statement executes in the context of the

current thread by default. The following example:

pgdbg [all] 0> [*] while (i<10) {n; wait; print i}

is equivalent to the following pseudo-code:

 loop:
 if the subset of [*] is the empty set
 goto done
 for the subset of [*] where (i<10)
 [s]n; [s]wait; [s]print
i;
 goto loop

PGI® Tools Guide

96

 done:

The while statement terminates when either the subset of the target p/t-set matching the while condition is the

empty set, or a return statement is executed in the body of the while.

Return Statements

The return statement is defined only in serial context since it cannot return multiple values. When return is

used in a parallel statement, it returns the last value evaluated.

OpenMP Debugging
An attempt is made by PGDBG to preserve line level debugging and to help make debugging OpenMP programs

more intuitive. PGDBG preserves line level debugging across OpenMP threads in the following situations:

• Entrance to parallel region

• Exit from parallel region

• Synchronization points of nested parallel regions

• Critical and exclusive sections

• Parallel sections

When directives or pragmas that imply complex parallel operations are encountered in the execution of an

OpenMP application, PGDBG treats those directives as a single source line.

Serial vs. Parallel Regions

The initial thread is the thread with OpenMP ID 0. Conceptually, the initial thread is the only thread that can

be effectively debugged in a serial region of code. All threads may be debugged in a parallel region of code.

When the initial thread is in a serial region, the non-initial threads are waiting to be assigned to do some work

in the next parallel region. All threads enter the next parallel region only when the first thread has entered the

parallel region.

PGDBG source level debugging operations (next, step,...) are not useful for debugging non-initial threads in

serial regions, since these threads are idle, executing low-level code that is not compiled to include source line

information. Non-initial threads in serial regions may be debugged using assembly-level debugging operations,

but it is not recommended.

To ease debugging in serial and parallel regions of an OpenMP program, PGDBG automatically configures both

the thread wait mode and the thread stop mode of the debug session.

Upon entering a serial region, PGDBG automatically changes the thread stop mode to synchronous stop mode

and the thread wait mode to all. This allows easy control of all threads together in serial regions. For example,

a next command, applied to all threads in a serial region, will complete successfully when the initial thread hits

the next source line.

Upon entering a parallel region, PGDBG automatically changes the thread stop mode to asynchronous stop

mode and the threadwait mode to none. This allows control of each thread independently. For example, a

next command, applied to all threads in a parallel region, will not complete successfully until all threads hit

Chapter 1. The PGDBG Debugger

97

their next source line. With the thread wait mode set to none, use the halt command on threads that hit barrier

points.

To disable the automatic configuration of the thread wait and thread stop modes, see the threadstopconfig and

threadwaitconfig options of the pgienv command, described in “Miscellaneous,” on page 61.

The configuration of the thread wait and stop modes, as described above, occurs automatically for OpenMP

programs only. When debugging a Linux thread program, the threadstop and threadwait configuration options

should be set using the pgienv command, described in “Miscellaneous,” on page 61.

The PGDBG OpenMP Event Handler

The OpenMP event handler is deprecated as of PGDBG release 5.2.

PGDBG provides optional explicit support for OpenMP events. OpenMP events are points in a well-defined

OpenMP program where the behavior of one thread depends on the location of another thread. For example,

a thread may continue after another thread reaches a barrier point. The PGDBG OpenMP event handler is

disabled by default. It can be enabled using the pgienv omp environment variable as shown below:
pgienv omp [on|off]

The PGDBG OpenMP event handler sets breakpoints before a parallel region, after a parallel region, and

at each thread synchronization point. Using the OpenMP event handler causes a noticeable slowdown in

performance of the program as it runs with the debugger.

Debugging OpenMP Private Data

PGDBG supports debugging of OpenMP private data for all supported languages as of release 6.0. When

an object is declared private in the context of an OpenMP parallel region, it essentially means that each

thread team will have its own copy of the object. This capability is shown in the following Fortran and C/C++

examples, where the loop index variable i is private by default.

FORTRAN example:
 program omp_private_data
 integer array(8)
 call omp_set_num_threads(2)
!$OMP PARALLEL DO
 do i=1,8
 array(i) = i
 enddo
!$OMP END PARALLEL DO
 print *, array
 end

C/C++ example:
#include <omp.h>
 int main ()
 {
 int i;
 int array[8];
 omp_set_num_threads(2);
#pragma omp parallel
 {
#pragma omp for
 for (i = 0; i < 8; ++i)

PGI® Tools Guide

98

 array[i] = i;
 }
 for (i = 0; i < 8; ++i)
 printf("array[%d] = %d\n",i, array[i]);
 }

Display of OpenMP private data when the above examples are built with a PGI compiler (6.0 or higher) and

displayed by PGDBG (6.0 or higher) is as follows:

pgdbg [all] 0> [*] print
i
[0] print i:
1
[1] print i:
5

The example specifies [*] for the p/t-set to execute the print command on all threads. Table 1.14 shows the

values for i in the PGDBG GUI using a Custom Window. Note that All Threads is selected in the Context Selector

to display the value on both threads.

Figure 1.14. OpenMP Private Data in PGDBG GUI

MPI Debugging
MPI debugging is supported on Linux platforms.

Process Control

PGDBG is capable of debugging parallel-distributed MPI programs and hybrid distributed multi-threaded

applications. PGDBG is invoked via MPIRUN and automatically attaches to each MPI process as it is created.

See “Multi-Process MPI Debugging,” on page 76 to get started.

Chapter 1. The PGDBG Debugger

99

Here are some things to consider when debugging an MPI program:

• Use p/t-sets to focus on a set of processes. Be mindful of process dependencies.

• For a running process to receive a message, the sending process must be allowed to run.

• Process synchronization points, such as MPI_Barrier, will not return until all processes have hit the sync

point.

• MPI_Finalize will not return for Process 0 until Process 1..n-1 exit.

A control command (cont, step, …) can be applied to a stopped process while other processes are running. A

control command applied to a running process is applied to the stopped threads of that process and is ignored

by its running threads. Those threads held by the OpenMP event handler will also ignore the control command

in most situations.

PGDBG automatically switches to process wait mode none as soon as it attaches to its first MPI process. See the

pgienv command and “Configurable Wait Mode,” on page 90 for details.

Use the run command to rerun an MPI program. The rerun command is not useful for debugging MPI

programs since MPIRUN passes arguments to the program that must be included. After MPI debugging is shut

down, PGDBG will clean up all of its MPI processes.

Process Synchronization

Use the PGDBG sync command to synchronize a set of processes to a particular point in the program. The

following command runs all processes to MPI_Finalize:

pgdbg [all] 0.0> sync MPI_Finalize

The following command runs all threads of process 0 and process 1 to MPI_Finalize:

pgdbg [all] 0.0> [0:1.*] sync MPI_Finalize

A synchronize command will only successfully sync the target processes if the sync address is well defined for

each member of the target process set, and all process dependencies are satisfied. If these conditions are not

met, for example, a member could wait forever for a message. The debugger cannot predict if a text address is

in the path of an executing process.

MPI Message Queues

PGDBG can dump the MPI message queues through the mqdump command, described in “Memory Access,”

on page 58. In the PGDBG GUI, the message queues can be viewed by selecting the Messages item under the

Windows menu. This command can also have a p/t-set prefix to specify a subset of processes and/or threads.

When using the GUI, a subwindow is displayed with the message queue output as shown in Figure 1.15 (the

PGDBG text debugger produces the same output). Within the subwindow, you can select which process/

threads to display with the Context Selector combo box located at the bottom of the subwindow (e.g., Process

1 in Figure 1.15).

The message queue dump is only available for MPI application debugging using the version of PGDBG that

includes MPI and MPI tools support. The following error message may display if you invoke mqdump:

ERROR: MPI Message Queue library not found. Try setting ‘PGDBG_MQS_LIB_OVERRIDE’
environment variable.

PGI® Tools Guide

100

If this message is displayed by a version of PGDBG that includes MPI and MPI tools support, then the

PGDBG_MQS_LIB_OVERRIDE environment variable should be set to the absolute path of libtvmpich.so or

compatible library. This library is normally located in $PGI/lib.

Figure 1.15. Messages Subwindow

MPI Groups

PGDBG identifies each process by its COMMWORLD rank. In general, PGDBG currently ignores MPI groups.

MPI Listener Processes

Entering Control-C (^C) from the PGDBG command line can be used to halt all running processes. This is not

the preferred method, however, to use while debugging an MPI program. Entering ^C at the command line

sends a SIGINT signal to the debugger’s children. This signal is never received by the MPI processes listed by

the procs command (i.e., the initial and attached processes); SIGINT is intercepted in each case by PGDBG.

However, PGDBG does not attach to the MPI listener processes paired with each MPI process. These listener

processes will receive a ^C from the command line, which will kill these processes and result in undefined

program behavior.

For this reason, PGDBG automatically switches to process wait mode none (pgienv procwait none) as soon as

it attaches to its first MPI process. Setting 'pgienv procwait none' allows commands to be entered while there

are running processes, which allows the use of the halt command to stop running processes without the use of

^C.

Note: halt cannot interrupt a wait command. ^C must be used for this. In MPI debugging, wait should be used

with care.

Chapter 1. The PGDBG Debugger

101

SSH and RSH

By default, PGDBG uses rsh for communication between remote PGDBG components. PGDBG can also use

ssh for secure environments. The environment variable PGRSH should be set to ssh or rsh, to indicate the

desired communication method.

If you use SSH as the mechanism for launching the remote components of PGDBG, you may want to do some

additional configuration. The default configuration of ssh can result in a password prompt for each remote

cluster node on which the debugger runs. You should check with your network administrator to make sure

that you comply with your local security policies when configuring ssh. The following set of steps provide one

way to configure SSH to eliminate this prompt.

$ ssh-keygen -t dsa
$ eval `ssh-agent -s`
$ ssh-add
<make sure that $HOME is not group-writable>
$ cd $HOME/.ssh
$ cp id_dsa.pub authorized_keys

Then for each cluster node you use in debugging, use:

$ ssh <host>

Once you answer the prompts to make the initial connection, subsequent connections should not require

further prompting.

102

103

Chapter 2. The PGPROF Profiler
This chapter describes the PGPROF profiler. The profiler is a tool that analyzes data generated during

execution of specially compiled C, C++, F77, F95 and HPF programs. The PGPROF profiler displays

information about which routines and lines were executed, how often they were executed, and how much of

the total time they consumed.

The PGPROF profiler can also be used to profile multi-process HPF or MPI programs, multi-threaded

programs (e.g., OpenMP or programs compiled with –Mconcur, etc.), or hybrid multi-process programs

employing multiple processes with multiple threads in each process. Profile data from multi-process and

multi-threaded applications can be examined on combined views or on a process-by-process basis. This

information can be used to identify communication patterns or the portions of a program that will benefit the

most from performance tuning.

Introduction
Profiling is a three-step process:

Compilation

Unless the pgprog -collect interface is used, compile with additional options that may cause special

profiling calls to be inserted in the code, generate debugging information that can be used to correlate

instruction addresses with source code line numbers and, in most cases, add data collection libraries to

be linked in.

Execution

Unless the pgprof -collect interface is used, the profiled program is invoked normally but collects

call counts and timing data during execution. When the profile is collected via the pgprof -collect

interface, the timing and event data is collected via the OProfile daemon. See “Profiling with Hardware

Event Counters using PGPROF -collect.,” on page 108 for more details.

Analysis

The PGPROF tool interprets the pgprof.out file to display the profile data and associated source files.

The profiler supports routine level, line level and test coverage data collection modes. The next section

provides definitions for these data collection modes.

PGI® Tools Guide

104

Definition of Terms

Basic Block

At optimization levels above 0, code is broken into basic blocks, which are groups of sequential statements

with only one entry and one exit.

Check Box

A check box is a GUI component consisting of a square or box icon that can be selected by left mouse

clicking inside the square. The check box has a selected and an unselected state. In its selected state, a

check mark will appear inside the box. The box is empty in its unselected state.

Combo Box

A combo box is a GUI component consisting of a text field and a list of text items. In its closed or default

state, it presents a text field of information with a small down arrow icon to its right. When the down arrow

icon is selected by a left mouse-click, the box opens and presents a list of choices.

Coverage Profiling

The strategy of collecting only function level and line level execution counts is called coverage profiling.

The coverage data can be used to identify unexecuted code.s.

CPU Time

The amount of time the CPU is computing on behalf of a process, not waiting for input/output or running

other programs.

Dialog Box

A dialog box is a GUI component that displays information in a graphical box. It may also request some

input from the user. After reading and/or entering some information, the user can click on the OK button

to acknowledge the message and/or accept their input.

Elapsed Time

Total time to complete a task including disk accesses, memory accesses, input/output activities and

operating system overhead.

Function Level Profiling

Call counts and execution times are collected on a per-routine (e.g., subroutine, subprogram, function,

etc.) basis.

GUI

Stands for Graphical User Interface. A set of windows, and associated menus, buttons, scroll bars, etc., that

can be used to control the profiler and display the profile data.

Hardware Counters and Events

These are various performance monitors that allow the user to track specific hardware behavior in their

program. Some examples of hardware counters include: Instruction Counts, CPU Cycle Counts, Floating

Point Operations, Cache Misses, Memory Reads, and so on.

Host

The system on which the PGPROF profiler executes. This will generally be the system where source and

executable files reside, and where compilation is performed.

Instruction Level Profiling

Execution counts and times are collected at the machine instruction level.

Chapter 2. The PGPROF Profiler

105

Line Level Profiling

Execution counts and times are collected for source lines within a called routine.

Radio Button

A radio button is a GUI component consisting of a circle icon that can be selected by left mouse clicking

inside the circle. The radio button has a selected and an unselected state. In its selected state, the circle

is filled in with a solid color, usually black. The circle is empty or unfilled when the button is in its

unselected state.

Routine Level Profiling

Call counts and execution times are collected on a per-routine (e.g., subroutine, subprogram, function,

etc.) basis.

Sampling

A statistical method for collecting time information by periodically interrupting the program and mapping

the current point of execution into an array of counters. The resultant histogram is correlated with the

program symbol table data and line addresses to determine execution times for functions and lines. This is

the traditional (most commonly supported) method of profile data collection.

Target Machine

The system on which a profiled program runs. This may or may not be the same system as the host.

Virtual Timer

A statistical method for collecting time information by directly reading a timer which is being incremented

at a known rate.

Wall-Clock Time

Total time to complete a task including disk accesses, memory accesses, input/output activities and

operating system overhead.

Compilation

The following list shows compiler options that cause profile data collection calls to be inserted and libraries to

be linked in the executable file. Most of these options are related to -Mprof for which the syntax is this:

-Mprof[=option[,option,...]]

You use -Mprof to set performance profiling options. Use of these options causes the resulting executable to

create a performance profile that can be viewed and analyzed with the PGPROF performance profiler. In the

descriptions that follow, PGI-style profiling implies compiler-generated source instrumentation. MPICH-style

profiling implies the use of instrumented wrappers for MPI library routines.

–Mprof=dwarf

Generate limited DWARF symbol information for viewing source line information with most performance

profilers.

–Mprof=func

Perform PGI-style function-level profiling.

–qp

Same as –Mprof=func.

PGI® Tools Guide

106

–Mprof=hwcts

[Linux86_64 Only - PAPI must be installed] Generate a profile using event-based sampling of hardware

counters via the PAPI interface. Compiling and linking with this option produces an executable that

generates a pgprof.out file which contains function (routine), line, and instruction level profiling data. See

“Profiling with Hardware Event Counters using PAPI,” on page 109 for more information on profiling

with hardware counters.

–Mprof=lines

Perform PGI-style line-level profiling.

–Mprof=mpich1

[Systems with MPI license privileges only] Perform MPICH-style profiling for MPICH-1. Implies

–Mmpi=mpich1.

–Mprof=mpich2

[Systems with MPI license privileges only] Perform MPICH-style profiling for MPICH-2. Implies

–Mmpi=mpich2.

–Mprof=mvapich1

[Systems with MPI license privileges only] Perform MPICH-style profiling for MVAPICH-1. Implies

–Mmpi=mvapich1.

–ql

Same as –Mprof=lines.

–pg

[Linux Only] Enable gprof-style (sample-based) profiling. Running an executable compiled with this

option will produce a gmon.out profile file which contains routine, line, and instruction level profiling

data.

–qp

[Linux Only] Same as –pg.

–Mprof=time

Generate a profile using time-based instruction-level statistical sampling. This is equivalent to -pg except

the profile is saved in a file names pgprof.out rather than in gmon.out.

NOTE

Not all profiler options are available in every compiler. Please consult the appropriate compiler user

guide for a complete list of profiling options. A list of available profiling options can also be generated

with the compiler’s –help option.

On Linux systems that have OProfile installed, PGPROF supports collection of performance data

without recompilation. Use of -Mprof=dwarf is useful for this mode of profiling.

PGI supports three methods of profiling: Sample based profiling via a program library [Linux Only], sample

based profiling via the OProfile interface [Linux Only], and profiling through instrumentation of user code.

Compiling with -pg, -Mprof=time, and -Mprof=hwcts switches enables generating sampled based profiling

via a program library. See “Profiling with Hardware Event Counters using PGPROF -collect.,” on page 108

for details on generating sample based profiles via the OProfile interface. Sample based profiling may provide

Chapter 2. The PGPROF Profiler

107

more accurate timings than instrumentation (e.g., –Mprof=[lines|func]) because it can be less intrusive.

It may have some limitations on particular systems; check the PGPROF release notes for more information.

Instrumentation of user code allows computing the coverage accomplished during execution of an application,

as described in Coverage in “Profile Data,” on page 113. There are also differences in how instrumentation

and sample based profiling measure time, described in “Measuring Time,” on page 112.

When working with sample based profiles, it is important that PGPROF know the name of the executable. By

default, PGPROF will assume that your executable is called a.out. To indicate a different executable, use the

–exe command line argument or the Set Executable… option under the File menu in the GUI. See “Profiler

Invocation and Initialization,” on page 111 for more information on changing the executable name.

Program Execution

Once a program is compiled for profiling, it must be executed to produce profile data. The profiled program

is invoked normally, but while running, it collects call counts and/or time data. When the program terminates,

a profile data file is generated. Depending on the profiling method used, this data file is called pgprof.out or

gmon.out. The following system environment variables can be set to change the way profiling is performed:

• GMON_ARCS – Use this environment variable to set the maximum number of arcs (caller/callee pairs).

The default is 4096. This option only applies to gprof style profiling (e.g., programs compiled with the –pg

option).

• PGPROF_DEPTH – Use this environment variable to change the maximum routine call depth for PGPROF

profiled programs. The default is 4096 and is applied to programs compiled –Mprof=func, –Mprof=lines,

–Mprof=[mpich1|mpich2|msmpi|mvapich], –Mprof=[mpich1|mpich2|msmpi|mvapich], hwcts, or

–Mprof=[mpich1|mpich2|msmpi|mvapich],time.

• PGPROF_EVENTS – Use this environment variable to specify hardware (event) counters from which to

collect data. This variable is applied to programs compiled with the –Mprof=hwcts or –Mprof=hwcts, MPI

options. The use of hardware (event) counters is discussed in further detail in “Profiling with Hardware

Event Counters using PAPI,” on page 109.

• PGPROF_NAME – Use this environment variable to change the name of the output file intended for PGPROF.

The default is pgprof.out. This option is only applied to programs compiled with the –Mprof=[func | hwcts

| lines | MPI | time] options. If a program is compiled with the –pg option, then the output file is always

called gmon.out.

Profiling MPI Programs

MPI profiling is available only on Linux and Windows Compute Cluster Server.

To profile an MPI program, you must build the program using the -Mprof switch to specify the version of MPI

that you are using, as shown here:

$ pgcc -Mprof=mpich1 -fast myprog.c$ pgf95 -Mprof=mpich2 -fast myprog.f90$ pgf95 -Mprof=msmpi -fast myprog.f90

Use the compiler option -help or see the product Release Notes for the list of supported versions of MPI.

When you run a program that has been built as just described, a separate data file is generated for each MPI

process. The file named pgprof.out acts as the "root" profile data file. It contains profile information on the

PGI® Tools Guide

108

root MPI process and pointers to the other data files that correspond to the other MPI processes involved in

the profiling run.

Profiling Multi-threaded Programs

Profiling of multi-threaded programs (e.g., OpenMP, programs compiled with –Mconcur, etc.) has different

results depending on the profiling method used. If a program is compiled with –Mprof=hwcts, –Mprof=lines,

–Mprof=func, or –Mprof=[mpich1|mpich2|msmpi|mvapich],[hwcts | lines | func], then each thread gets

profiled. If a program is compiled with –pg or –Mprof=time, then only the master thread gets profiled.

The type of data presented by each profiling method varies. Profiles generated with –Mprof=func,

–Mprof=lines, or –Mprof=[mpich1|mpich2|msmpi|mvapich],[func | lines] measure

elapsed or wall-clock time for each thread. Profiles generated with –Mprof=hwcts or

–Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts collect hardware counter data for each thread. Profiles

generated with –pg or –Mprof=time collect total CPU time for the master thread only. Elapsed time is not

available for –Mprof=hwcts, –Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts, –pg, or –Mprof=time.

Profiling with Hardware Event Counters (Linux Only)

On Linux platforms, PGI performance tools provide support for capturing information about low-level

processor behavior (e.g. cache misses) and correlating it with source or assembly code using PGPROF. Two

methods of data collection are supported: execution of the program under the control of PGPROF using

the #collect option, and building the program with the -Mprof=hwcts compiler option and executing it

independently. Collection of profile data using pgprof -collect may be done on any linux86 or linux86_64

system where Oprofile is installed. Profiling by compiling with the -Mprof=hwcts option is only available on

linux86_64 systems where PAPI has been installed. OProfile is included as an install-time option with most

Linux distributions; it may also be downloaded from oprofile.sourceforge.net. PAPI is available for download

from http://icl.cs.utk.edu/papi/.

Profiling with Hardware Event Counters using PGPROF -collect.

PGPROF can also be used to display time-based and hardware event-based profiles generated via the OProfile

package, which is available on most current Linux distributions.

Unlike profiling with the PAPI interface, no special link time options are needed to enable profiling, though

compiling with -Mprof=dwarf, -g, or -gopt allows viewing profiles with source code annotations under

PGPROF.

To simplify generating profiles, invoke pgprof with the -collect option. PGPROF will execute the program,

collect profile data and generate a pgprof.out file, viewable with PGPROF.

Default event specification options are provided to handle standard profiling situations. For example:

pgprof -collect -dcache program arg ...

With the options shown above, pgprof monitors various causes of data cache miss. By default a one

millisecond time-based profile is produced. See the output of "pgprof -help" for more usage information.

Note that pgprof -collect can invoke a script instead of a program. This is useful if you want to produce an

aggregated profile of several invocations of the program using different data sets. In this situation, use the -exe

option, which allows the data collection phase to determine which program is being profiled.

Chapter 2. The PGPROF Profiler

109

pgprof -collect -dcache -exe program sh run_script

In this situation, if you neglect to specify the -exe option, you can generate the pgprof.out file by executing the

following command before another profiling run is started:

optopgprof
program

The driver script pgprof contains more detailed documentation on its usage.

When using PGPROF -collect, you control the OProfile kernel driver and the sample collection daemon via

opcontrol. This requires root privileges for management operations. Thus, invocations to opcontrol, which are

performed when pgprof is called with the -collect option, are executed via the sudo command. One technique

that requires minimal updates to the /etc/sudoers files is to assume that all users in a group are allowed to

execute opcontrol with group privileges. For example, you could make the following changes to /etc/sudoers:

User alias specification
User_Alias SW = %sw
...
SW ALL=NOPASSWD: /usr/bin/opcontrol

The lines above permit all members of the group ’sw’ to run opcontrol with root privileges.

Note that pgprof -collect will shutdown the oprofile daemon when interrupted. However, if the script is

terminated with SIGKILL, you must execute the following:

pgprof -collect -shutdown

This is important because if the oprofile daemon is left running, disk space on the root file system will

eventually be exhausted.

Since OProfile provides only system wide profiling, when you invoke pgprof with the -collect option pgprof

provides a locking mechanism that allows only one invocation to be active at a time. Note that this locking

mechanism is external to OProfile and does not prevent other profile runs from invoking opcontrol through

other mechanisms, but it would is straightforward to incorporate pgprof's locking mechanism in other

OProfile-based profiling scripts.

Profiling with Hardware Event Counters using PAPI

To use PAPI-style profiling, PAPI must be installed. Installation of PAPI requires rebuilding the Linux kernel.

PGI compiler and tools releases are built with the version of PAPI that is current at the time of the PGI release.

Normally, the profiling support code for -Mprof=hwcts supports profiling against that current version and the

previous version of PAPI (though a warning message is generated if the previous version is used).

To bypass the version check, set the environment variable PGPROF_PAPI_VER to m.n where m and n

respectively are the major and minor numbers associated with your PAPI library.

To profile using hardware counters, compile with the option –Mprof=hwcts. This option adds the PAPI and

PGI profiling libraries to the application’s linker command. By default, this will use the PAPI_TOT_CYC

counter to profile total CPU cycles executed by the application. PGPROF will convert the cycle counts into CPU

time (seconds). The PGPROF_EVENTS environment variable can be set to specify up to four counters to use.

The format for the PGPROF_EVENTS variable follows:

event0[.over][:event1[.over]]

PGI® Tools Guide

110

The event field is the name of the event or hardware counter and the optional over field specifies the overflow

value. The overflow value is the number of events to be counted before collecting profile information. Overflow

provides some control on the sampling rate of the profiling mechanism. The default overflow is 1000000.

To determine which hardware counters are available on the system, compile and run the following simple

program. This program uses the PAPI and PGI libraries to dump the available hardware counters to standard

output.

int main(int argc, char *argv[]) {
 __pgevents();
 exit(0);
}

Save the code in the previous example in a file called pgevents.c and compile it as follows:

pgcc pgeventc.c -o pgevents -lpgnod_prof_papi -lpapi

To display the available events, run the newly created program called pgevents. The pgevents utility shows the

format of the PGPROF_EVENTS environment variable, the list of PAPI preset events, and the list of native (or

processor specific) events. Below is an example of specifying 4 events with the PGPROF_EVENTS environment

variable (using tcsh or csh shells):

% setenv PGPROF_EVENTS \
PAPI_TOT_CYC.1593262939:PAPI_FP_OPS:PAPI_L1_DCM:PAPI_L2_ICM

Specify the events above using the sh or bash shells in the following manner:

$ set PGPROF_EVENTS=\
PAPI_TOT_CYC.1593262939:PAPI_FP_OPS:PAPI_L1_DCM:PAPI_L2_ICM
$ export PGPROF_EVENTS

If PGPROF_EVENTS is not defined, then the profiling mechanism will count CPU cycles (PAPI_TOT_CYC event)

by default.

The following example shows a partial output from pgevents:

Selecting Events
Hardware Information
cpus/node - 4
nodes - 1
total cpus - 4
vendor - AuthenticAMD
model - AMD K8 Revision C
speed 1593.262939mhz
event counters 4
Preset Events
PAPI_L1_DCM - Level 1 data cache misses
PAPI_L1_ICM - Level 1 instruction cache misses
PAPI_L2_DCM - Level 2 data cache misses
PAPI_L2_ICM - Level 2 instruction cache misses
PAPI_L1_TCM - Level 1 cache misses
PAPI_L2_TCM - Level 2 cache misses
...
PAPI_TOT_CYC - Total Cycles
...
Native Events
FP_ADD_PIPE - Dispatched FPU ops - Revision B
and later revisions - Add pipe ops excluding junk ops.

Chapter 2. The PGPROF Profiler

111

FP_MULT_PIPE - Dispatched FPU ops - Revision B
and later revisions - Multiply pipe ops excluding junk ops.
...
CPU_CLK_UNHALTED - Cycles processor is running
(not in HLT or STPCLK state)

Profiler Invocation and Initialization

The PGPROF profiler is used to analyze profile data produced during the execution phase as described in

“Introduction,” on page 103.

The PGPROF profiler is invoked as follows:

% pgprof [options] [datafile]

If invoked without any options or arguments, the PGPROF profiler attempts to open a data file named

pgprof.out, and assumes that application source files are in the current directory. The program executable

name, as specified when the program was run, is usually stored in the profile data file. If all program-related

activity occurs in a single directory, the PGPROF profiler needs no options.

Selecting a Version of Java

PGPROF (both GUI and command line) depends on Java. PGPROF requires that the Java Virtual Machine be

a specific minimum version or above. By default, PGPROF will use the version of Java installed with your PGI

software; if you chose not to install Java when installing your PGI software, PGPROF will look for Java on your

PATH. Both of these can be overridden by setting the PGI_JAVA environment variable to the full path of the Java

executable you wish to use. For example, on a Linux system using the bash shell:

$ export PGI_JAVA=/home/myuser/myjava/bin/java

Command Line Options

If present, PGPROF options are interpreted as follows:

datafile

A single datafile name may be specified on the command line. For profiled MPI applications, the specified

datafile should be that of the initial MPI process. Access to the profile data for all MPI processes is

available in that case, and data may be filtered to allow inspection of the data from a subset of the

processes.

–s

Use the PGPROF Command Line Interface (CLI).

–text

Same as -s.

–scale “files(s)”

Compare scalability of datafile with one or more files. A list of files may be specified by enclosing the list

within quotes and separating each filename with a space. For example:

–scale “one.out two.out”

This example will compare the profiles one.out and two.out with datafile (or pgprof.out by default). If only

one file is specified quotes are not required.

PGI® Tools Guide

112

For sample based profiles (e.g., gmon.out) specified with this option, PGPROF assumes that all profile

data was generated by the same executable. For information on how to specify multiple executables in a

sample-based scalability comparison, see the Scalability Comparison… item in the description of the “File

Menu,” on page 123.

–I srcdir

Specify the source file search path. The PGPROF profiler will always look for a program source file in the

current directory first. If it does not find the source file in the current directory, it will consult the search

path specified in srcdir. The srcdir argument is a string containing one or more directories separated

by a path separator. The path separator is platform dependent; on Linux/Solaris it is a colon (:) and on

Windows it is a semicolon (;). Directories in the path will then be searched in order from left-to-right.

When a directory with a filename that matches a source file is found, that directory is used. Below is an

example for Linux/Solaris:

–I ../src:STEPS

In the example above, the profiler first looks for source files in the current directory, then in the ../src

directory, followed by the STEPS directory. The following is the same example for Windows:

–I ..\src;STEPS

For more information, see the Set Source Directory… item in the description of the “File Menu,” on page

123.

–exe filename

Set the executable to filename (default is a.out).

–o filename

Same as –exe.

–title string

Set the title of the application to string (GUI only).

–V

Print version information.

–help

Prints a list of available command line arguments.

–usage

Same as –help.

–dt (number)

Set the time multiply factor (default is 1.0). This is used to calibrate the times reported by PGPROF.

The profiler will display a time multiplied by the specified number. This option works for all

profiling mechanisms that measure time (e.g., –Mprof=time, – pg, –Mprof=lines, –Mprof=func,

–Mprof=[mpich1|mpich2|msmpi|mvapich].[time | lines | func]).

Measuring Time

The profiling mechanism will collect total CPU time for programs compiled with –Mprof=time, –pg, and

–Mprof=[mpich1|mpich2|msmpi|mvapich],time (see also “Profiling Multi-threaded Programs,” on page

108). For programs compiled with –Mprof=hwcts or –Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts,

Chapter 2. The PGPROF Profiler

113

no timings are collected. For programs compiled to count CPU cycles with –Mprof=hwcts or

–Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts, PGPROF automatically converts CPU cycles into CPU time.

Programs compiled with –Mprof=lines, –Mprof=func, or –Mprof=[mpich1|mpich2|msmpi|mvapich],[time

| lines | func] employ a virtual timer for measuring the elapsed time of each running process/thread. This

data collection method employs a single timer that starts at zero (0) and is incremented at a fixed rate while

the active program is being profiled. For multiprocessor programs, there is a timer on each processor, and

the profiler’s summary data (minimum, maximum and per processor) is based on each processor’s time

executing in a function. How the timer is incremented and at what frequency depends on the target machine.

The timer is read from within the data collection functions and is used to accumulate COST and TIME values

for each line, function, and the total execution time. The line level data is based on source lines; however, in

some cases, there may be multiple statements on a line and the profiler will show data for each statement.

NOTE

Due to the timing mechanism used by the profiler to gather data, information provided for longer

running functions will be more accurate than for functions that only execute for a shorter time relative

to the overhead of the individual timer calls. Refer to “Caveats (Precision of Profiling Results),” on

page 114 for more information about profiler accuracy.

Profile Data

The following statistics are collected and may be displayed by the PGPROF profiler.

BYTES

For HPF and MPI profiles only. This is the number of message bytes sent and received.

BYTES RECEIVED

For HPF and MPI profiles only. This is the number of bytes received in a data transfer.

BYTES SENT

For HPF and MPI profiles only. This is the number of bytes sent.

CALLS

The number of times a function is called.

COST

The sum of the differences between the timer value entering and exiting a function. This includes time

spent on behalf of the current function in all children whether profiled or not. PGPROF can provide cost

information when you compile your program with the –Mprof=cost or –Mprof=lines options. For more

information, refer to“Compilation,” on page 105.

COUNT

The number of times a line or function is executed.

COVERAGE

This is the percentage of lines in a function that were executed at least once.

LINE NUMBER

For line mode, this is the line number for that line. For function mode, this is the line number of the first

line of the function.

PGI® Tools Guide

114

MESSAGES

For HPF and MPI profiles only. This is the number of messages sent and received by the function or line.

RECEIVES

For HPF and MPI profiles only. This is the number of messages received by the function or line.

SENDS

For HPF and MPI profiles only. This is the number of messages sent by the function or line.

STMT ON LINE

For programs with multiple statements on a line, data is collected and displayed for each statement

individually.

TIME

The time spent only within the function or executing the line. The TIME does not include time spent in

functions called from this function or line. TIME may be displayed in seconds or as a percent of the total

time.

TIME PER CALL

This is the TIME for a function divided by the CALLS to that function. TIME PER CALL is displayed in

milliseconds.

Caveats (Precision of Profiling Results)

Accuracy of Performance Data

The collection of performance data will always introduce some overhead, or intrusion, that can affect the

behavior of the application being monitored. How this overhead affects the accuracy of the performance data

depends on the performance monitoring method chosen, system software and hardware attributes, and the

idiosyncrasies of the profiled application. Although the PGPROF implementation attempts to minimize intrusion

and maximize accuracy, it would be unwise to assume the data is beyond question.

Clock Granularity

Many target machines provide a clock resolution of only 20 to 100 ticks per second. Under these

circumstances, a function must consume at least a few seconds of CPU time to generate meaningful line level

times.

Source Code Correlation

At higher optimization levels, and especially with highly vectorized code, significant code reorganization may

occur within functions. The PGPROF profiler allows line profiling at any optimization level. In some cases, the

correlation between source and data may at times appear inconsistent. Compiling at a lower optimization level

or examining the assembly language source may be necessary to interpret the data in these cases.

Overhead of -Mprof=lines

The profiling mode enabled by the compiler switch -Mprof=lines adds real time instrumentation calls to

compiler generated code. This profiling mode incurs a significant overhead due to the need to generate a

timestamp for each line executed. Currently on Linux, the gettimeofday system call is invoked to generate

these timestamps. On modern x86 and x64 processors, the Linux kernel can implement gettimeofday via a

Chapter 2. The PGPROF Profiler

115

virtual system call mechanism which allows the timestamps to be generated in less than .1 microseconds.

When the timestamp is generated by the power management timer via the normal system call mechanism, a

call to gettimeofday can take between 1 to 2 microseconds. The Linux kernel will use the virtual system call

implementation on single processor systems, or on Multi-Processor (MP) systems where it is known that

the rdtsc instructions generates timestamps via a synchronized clock (more modern processors). Unless the

virtual system call mode is used for gettimeofday, extremely long run times will result for code compiled with

the -Mprof=lines option.

The overhead of the gettimeofday system call can be determined by running the following program on an

unloaded system:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <sys/time.h>
void warmup(int usecs)
{
 struct timeval tv;
 long long t0, t, dt;
 volatile int i;
 gettimeofday(&tv, NULL);
 t0 = tv.tv_sec * 1000000 + tv.tv_usec;
 for (; ;) {
 for (i = 0; i < 1000; i++)
 ;
 gettimeofday(&tv, NULL);
 t = tv.tv_sec * 1000000 + tv.tv_usec;
 dt = t - t0;
 if (dt > usecs)
 break;
 }
}
int main(int argc, char **argv)
{
 int cnt = 20, i, j;
 int rcnt = 100;
 double *vgs;
 double *vgd, gsum, gave;
 struct timeval tv;
 assert((vgs = calloc(sizeof vgs[0],cnt + 1)) != NULL);
 assert((vgd = calloc(sizeof vgd[0],cnt)) != NULL);
 /* Warmup system to jiggle powersaved out of low frequency state */
 warmup(1000000);
 for (i = 0; ; i++) {
 gettimeofday(&tv, NULL);
 vgs[i] = (double)tv.tv_sec + (double)tv.tv_usec/1000000;
 if (i == cnt)
 break;
 for (j = 0; j < rcnt; j++)
 gettimeofday(&tv, NULL);
 }
 gsum = 0;
 for (i = 0; i < cnt; i++) {
 vgd[i] = (vgs[i+1] - vgs[i]) / rcnt;
 gsum += vgd[i];
 }
 gave = gsum / cnt;
 printf("gettimeofday average (usec) = %f\n", gave * 1000000);

PGI® Tools Guide

116

 return 0;
}

Graphical User Interface
The PGPROF Graphical User Interface (GUI) is invoked using the command pgprof. This section describes

how to use the profiler with the GUI on systems where it is supported. There may be minor variations in the

GUI from host to host, depending on the type of monitor available, the settings for various defaults and the

window manager used. Some monitors do not support the color features available with the PGPROF GUI. The

basic interface across all systems remains the same, as described in this chapter, with the exception of the

differences tied to the display characteristics and the window manager used.

There are two major advantages provided by the PGPROF GUI:

Source Interaction

The PGPROF GUI will display the program source of any routine for which the profiler has information,

whether or not line level profile data is available. To display the source code of a routine, select the

routine name. Since interpreting profile data usually involves correlating the program source and the data,

the source interaction provided by the GUI greatly reduces the time spent interpreting data. The GUI allows

you to easily compare data on a per processor/thread basis, and identify problem areas of code based on

processor/thread execution time differences for routines or lines.

Graphical Display of Data

It is often difficult to visualize the relationships between the various percentages and execution counts. The

GUI displays bar graphs that graphically represent these relationships to help locate the ‘hot spots’ in the

target program.

The PGPROF GUI Layout

On startup, PGPROF, the profiler attempts to load the profile datafile specified on the command line (or the

default pgprof.out). If no file is found, a file chooser dialog box is displayed. Choose a profile datafile from the

list or select Cancel.

When a profile datafile is opened, PGPROF populates the following areas in the GUI, shown from top to bottom

in Figure 2.1, “Profiler Window,” on page 118:

• Profile Summary – Below the “File…Settings…Help” menu bar is the profile summary area. This

information displays the label Profiled followed by: executable name, date last modified, the amount of time

consumed by the executable and the number of processes (if the application being profiling has more than

one process).

• Profile Entry Combo Box – Below the Profile Summary is the Profile Entry Combo Box. The profile entry

(profile datafile, source file, subprogram,…) displayed in this box is known as the current profile entry.

This entry corresponds to the data highlighted in the profile tables described below. The current entry can

be changed by entering a new entry or selecting an entry from the combo box. Left-click on the down-arrow

icon to show a list of previously viewed entries available for selection. See“Profile Navigation,” on page

120 for more information on profile entries.

• Navigation Buttons – Use the left and right arrow buttons, located on the left of the Profile Entry Combo Box,

to navigate between previously viewed profile entries.

Chapter 2. The PGPROF Profiler

117

• Select Combo Box – This combo box is located to the right of the Profile Entry Combo Box. Open the Select

Combo Box to refine the criteria for displaying profile entries in the tables mentioned below. By default, the

selection is set to All profile entries.

• Top Left Table – The Top Left Table, located below the Navigation Buttons, displays the static profile entry

information. This includes filenames, routine names, and line numbers of the profile entries. When viewing

line level information, this table will also show the source code if the source files are available. If this table

has more than one entry in it, then a column labeled View displays. See the description on the Bottom Table

for more information.

• Top Right Table – The Top Right Table displays profile summary information for each profile entry. To

change what is displayed, select the Processes or View menus, discussed in “Processes Menu,” on page

127 and “View Menu,” on page 128, respectively. To view profile information at the line level, compiled

with –Mprof=lines or –pg, then in the routine level view, double click the left mouse button to view its line

level profile information.

• Bottom Table – The Bottom Table displays detailed profile information for the current profile entry. For

a multi-process application, this table contains a profile entry for each application process. For a multi-

threaded (or multi-process/multi-threaded) application, PGPROF offers the option to view process and/

or thread level profile information. A Process/Thread Selector (combo box) will appear in the lower

right hand corner when profiling multi-threaded programs. Use this combo box to toggle between thread,

process, or process/thread profile information. Figure 2.3, “PGPROF with Visible Process/Thread Selector”,

shows the Process/Thread Selector in its opened state. Three choices are available: Processes, Threads,

Process.Threads.

The heading in the leftmost column will be Process(es) by default. When profiling a multi-threaded

application, the heading in the leftmost column will reflect whatever is selected in the Process/Thread

Selector. When the leftmost column is displaying processes or threads, each entry will contain integers

that represent process/thread IDs. When the leftmost heading is displaying processes and threads

(denoted Process(es).Threads in the column heading), each entry is a floating-point number of the

form (Process_ID).(Thread_ID). Following the process/thread ID, the filename, routine name, or line

number display enclosed in parentheses. This provides additional ownership information of the process/

thread. It also acts as a minor sort key. See the discussion on Sort in “Sort Menu,” on page 131 for more

information.

This table will display process/thread information for the current profile entry by default. To view other

entries, use the View check boxes in the Top Left Table to select other entries. The View check boxes are

shown in Figure 1.1, “Default Appearance of PGDBG GUI”, in “View Menu,” on page 128. These support

easy comparison of more than one process/thread in the Bottom Table. When you Print the tables to a

file or a printer, an entry with a checked View box gets printed with each profile entry. Again, this allows

for easy comparison of more than one process/thread. See the Print option, under the File menu, in “File

Menu” for more information on printing.

• Histogram – Located at the bottom of the GUI is a tabbed pane with two tabs labeled View and Histogram.

When the Histogram tab is selected, the GUI displays a histogram of one or more profiled data items. The

data items that are displayed are the same data items selected in the View menu, described in “View Menu,”

on page 128. Each row is labeled with the data in the histogram. Each column is a profile entry. The

bars are sorted in the order specified in the Sort menu, as described in “Sort Menu,” on page 131. Left-

clicking on a bar displays information for the corresponding profile item in the Top Left and Right tables.

PGI® Tools Guide

118

Double-clicking the left mouse button on a bar will drill down into the profile on that item, described in

“Profile Navigation,” on page 120. Selected bars are highlighted in blue. The histogram is illustrated in

Figure 2.2, “Profiler Window with Visible Histogram,” on page 119.

• Profile Name – The Profile Name area is located in the lower left hand corner of the GUI. It is preceded with

the keyword Profile: This area displays the profile filename.

GUI Customization

Figure 2.1, “Profiler Window”, shows how the PGPROF GUI appears when launched for the first time. The

default dimensions of the GUI are 800 x 600. It can be resized according to the conventions of the window

manager. The width of the Top Left and Right tables can be adjusted using the grey vertical divider located

between the two tables. The height of the Top Left, Right, and Bottom tables can be adjusted using the grey

horizontal divider. Both of these dividers can be dragged in the direction shown by arrow icons located on

each divider. Left-click on these arrow icons can be used to quickly “snap” the display in either direction.

After customizing of the display, PGPROF will save the size of the main window and the location of each divider

for subsequent PGPROF sessions. To prevent saving these settings on exit from PGPROF, uncheck the Save

Settings on Exit item under the Settings menu, described in “Settings Menu,” on page 124.

Figure 2.1. Profiler Window

Chapter 2. The PGPROF Profiler

119

Figure 2.2. Profiler Window with Visible Histogram

Figure 2.3. PGPROF with Visible Process/Thread Selector

PGI® Tools Guide

120

Profile Navigation

The PGPROF GUI is modeled after a web browser. The current profile entry can be thought of as an address,

similar to a web page address (e.g. URL). This address is displayed in the Profile Entry Combo Box; introduced

in “The PGPROF GUI Layout,” on page 116. The address format follows:

(profile)[@sourceFile[@routine[@lineNumber[@textAddress]]]]

The only required component of the address is the profile datafile (e.g., pgprof.out, gmon.out, etc.). Each

additional component is separated by an ‘@’. For example, Figure 2.4, “Example Routine Level Profile”

shows a profile of an application with a single routine called main. When a profile is initially displayed, the

first entry in the Top Left and Right tables is selected (highlighted) by default. The Profile Entry Combo Box

reflects the selected entry by displaying its address. In this case, the Profile Entry Combo Box contents are:

pgprof.out@regexec.c@reg. This indicates that the current profile entry is a routine named reg located in file

regexec.c.

A different address can be entered in the Profile Entry Combo Box using the above address format or by

choosing a previously viewed profile entry in the combo box. Click on the down arrow in the combo box

to choose from a list of previously viewed profile entries. As described in “The PGPROF GUI Layout,” on

page 116, previously viewed profile entries can be selected with the Profile Entry Combo Box or with the

Navigation Buttons.

The current profile entry is highlighted in the Top Left, Right, and Histogram tables. To change the current

profile entry, left-click on a new entry in the Right Table or Histogram. This may also be done by clicking on

an entry in the Left Table, but there must be a corresponding entry in the Right Table. Double clicking the

left mouse button on a profile entry will drill down into the selected profile entry. The example in Figure 2.4,

“Example Routine Level Profile” assumes that the program was compiled with –Mprof=time and the current

profile entry is pgprof.out@regexec.c@reg. Double clicking on the highlighted entry in the Right Table causes

PGPROF to display reg’s line level information. Figure 2.5, “Example Line Level Profile”, shows this example

after double clicking on main. Double clicking on line 759 causes PGPROF to display the instruction level

profile shown in Figure 2.6, “Example Instruction Level Profile”.

Drilling down works at higher levels of profiling too. For example, if the current profile entry is pgprof.out,

then double clicking on pgprof.out displays a list of profiled files and their profile information. Double clicking

on a file from this list moves to the routine level profiling information for that file, etc.

Chapter 2. The PGPROF Profiler

121

Figure 2.4. Example Routine Level Profile

PGI® Tools Guide

122

Figure 2.5. Example Line Level Profile

Chapter 2. The PGPROF Profiler

123

Figure 2.6. Example Instruction Level Profile

PGPROF Menus

As shown in Figures 2-1 through 2-4, there are five menus in the GUI: File, Settings, Help, Processes, View, and

Sort. “File Menu,” on page 123 through “Sort Menu,” on page 131 describe each menu in detail. Keyboard

shortcuts, when available, are listed next to menu items.

File Menu

The File menu contains the following items:

• New Window (control N) – Select this option to create a copy of the current profiler window on your

screen.

• Open Profile… – Select this option to open another profile. After selecting this menu item, locate a profile

data file in a file chooser dialog box. Select the new file in the dialog by double clicking it using the left

mouse button. A new profile window will appear with the selected profile. Note: The name of the profile’s

executable must be set before opening a sample based profile (e.g., gmon.out). See the Set Executable…

option below for more details.

• Set Executable… – Select this option to select the executable to be analyzed. Selection of this menu item

launches a file selection dialog in which to locate the profiled executable. Select the executable by double

clicking the left mouse button on it. When working with sample based profiles (e.g., gmon.out), the

PGI® Tools Guide

124

executable chosen must match the executable that generated the profile. By default, the profiler assumes

that the executable is called a.out.

• Set Source Directory… – Select this option to set the location of the profiled executable’s source files. The

profiler displays a text field in a dialog box. Enter one or more directories in this text field. Each directory

is separated by a path separator. The path separator is platform dependent. On Linux/Unix it is a colon (:

), on Windows it is a semicolon (;). These directories act as a search path when the profiler cannot find a

source file in the current directory. On Linux, for example:

 ../src:STEPS

• After entering the string above into the dialog box, the profiler will first search for source files in the current

directory, then in the ../src directory, and finally in the STEPS directory. The directory can also be set

through the –I command line option described in “Profiler Invocation and Initialization,” on page 111.

The same example for Windows follows:

..\src;STEPS

• Scalability Comparison… – Select this option to open another profile for scalability comparison. Follow

the same directions for the Open Profile… option described above. The new profile will contain a Scale

column in its Top Right table. You can also open one or more profiles for scalability comparison through

the –scale command line option explained in “Profiler Invocation and Initialization,” on page 111. See

also “Scalability Comparison,” on page 134 for more information on scalability.

• Print… – The print option is used to make a hard copy of the current profile data. The profiler will

combine the data in all three profile tables and send the output to a printer. A printer dialog box will

appear. A printer may be selected from the Print Service Name combo box. Click on the Print To File check

box to send the output to a file. Other print options may be available. However, they are dependent on the

specific printer and the Java Runtime Environment (JRE).

• Print to File… – Same as Print… option except the output goes to a file. After selecting this menu item, a

save file dialog box will appear. Enter or choose an output file in the dialog box. Click Cancel to abort the

print operation.

Settings Menu

The Settings menu contains the following items:

Bar Chart Colors… – This menu option will open a color chooser dialog box and a bar chart preview panel

(Figure 2.7, “Bar Chart Color Dialog Box,” on page 126). There are four bar chart colors based on the

percentage filled and three bar chart attributes. The Filled Text Color attribute represents the text color inside

the filled portion of the bar chart. The Unfilled Text Color attribute represents the text color outside the filled

portion of the bar chart. The Background Color attribute represents the color of the unfilled portion of the bar

chart. Table 2.1, “Default Bar Chart Colors” lists the default colors.

To modify a bar chart or attribute color, click on its radio button. Next, choose a color from the Swatches,

HSB, or RGB pane. Press the left mouse button on the OK button to accept the changes and close the dialog

box. Click Reset to reset the selected bar chart or attribute to its previously selected color. Closing the window

will also accept the changes. PGPROF will save color selections for subsequent runs unless the Save Settings on

Exit box is unchecked (see discussion on this option below).

Chapter 2. The PGPROF Profiler

125

Font… – This menu option opens the Font Chooser dialog box (Figure 2.8, “Font Chooser Dialog Box”). A

new font may be chosen from a list of fonts in this dialog’s top combo box. A new font size may also be chosen

from a list of sizes in this dialog’s bottom combo box. The font is previewed in the Sample Text pane to the

left. The font does not change until the OK button is selected. Click Cancel or close the dialog box to abort any

changes. The default font is monospace size 12.

Show Tool Tips – Select this check box to enable tool tips. Tool tips are small temporary messages that pop-

up when the mouse pointer is positioned over a component in the GUI. They provide additional information on

what a particular component does. Unselect this check box to turn tool tips off.

Restore Factory Settings…– Use this option to restore the default look and feel of the GUI to the original

settings. The PGPROF GUI will appear similar to the example in Figure 2.1, “Profiler Window” after selecting

this option.

Restore Saved Settings… – Use this option to restore the look and feel of the GUI to the previously saved

settings. See the Save Settings on Exit option for more information.

Save Settings on Exit – When this check box is enabled, PGPROF will save the current look and feel settings

on exit. These settings include the size of the main window, position of the horizontal/vertical dividers, the

bar chart colors, the selected font, the tools tips preference, and the options selected in the View menu. When

the PGPROF GUI is started again on the same host machine, these saved settings are used. To prevent saving

these settings on exit, uncheck this box. Unchecking this box disables the saving of settings only for the current

session.

Table 2.1. Default Bar Chart Colors

Bar Chart Style/Attribute Default Color
1-25% Brown

26-50% Red

51%-75% Orange

76%-100% Yellow

Filled Text Color Black

Unfilled Text Color Black

Background Color Grey

PGI® Tools Guide

126

Figure 2.7. Bar Chart Color Dialog Box

Figure 2.8. Font Chooser Dialog Box

Chapter 2. The PGPROF Profiler

127

Help Menu
Figure 2.9. PGPROF Help

The Help menu contains the following items:

PGPROF Help… – This option invokes PGPROF’s integrated help utility as shown in Figure 2.9, “PGPROF

Help”. The help utility includes an abridged version of this manual. To find a help topic, use one of the

follow tabs in the left panel: The “book” tab presents a table of contents, the “index” tab presents an index of

commands, and the “magnifying glass” tab presents a search engine. Each help page (displayed on the right)

may contain hyperlinks (denoted in underlined blue) to terms referenced elsewhere in the help engine. Use

the arrow buttons to navigate between visited pages. Use the printer buttons to print the current help page.

About PGPROF… – This option opens a dialog box with version and contact information for PGPROF.

Processes Menu

The Processes menu is enabled for multi-process programs only. This menu contains three check boxes: Min,

Max, and Avg. They represent the minimum process value, maximum process value, and average process value

respectively. By default Max, is selected.

When Max is selected, the highest value for any profile data in the Top Right Table is reported. For example,

when reporting Time, the longest time for each profile entry gets reported when Max is selected. When the Min

process is selected, the lowest value for any profile data is reported in the Right Table. AVG reports the average

value between all of the processes. Any, all, or none of these check boxes may be selected. When no check

boxes are selected, the Top, Left and Right Tables are empty. If the Process check box under the View menu is

selected, then each row of data in the Right Table is labeled max, avg, and min respectively.

PGI® Tools Guide

128

Figure 2.10, “PGPROF with Max, Avg, Min rows”, illustrates max, avg, and min with the Process check box

enabled.

Figure 2.10. PGPROF with Max, Avg, Min rows

View Menu

Use the View menu to select which columns of data to view in the Top Left, Top Right, and Bottom tables. This

selection also affects the way that tables are printed to a file and a printer (see Print in “File Menu,” on page

123).

The following lists View menu items and their definition. Note that not all items may be available for a given

profile.

• Count – Enables the Count column in the Top Right and Bottom tables. Count is associated with the number

of times this profile entry has been visited during execution of the program. For function level profiling,

Count is the number of times the routine was called. For line level profiling, Count is the number of times a

profiled source line was executed.

• Time – Enables the Time column in the Top Right and Bottom tables. The time column displays the time

spent in a routine (for function level profiling) or at a profiled source line (for line level profiling).

• Cost – Enables the Cost column in the Top Right and Bottom tables. Cost is defined as the execution

time spent in this routine and all of the routines that it called. The column will contain all zeros if cost

information is not available for a given profile.

Chapter 2. The PGPROF Profiler

129

• Coverage – Enables the Cover column in the Top Right and Bottom tables. Coverage is defined as the

number of lines in a profile entry that were executed. By definition, a profiled source line will always have

a coverage of 1. A routine’s coverage is equal to the sum of all its source line coverages. Coverage is only

available for line level profiling. The column will contain all zeros if coverage information is not available

for a given profile.

• Messages – Enables the message count columns in the Top Right and Bottom tables. Use this menu item

to display total MPI messages sent and received for each profile entry. This menu item contains Message

Sends and Message Receives submenus for separately displaying the sends and receives in the Top Right and

Bottom tables. The message count columns will contain all zeros if no messages were sent or received for a

given profile.

• Bytes – Same as Messages except message byte totals are displayed instead of counts.

• Scalability – Enables the Scale column in the Top Right table. Scalability is used to measure the linear

speed-up or slow-down of two profiles. This menu contains two check boxes: Metric and Bar Chart.

When Metric is selected, the raw Scalability value is displayed. When Bar Chart is selected, a graphical

representation of the metric is displayed. Scalability is discussed in “Scalability Comparison,” on page

134.

• Processes…(control P) – This menu item is enabled when profiling an application with more than one

process. Use the Processes menu item to select individual processes for viewing in the Bottom table. When

this item is selected, a dialog box will appear with a text field. Individual processes or a range of processes

can be entered for viewing in this text field. Individual processes must be separated with a comma.

A range of processes must be entered in the form: [start]-[end]; where start represents the first process of the

range and end represents the last process of the range. For example:

 0,2-16,31

This tells the profiler to display information for process 0, process 2 through 16, and process 31. These

changes remain active until they are changed again or the profiler session is terminated. Leave the text field

blank to view all of the processes in the Bottom table.

• Threads… (control T) – Same as Processes... except it selects the threads rather than the processes viewed

in the Bottom table.

• Filename – Enables the Filename column in the Top Left table.

• Line Number – Enables the Line column in the Top Left table.

• Name – Enables the Function (routine) name column in the Top Left table when viewing function level

profiling.

• Source – Enables the Source column in the Top Left table when viewing line level profiles. If the source

code is available, this column will display the source lines for the current routine. Otherwise, this column

will be blank.

• Statement Number – Enables the Stmt # column in the Top Right table. Sometimes more than one statement

is profiled for a given source line number. One example of this is a “C” for statement. The profiler will

assign a separate row for each substatement in the Top Left and Right tables. In line level profiling,

duplicate line numbers display in the Line column. Each substatement is assigned a statement number

PGI® Tools Guide

130

starting at 0. Any substatement numbered one or higher will have a ‘.’ and their statement number tacked

onto the end of their profile address. For example, in Figure 2.11, “Source Lines with Multiple Profile

Entries”, source lines 9 and 17 both have multiple profile entries. As shown in the Profile Entry Combo Box,

the second entry for line 9 has the following address:

pgprof.out@omp.c@main@9.1

• This line numbering convention is also reflected in the Bottom table of Figure 2.11, “Source Lines with

Multiple Profile Entries”, where the line number is enclosed in parentheses.

• Process – This menu option is enabled when more than one process was profiled for a given application.

When this check box is selected, a column labeled Process is displayed in the Top Right table. The values

for the Process column depend on whatever was enabled in the Processes menu discussed in “Processes

Menu,” on page 127.

• Event1 – Event4 – If hardware event counters are supported on the profiled system, then up to four unique

events can be displayed in the Top Right and Bottom tables. In this case, menu items for each counter will

be enabled, with names corresponding to each particular event. Each event can exist for some or all of the

executing threads in the profiled application.

Figure 2.11. Source Lines with Multiple Profile Entries

The submenus Count, Time, Cost, Coverage, Messages, Bytes, and Event1 through Event4 contain three check

boxes for selecting how the data is presented in each column. The first check box enables a raw number to be

displayed. The second check box enables a percentage. The third check box is a bar chart.

Chapter 2. The PGPROF Profiler

131

When a percentage is selected, a percentage based on the global value of the selected statistic displays. For

example, in Figure 2.11, “Source Lines with Multiple Profile Entries”, line 13 consumed 0.000579 seconds, or

42% of the total time of 0.001391 seconds.

When the bar chart is selected, a graphical representation of the percentage is displayed. The colors are based

on this percentage. For a list of default colors and their respective percentages, see the Bar Chart Colors option

in the “Settings Menu,” on page 124.

Sort Menu

The sort menu can be used to alter the order in which profile entries appear in the Top Left, Top Right, and

Bottom tables. The current sort order is displayed at the bottom of each table. In Figure 2.11, “Source Lines

with Multiple Profile Entries”, the tables have a “Sort by” clause followed with “Line No” or “Process”. This

indicates the sort order is by source line number or by process number respectively. In PGPROF, the default

sort order is by Time for function level profiling and by Line No (source line number) for line level profiling.

The sort is performed in descending order, from highest to lowest value, except when sorting by filename,

function name, or line number. Filename, function name, and line number sorting is performed in ascending

order; lowest to highest value. Sorting is explained in greater detail in “Selecting Profile Data,” on page 132.

Search Menu

The search menu can be used to perform a text search within the Top Left table. The search menu contains the

following items:

• Forward Search… (control F)

• Backward Search… (control B)

• Search Again (control G)

• Clear Search (control Q)

The PGPROF GUI displays a dialog box when you invoke the Forward Search… or Backward Search…

menu items. The dialog box will prompt for the text to be located. Once the text is entered and the OK button

selected, PGPROF will search for the text in the Top Left table. Select Cancel to abort the search. If Forward

Search was selected, PGPROF will scroll forward to the next occurrence of the text entered in the dialog box.

If Backward Search was selected, PGPROF will scroll backwards to the first previous occurrence of the text in

the Top Left table. Top Left table columns that contain matching text are displayed in red. To repeat a search,

select the Search Again menu item. To clear the search and turn the color of all matching text back to black,

select the Clear Search menu item.

Selecting and Sorting Profile Data

Selecting and sorting affects what profile data is displayed and how it is displayed in PGPROF’s Top Left, Top

Right, and Bottom tables. The Sort menu, explained in “Sort Menu,” on page 131, can be used to change the

sort order. The sort order can also be changed by left-clicking a column heading in the Top Left, Top Right,

and Bottom tables. The Select Combo Box, introduced in “Sort Menu,” on page 131, may be used to select

which profile entries are displayed based on certain criteria.

PGI® Tools Guide

132

Selecting Profile Data

By default, PGPROF selects all profile entries for display in the Top Left and Right tables. To change the

selection criteria, left mouse click on the Select Combo Box next to the Select label.

The following options are available:

• All – Default. Display all profile entries.

• Coverage – Select entries based on Coverage. When Coverage is selected, an additional text field will appear

with up and down arrow keys. Use the up and down arrow keys to increase the minimum coverage a profile

entry needs before PGPROF will display it. The desired minimum may be entered directly into the text

field. The value in the text field represents a percentage. Profile entries with coverage that exceed the input

percentage are displayed in the tables. In Figure 2.12, “Selecting Profile Entries with Coverage Greater Than

3%”, the example shows selecting all routines that have coverage greater than 3% of the coverage for the

entire program.

• Count – Select entries based on a count criteria. This is the same as Coverage except this selects the

minimum count required for each profile entry. Profile entries with counts greater than the entered count

value are displayed in the tables.

• Profiled – Select all entries in the Top Left table that have a corresponding entry in the Top Right table. See

the discussion below for more information.

• Time – Same as Coverage except the criteria is based on percent of Time a profile entry consumes rather

than Coverage.

• Unprofiled – Select all entries in the Top Left table that do not have a corresponding entry in the Top Right

table. See the discussion below for more information.

NOTE

For applications compiled with –Mprof=hwcts or –Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts,

a hardware event may be selected from the list above as well.

When Profiled is selected, profile entries that have a corresponding entry in both the Top Left and Right

tables are selected. A profile entry may be listed in the Top Left table but not in the Top Right table. In

this case, the entry is an Unprofiled entry. A Profiled entry is a point in the program in which profile

information was collected. Depending on the profiling method used, this could be at the end of a basic

block (e.g., –Mprof=[func | line], –Mprof=[mpich1|mpich2|msmpi|mvapich],[func | lines] instrumented

profiles) or when the profiling mechanism saved its state (e.g., –pg, –Mprof=time, –Mprof=hwcts,

–Mprof=[mpich1|mpich2|msmpi|mvapich],[time, hwcts] sample based profiles).

Chapter 2. The PGPROF Profiler

133

Figure 2.12. Selecting Profile Entries with Coverage Greater Than 3%

Sorting Profile Data

The current sort order is displayed at the bottom of each table. For example, the message Sort By Time is

present at the bottom of each table in Figure 2.12, “Selecting Profile Entries with Coverage Greater Than 3%”.

The Bottom table will display one of the following messages when sorting by Filename, Name, or Line Number:

• Sort By Process

• Sort By Processes

• Sort By Threads

• Sort By Process.Threads

• Sort By Processes.Threads

If one of these messages appears in the Bottom table, then the profiler is treating the process/thread number

as the major sort key and the Filename, Name, or Line Number as the minor sort key. This can be used to

easily compare two different profile entries with the same process/thread number. Use the check boxes under

the View column in the Top Left table to compare more than one profile entry in the Bottom table. This is

demonstrated in Figure 2.11, “Source Lines with Multiple Profile Entries”.

PGI® Tools Guide

134

Scalability Comparison

PGPROF has a Scalability Comparison feature that can be used to measure linear speed-up or slow-down

between multiple executions of an application. Scalability between executions can be measured with a varying

number of processes or threads. To use scalability comparison, first generate two or more profiles for a given

application. For best results, compare profiles from the same application using the same input data. Also,

scalability comparison works best for serial or multi-process (MPI) programs. To measure scalability for a

multi-threaded program, profiling with –Mprof=func or –Mprof=lines is recommended. See “Profiling Multi-

threaded Programs,” on page 108 and “Measuring Time,” on page 112 for more information on multi-

threaded profiling.

The number of processes and/or threads used in each execution can be different. After generating two or

more profiles, load one of them into PGPROF. Select the Scalability Comparison item under the File menu and

choose another profile for comparison (“File Menu,” on page 123). A new profiler window will appear with

a column called Scale in its Top Right table (“View Menu,” on page 128).

Figure 2.13, “Profile of an Application Run with 1 Process” shows a profile of an application that was run with

one process. Figure 2.14, “Profile with Visible Scale Column ”, shows a profile of the same application run

with two processes. The profile in Figure 2.14, “Profile with Visible Scale Column ”, also has a Scale column in

its Top Right table. Each profile entry that has timing information has a Scale value. The scale value measures

the linear speed-up or slow-down for these entries across profiles. A scale value of zero (or one for serial/

multi-threaded programs) indicates no change in the execution time between the two runs. A positive value

means the time improved by that scaled factor. A negative value means that the time slowed down by that

scaled factor.

Bar charts in the Scale column show positive values with bars extending from left to right and negative values

with bars extending from right to left (Figure 2.14, “Profile with Visible Scale Column ”). If there is a question

mark (‘?’) in the Scale column, then PGPROF is unable to perform the scalability comparison for this profile

entry. This may happen if the two profiles do not share the same executable or input data.

Chapter 2. The PGPROF Profiler

135

Figure 2.13. Profile of an Application Run with 1 Process

PGI® Tools Guide

136

Figure 2.14. Profile with Visible Scale Column

PGPROF uses the two formulas shown below for computing scalability. Formula 2-1 computes scalability for

multiprocess programs and Formula 2-2 computes scalability for serial and multi-threaded programs.

In Formula 2-1, a scalability value greater than zero indicates some degree of speed-up. A scalability value of

one indicates perfect linear speed-up. Anything greater than one, indicates super speed-up. Similar negative

values indicate linear slow-down and super slow-down respectively. A value of zero indicates that no change in

execution time occurred between the two runs.

Formula 2-1: Scalability for Multiprocess Programs
P1 = number of processes used in first run of application
P2 = number of processes used in second run of application
where P2 > P1
Time1 = Execution time using P1 processes
Time2 = Execution time using P2 processes
Scalability = log(Time1 ÷ Time2) ÷ log(P2 ÷ P1)

In Formula 2-2, a scalability value greater than zero indicates some degree of speed-up. A scalability value

equal to the ratio (T2 / T1) indicates perfect linear speed-up. Anything greater than one, indicates super

speed-up. Similar negative values indicate linear slow-down and super slow-down respectively. A value of one

indicates that no change in execution time occurred between the two runs.

Formula 2-2: Scalability for Serial and Multi-threaded Programs
T1 = number of threads used in first run of application

Chapter 2. The PGPROF Profiler

137

T2 = number of threads used in second run of application
where T2 # T1
Time1 = Execution time using T1 threads
Time2 = Execution time using T2 threads
Scalability = Time2 ÷ Time1

Viewing Profiles with Hardware Event Counters

If you executed your program under the control of pgprof -collect or if you compiled your program

with the -Mprof=hwcts or the -Mprof=[mpich1|mpich2|msmpi|mvapich],hwcts option, then

you can profile up to four event counters and view them in PGPROF (use -Mprof=dwarf or -

Mprof=[mpich1|mpich2|msmpi|mvapich],dwarf option when generating profiles via the OProfile interface).

See “Profiling with Hardware Event Counters (Linux Only),” on page 108 for more details.

Figure 2.15, “Profile with Hardware Event Counter”, shows a profile of one event counter called TOT_CYC,

which counts the number of CPU cycles the program consumed. This event is enabled by default or by adding

PAPI_TOT_CYC to your PGPROF_EVENTS environment variable (“Profiling with Hardware Event Counters

(Linux Only),” on page 108). Each entry under the Time column represents CPU time computed by its

corresponding TOT_CYC entry. PGPROF will not report any time for hardware counter profiles unless one of

the hardware events is PAPI_TOT_CYC.

Each event can be toggled for viewing and sorting under the View (“View Menu,” on page 128) and Sort

(“Sort Menu,” on page 131) menus respectively. Hardware event criteria may also be selected under the

Select combo box (“Selecting Profile Data,” on page 132).

Figure 2.15. Profile with Hardware Event Counter

PGI® Tools Guide

138

Command Language
The user interface for non-GUI (Win32) versions of the PGPROF profiler is a simple command language. This

command language is available in GUI versions of the profiler using the –s or –text option. The language is

composed of commands and arguments separated by white space. A pgprof> prompt is issued unless input is

being redirected.

Command Usage

This section describes the profiler’s command set. Command names are printed in bold and may be

abbreviated as indicated. Arguments enclosed by brackets (‘[‘’]’) are optional. Separating two or more

arguments by ‘|’ indicates that any one is acceptable. Argument names in italics are chosen to indicate what

kind of argument is expected. Argument names that are not in italics are keywords and should be entered as

they appear.

display
d[isplay] [display options] | all | none

Specify display information. This includes information on minimum values, maximum values, average values,

or per processor/thread data. Below is a list of possible display options:

[no]calls [no]cover [no]time [no]timecall [no]cost [no]proc [no]thread [no]msgs [no]msgs_sent

[no]msgs_recv [no]bytes [no]bytes_sent [no]name [no]file [no]line [no]lineno [no]visits [no]scale

[no]stmtno

help
he[lp] [command]

Provide brief command synopsis. If the command argument is present only information for that command will

be displayed. The character "?" may be used as an alias for help.

history
h[istory] [size]

Display the history list, which stores previous commands in a manner similar to that available with csh or dbx.

The optional size argument specifies the number of lines to store in the history list.

lines
l[ines] function [[>] filename]

Print (display) the line level data together with the source for the specified function. If the filename argument

is present, the output will be placed in the named file. The '>' means redirect output, and is optional.

asm
a[sm] routine [[>] filename]

Print (display) the instruction and line level data together with the source and assembly for the specified

routine. If the filename argument is present, the output will be placed in the named file. The '>' means redirect

output, and is optional. This command is only available on platforms that support instruction level profiling.

Chapter 2. The PGPROF Profiler

139

load
lo[ad] [datafile]

Load a new dataset. With no arguments reloads the current dataset. A single argument is interpreted as a new

data file. With two arguments, the first is interpreted as the program and the second as the data file.

merge
m[erge] datafile

Merge the profile data from the named datafile into the current loaded dataset. The datafile must be in

standard pgprof.out format, and must have been generated by the same executable file as the original dataset

(no datafiles are modified.)

process
pro[cess] processor_num

For multi-process profiles, specify the processor number of the data to display.

print
p[rint] [[>] filename]

Print (display) the currently selected function data. If the filename argument is present, the output will be

placed in the named file. The '>' means redirect output, and is optional.

quit
q[uit]

Exit the profiler.

select
sel[ect] calls | timecall | time | cost | cover | all [[>] cutoff]

Display data for a selected subset of the functions. This command is used to set the selection key and

establish a cutoff percentage or value. The cutoff value must be a positive integer, and for time related fields is

interpreted as a percentage. The '>' means greater than, and is optional. The default is all.

sort
so[rt] [by] [max | avg | min | proc | thread] calls | cover | timecall | time |
cost | name | msgs | msgs_sent | msgs_recv | bytes | bytes_sent |
bytes_recv | visits | file]

Function level data is displayed as a sorted list. This command establishes the basis for sorting. The default is

max time.

srcdir
src[dir] directory

Set the source file search path.

PGI® Tools Guide

140

stat
s[tat] [no]min|[no]avg|[no]max|[no]proc|[no]thread|[no]all]

Set which process fields to display (or not to display when using the arguments beginning with “no”).

thread
th[read] thread_num

Specify a thread for a multi-threaded process profile.

times
t[imes] raw | pct

Specify whether time-related values should be displayed as raw numbers or as percentages. The default is pct.

! (history)
!!

Repeat previous command.

! num

Repeat previous command numbered num in the history list.

!-num

Repeat the num-th previous command numbered num in the history list.

! string

Repeat most recent command starting with string from the history list.

141

Index
A
AMD64 Register Symbols, 67

Arrays, 70

Audience Description, xiii

C
C++ Instance Methods, 72

Caveats, 114

Clock Granularity, 114

Command set, 86

Compiler Options for Debugging, 2

Configurable Stop Mode, 89

Conformance to Standards, xiii

Constants, 27

Conventions, xv

Conversions, 60

D
Debugging C++, 72

Dynamic p/t-set, 82

E
Events, 17, 30, 42

Expressions, 32

F
Floating-Point Stack Registers

Symbols, 67

Fortan debugging, 70

Fortran 90 module, 71

G
General Register Symbols, 67

Global commands, 88

H
HPF, xiii

I
Invocation and Initialization, 2

L
Lexical blocks, 28

M
Main routine, 70

Manual organization, xiv

MPI

Debugging, 99

Groups, 100

Listener process, 100

Message queues, 99

MPI-CH support, 78

Multilevel debugging, 80

N
Nested subroutines, 71

O
OpenMP, xiii

Serial vs parallel region, 96

Operators, 70

P
P/t-set

Commands, 83

Current, 83

Parallel events, 94

Parallel Statements, 95

Return statements, 96

PGDBG

Buttons, 15

C++ debugging, 72

Combo boxes, 16

Command-Line Arguments, 3

Command prompt, 93

Commands, 26, 33

Commands Summary, 34

Conversions, 60

Custom Subwindow, 26

Debugger, 1

Debug modes, 79

Disassembler Subwindow, 23

Events, 30, 42

Expressions, 32

File Menu, 11

Focus Panel, 8

Fortran arrays, 70

Fortran common, 70

Fortran debugging, 70

Graphical user interface, 4

Help Menu, 11

Invocation, 2

Main Window, 5, 17, 19

Memory access, 58

Memory Subwindow, 23

Messages Subwindow, 21

Miscellaneous commands, 61

Name of main routine, 70

Operators, 32, 70

Options Menu, 15

Parallel commands, 87

Printing and setting variables, 51

Process/Thread Grid, 8

Process control commands, 39

Program I/O Window, 6

Program locations, 49

Register access, 57

Registers Subwindow, 24

Register symbols, 27

Scope, 56

Scope rules, 27

Settings Menu, 11

Source code locations, 28

Source Panel menus, 12

Statements, 29

Status messages, 92

Subwindows, 20

Symbols and expressions, 53

Wait modes, 90

PGDBG Commands

?(search backward), 50

/ (search forward), 50

addr, 60

alias, 61

arrive, 49

PGI® Tools Guide

142

ascii, 52

assign, 53

attach, 39

bin, 52

break, 42

breaki, 43

breaks, 44

call, 53

catch, 44

clear, 44

cont, 39

cread, 58

debug, 39

dec, 53

declaration, 54

decls, 56

defset, 42

delete, 44

detach, 39

directory, 61

disable, 44

disasm, 49

display, 53

do, 44

doi, 45

down, 56

dread, 58

dump, 58

edit, 49

enable, 45

enter, 56

entry, 55

file, 49, 49

files, 56

focus, 42

fp, 57

fread, 59

function, 60

global, 56

halt, 39

help, 61

hex, 53

history, 62

hwatch, 45

hwatchb, 45

hwatchr, 45

ignore, 46

iread, 59

language, 62

line, 60

lines, 49

list, 50

log, 62

lread, 59

lval, 55

mqdump, 59

names, 56

next, 40

nexti, 40

noprint, 62

oct, 53

pc, 57

pgienv, 62

print, 51

printf, 52

proc, 40

procs, 40

pwd, 50

quit, 40

regs, 57

repeat, 64

rerun, 40

retaddr, 58

run, 40

rval, 55

scope, 57

script, 65

set, 55

setenv, 65

shell, 65

sizeof, 55

sleep, 65

source, 65

sp, 58

sread, 60

stackdump, 50

stacktrace, 50

status, 46

step, 40

stepi, 41

stepout, 41

stop, 46

stopi, 46

string, 53

sync/synci, 41

thread, 41

threads, 41

trace, 47

tracei, 47

track, 46

tracki, 46

type, 55

unalias, 65

unbreak, 47

unbreaki, 47

undefset, 42

undisplay, 53

up, 57

use, 65

viewset, 42

wait, 41

watch, 47

watchi, 48

when, 48

wheni, 48

where, 50

whereis, 57

which, 57

whichsets, 42

PGPROF, 118

Command-line options, 111

Commands, 138

Command Usage, 138

Compilation, 105

Definition of terms, 104

File, 123

Graphical User Interface, 116

GUI customization, 118

GUI Layout, 116

Help, 127

Invocation, 111

Menus, 123

Optimization, 114

Overview, 103

Processes menu, 127

Profile Data, 113

Profiling Process, 103

Scalability Comparison, 134

Index

143

Setting, 124

Sorting Profile Data, 133

Sort menu, 131

View menu, 117, 128

PGPROF Commands

! (history), 140

asm, 138

display, 138

help, 138

history, 138

lines, 138

load, 139

merge, 139

print, 139

process, 139

quit, 139

select, 139

sort, 139

srcdir, 139

stat, 140

thread, 140

times, 140

Process

Process/thread set, 81

Process and thread control, 89

Process control, 98

Process level commands, 87

Process-only debugging, 80

Process-parallel debugging, 77

Process-thread sets, 42

Profiling

Command-level interface, 138

Compilation, 105

Coverage, 104

Data set, 103

Function level, 104

Host, 103

Line level, 104

Optimization, 114

PGPROF, 103

Sampling, 105

Target machine, 103

Virtual timer, 105

Virtual Timer, 113

Program execution, 107

R
Register Access, 57

Register symbols, 27

Register Symbols, 66

Related Publications, xvi

S
Scope, 14, 14, 56

Scope rules, 27

Segment Registers, 67

Signals, 66

Linux Libraries, 66

PGDBG, 66

Source code locations, 28

Special Purpose Register Symbols,

67

SSE Register Symbols, 69

Statements, 29

Symbols, 27

Symbols and Expressions, 53

System Requirements, xvii

T
Terms, 1

Thread level commands, 87

Threads

Thread-parallel debugging, 79

Threads-only debugging, 80

W
Wait mode, 90

X
X86 Register Symbols, 67

144

	PGI® Tools Guide
	Contents
	Preface
	Intended Audience
	Supplementary Documentation
	Compatibility and Conformance to Standards
	Organization
	Conventions
	Related Publications
	System Requirements

	Chapter 1. The PGDBG Debugger
	Definition of Terms
	Building Applications for Debug
	PGDBG Invocation and Initialization
	Invoking PGDBG
	Selecting a Version of Java
	PGDBG Command-Line Options

	PGDBG Graphical User Interface
	Main Window
	Command Prompt Panel
	Focus Panel
	Process/Thread Grid
	Source Panel
	Main Window Menus

	Source Panel
	Source Panel Menus
	Source Panel Buttons
	Source Panel Combo Boxes
	Source Panel Messages
	Source Panel Events

	Source Panel Pop-Up Menus
	Subwindows
	Standard Subwindow Controls
	Memory Subwindow
	Disassembler Subwindow
	Registers Subwindow
	Custom Subwindow
	Messages Subwindow

	PGDBG Command Language
	Constants
	Symbols
	Scope Rules
	Register Symbols
	Source Code Locations
	Lexical Blocks
	Statements
	Events
	Expressions

	PGDBG Commands
	Notation Used in Command Sections

	Commands Summary
	PGDBG Command Reference
	Process Control
	attach
	cont
	debug
	detach
	halt
	next
	nexti
	proc
	procs
	quit
	rerun
	run
	step
	stepi
	stepout
	sync/synci
	thread
	threads
	wait

	Process-Thread Sets
	defset
	focus
	undefset
	viewset
	whichsets

	Events
	break
	breaki
	breaks
	catch
	clear
	delete
	disable
	do
	doi
	enable
	hwatch
	hwatchr
	hwatchb
	ignore
	status
	stop
	stopi
	track
	tracki
	trace
	tracei
	unbreak
	unbreaki
	watch
	watchi
	when
	wheni

	Program Locations
	arrive
	cd
	disasm
	edit
	list
	pwd
	stacktrace
	stackdump
	where
	/ (search forward)
	? (search backward)

	Printing Variables and Expressions
	print
	printf
	ascii
	bin
	dec
	display
	hex
	oct
	string
	undisplay

	Symbols and Expressions
	assign
	call
	declaration
	entry
	lval
	rval
	set
	sizeof
	type

	Scope
	decls
	down
	enter
	files
	global
	names
	scope
	up
	whereis
	which

	Register Access
	fp
	pc
	regs
	retaddr
	sp

	Memory Access
	cread
	dread
	dump
	fread
	iread
	lread
	mqdump
	sread

	Conversions
	addr
	function
	line

	Miscellaneous
	alias
	directory
	help
	history
	language
	log
	noprint
	pgienv
	repeat
	script
	setenv
	shell
	sleep
	source
	unalias
	use

	Signals
	Control-C
	Signals Used Internally by PGDBG
	Signals Used by Linux Libraries

	Register Symbols
	X86 Register Symbols
	AMD64/EM64T Register Symbols
	SSE Register Symbols

	Debugging Fortran
	Fortran Types
	Arrays
	Operators
	Name of the Main Routine
	Fortran Common Blocks
	Nested Subroutines
	Fortran 90 Modules

	Debugging C++
	Calling C++ Instance Methods

	Debugging with Core Files
	Debugging Parallel Programs
	Summary of Parallel Debugging Features
	OpenMP and Multi-thread Support
	MPI and Multi-Process Support
	Graphical Presentation of Threads and Processes

	Basic Process and Thread Naming
	Multi-Thread and OpenMP Debugging
	Multi-Process MPI Debugging
	Invoking PGDBG for MPI Debugging
	Using PGDBG for MPI Debugging

	MPICH Support for MPICH-1
	MPICH Support for MPICH-2 and MVAPICH

	Thread and Process Grouping and Naming
	PGDBG Debug Modes
	Threads-only Debugging
	Process-only Debugging
	Multilevel Debugging
	Process/Thread Sets
	p/t-set Notation
	Dynamic vs. Static p/t-sets
	Current vs. Prefix p/t-set
	p/t-set Commands
	Command Set
	Process Level Commands
	Thread Level Commands
	Global Commands

	Process and Thread Control
	Configurable Stop Mode
	Configurable Wait Mode
	Status Messages
	The PGDBG Command Prompt
	Parallel Events
	Parallel Statements
	Parallel Compound/Block Statements
	Parallel If, Else Statements
	Parallel While Statements
	Return Statements

	OpenMP Debugging
	Serial vs. Parallel Regions
	The PGDBG OpenMP Event Handler
	Debugging OpenMP Private Data

	MPI Debugging
	Process Control
	Process Synchronization
	MPI Message Queues
	MPI Groups
	MPI Listener Processes
	SSH and RSH

	Chapter 2. The PGPROF Profiler
	Introduction
	Definition of Terms
	Compilation
	Program Execution
	Profiling MPI Programs
	Profiling Multi-threaded Programs
	Profiling with Hardware Event Counters (Linux Only)
	Profiling with Hardware Event Counters using PGPROF -collect.
	Profiling with Hardware Event Counters using PAPI

	Profiler Invocation and Initialization
	Selecting a Version of Java
	Command Line Options
	Measuring Time
	Profile Data
	Caveats (Precision of Profiling Results)
	Accuracy of Performance Data
	Clock Granularity
	Source Code Correlation
	Overhead of -Mprof=lines

	Graphical User Interface
	The PGPROF GUI Layout
	GUI Customization

	Profile Navigation
	PGPROF Menus
	File Menu
	Settings Menu
	Help Menu
	Processes Menu
	View Menu
	Sort Menu
	Search Menu

	Selecting and Sorting Profile Data
	Selecting Profile Data
	Sorting Profile Data

	Scalability Comparison
	Viewing Profiles with Hardware Event Counters

	Command Language
	Command Usage

	Index

