A Data-driven Approach for Assessing the Impact of Re-opening Order and Non-pharmaceutical Interventions on the Spread of COVID-19 using Time-dependent SEIR Model

> Instructor: Jingyi Zheng Department of Mathematics and Statistics Auburn University, AL, USA.

Students: Ismail Abdulrashid, Fauziya Yakasai, Yuexin Li

August 21, 2020

Outline

- 2 Mathematical Models
- Proposed SEIR Model
- 4 Methodology
- 5 Numerical Results
- 6 Summary & Conclusion

- The outbreak of COVID-19, caused by a coronavirus called SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization (WHO) in March and rapidly spread to over 100 countries.
- As of May 20, there are over 4.9*M* cumulative confirmed cases with 324*K* deaths worldwide.
- Authorities worldwide responded by implementing travel restrictions, lockdowns, workplace hazard controls, and facility closures to stop further spread.
- The pandemic has caused global social and economic disruption, including the largest global recession since the Great Depression and global famines affecting 265 million people.

- To design Kermack McKendrick-type SEIR epidemic model for the transmission dynamics and control of COVID-19 in a population.
- To assess the community-wide impact of early implementation of strict lockdown measures in China, Italy and USA.
- To assess the community-wide impact of early lifting of lockdown in the US states of Texas, Iowa and Maryland.

 The dataset is acquired from various publicly-available sources, such as the World Health Organization and the John Hopkins' Center for Systems Science and Engineering COVID-19 Dashboard.

Country	Start date	End date	
China	01 - 15 - 2020	05 - 05 - 2020	
Italy	02 - 24 - 2020	05 - 03 - 2020	
USA	03 - 04 - 2020	05 - 05 - 2020	

State	Start date	End date
Maryland	04 - 12 - 2020	05 - 04 - 2020
lowa	04 - 12 - 2020	05 - 04 - 2020
Texas	04 - 012 - 2020	05 - 04 - 2020

イロト イヨト イヨト -

Most Impacted Countries

• As of May 16, the United States, Spain, Russia, and United Kingdom, shared more than 5% of the global cases.

Data Source: nCov2019

- Influential in providing deeper understanding on the transmission mechanisms and burden of the ongoing COVID-19 pandemic.
- Contribute to the development of public health policy and understanding.
- Mathematical models of the COVID-19 pandemic can broadly be divided into two type:
 - Population-based, SIR (Kermack-McKendrick)- type models, driven by differential equations.
 - Agent-based models, in which individuals typically interact on a network structure and exchange infection stochastically.
- Kermack-Mckendrick-type models has been widely adapted to model the transmission dynamics and control of COVID-19 in a population.

An SIR Model for COVID-19 with Undetectable Infected Persons [Yi-Cheng Chen et. al., (2020)]

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{\beta(t)S(t)I(t)}{n},$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = \frac{\beta(t)S(t)I(t)}{n} - \gamma I(t),$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \gamma I(t),$$

where

$$N(t) = S(t) + I(t) + R(t)$$

- N: Total human population at time t.
- S(t): Populations of individuals who are susceptible at time t.
- *I*(*t*): Population of infected individuals at time *t*.
- R(t):Population of recovered individuals at time t.
- β , γ : Transmission rate (infectious contact rate) & Recovery rate, resp.

- Our model assumed existence of latent period prior to the onset of infectiousness, we add one more compartment, exposed (E), in the dynamic model.
- Incubation rate σ , transmission rate β , and recovery rate γ are considered to be time-dependent.
- Our model to include both symptomatic and asymptomatic infectious cases.

Proposed SEIR Model Cont'd

$$\frac{dS}{dt} = \frac{-\beta(t)S(t)I(t)}{N}, \qquad (1)$$

$$\frac{dE}{dt} = \frac{\beta(t)S(t)I(t)}{N} - \sigma(t)E(t), \qquad (2)$$

$$\frac{dI}{dt} = \sigma(t)E(t) - \gamma(t)I(t), \qquad (3)$$

$$\frac{dR}{dt} = \gamma(t)I(t), \tag{4}$$

where

$$S(t) + E(t) + I(t) + R(t) = N(t).$$

 σ(t): incubation rate, the rate at which individuals progress to either symptomatic or asymptomatic infectious.

Proposed SEIR Model with Symptomatic and Asymptomatics Persons

$$\frac{dS}{dt} = -\beta(t) (I + \eta A) \frac{S}{N}, \qquad (5)$$

$$\frac{dL}{dt} = \beta(t) (I + \eta A) \frac{\sigma}{N} - \sigma E, \qquad (6)$$

$$\frac{I}{t} = \alpha \sigma E - \gamma_I I, \tag{7}$$

$$\frac{dI}{dt} = \alpha \sigma E - \gamma_I I, \qquad (7)$$

$$\frac{dA}{dt} = (1 - \alpha) \sigma E - \gamma_A A, \qquad (8)$$

$$\frac{dR}{dt} = \gamma_I(t)I + \gamma_A(t)A, \qquad (9)$$

- η : relative infectiousness of asymptomatic persons (in comparison to symptomatic persons).
- α : fraction of cases that are symptomatic.

• The basic reproduction number, \mathcal{R}_0 , for the special case of model (5)-(9) when $\beta(t) \equiv \beta_0$, $\gamma_I(t) \equiv \gamma_I$, and $\gamma_A(t) \equiv \gamma_A$ is given as:

$$\mathcal{R}_{0} = rac{eta_{0}lpha}{\gamma_{I}} + rac{eta_{0}\eta(1-lpha)}{\gamma_{A}}$$

- \mathcal{R}_0 measures the average number of new COVID-19 infections generated by an average infected individual introduced into a population.
- Newly symptomatic infectious person can infects on averaged $\frac{\beta_0}{\gamma_I}$ with probability α . Simailarly, the asymptomatic individual can infects on average $\frac{\beta_0}{\gamma_A}$ with probability (1α) .

Theorem

The disease-free equilibrium DFE: $(S^*, E^*, I^*, A^*, R^*) = (N(0), 0, 0, 0)$, of the model (5)-(9) is locally-asymptotically stable if $\mathcal{R}_0 < 1$, and unstable if $\mathcal{R}_0 > 1$.

• Epidemiological implication: Community transmission of COVID-19 can be effectively suppressed in the community if the control and mitigation strategies implemented can bring the reproduction number (\mathcal{R}_0) to a value less than unity.

Tracking $\beta(t)$, $\sigma(t)$, & $\gamma(t)$ Using Ridge Regression

- We track and predict β(t), σ(t), and γ(t) using Finite Impulse Response (FIR) filters in linear systems.
- We use Ridge Regression as our estimation method to solve the following optimization problem:

 $\min_{a_j} \sum_{t=J}^{T-2} (\beta(t) - a_0 - \sum_{j=1}^{J} a_j \beta(t-j))^2 + \lambda_1 \sum_{j=0}^{J} a_j^2$ $\min_{b_k} \sum_{t=K}^{T-2} (\sigma(t) - b_0 + \sum_{k=1}^{K} b_k \sigma(t-k))^2 + \lambda_2 \sum_{k=0}^{K} b_k^2,$ $\min_{c_l} \sum_{t=L}^{T-2} (\gamma(t) - c_0 + \sum_{l=1}^{L} c_l \gamma(t-l))^2 + \lambda_3 \sum_{l=0}^{L} c_l^2,$ where λ_1, λ_2 and λ_3 are the regularization parameters.

Predicting the Number of Exposed $\hat{E}(t)$, Infected $\hat{I}(t)$, and Recovered Persons $\hat{R}(t)$

	_					
Algorithm 1: Tracking Discrete Time Time-dependent	_					
SEIR Model						
input : { $E(t), I(t), R(t), 0 \le t \le T - 1$ }, regularization	_					
parameters λ_1 , λ_2 and λ_3 , order of						
autoregressive model J, K, L , prediction						
window W.						
output : { $\beta(t), \sigma(t), \gamma(t). 0 \le t \le T-2$ },						
$\{\hat{eta}(t),\hat{\sigma}(t),\hat{\gamma}(t).\ 0\leq t\leq T-2\},$						
$\{E(t), I(t, R(t), t \ge T)\}.$						
1 Measure $\{\beta(t), \sigma(t), \gamma(t), 0 \le t \le T - 2\}$ using (15), (14),						
and (13) respectively.						
² Train the ridge regression and estimate $\hat{\beta}(T-1), \hat{\sigma}(T-1)$						
and $\hat{\gamma}(T-1)$ using (16), (17), and (18).						
3 Estimate the number of exposed persons $E(t)$, infected						
persons $I(t)$ and recovered persons $R(t)$ on the next day T						
using (19), (20) and (21) respectively.						
4 While $T \le t \le T + W$ do						
5 Estimate $\hat{\beta}(t)$, $\hat{\sigma}(t)$ and $\hat{\gamma}(t)$ by (13), (14) and (15)						
respectively.						
c Predict $\hat{F}(t+1)$ $\hat{I}(t+1)$ and $\hat{R}(t+1)$ using (19) (20) and						
(21) respectively.						
7 end while						

Instructor: Jingyi Zheng Department of Mat

Country	Start date	End date	Pred Window	Predicted Cases
China	01/15/20	05/05/20	100	84,413
Italy	02/24/20	05/03/20	100	230,088
USA	03/04/20	05/05/20	100	1,742,736
States	Start date	End date	Pred Window	Predicted Cases
Maryland	04/12/20	05/04/20	50	33,804
lowa	04/12/20	05/04/20	50	10,297
Texas	04/12/20	05/04/20	50	47,083

• • • • • • • •

æ

Prediction Results

Figure: China. The circle-marked solid curve with dark orange (resp. red, green) color is the real number of infected persons I(t) (resp. exposed person E(t), recovered R(t)), the star-marked dashed curve with light orange (resp. yellow, green) color is the predicted number of infected persons $\hat{I}(t)$ (resp. exposed E(t), recovered $\hat{R}(t)$).

Instructor: Jingyi Zheng Department of Mat

Figure: Trajectory of the transmission rate $\beta(t)$ and predicted transmission rate $\hat{\beta}(t)$ for China.

Figure: China: Trajectory of the incubation rate $\sigma(t)$ and predicted incubation rate $\hat{\sigma}(t)$.

Figure: China: Trajectory of the recovery rate $\gamma(t)$ and predicted recovery rate $\hat{\gamma}(t)$.

Prediction Results

Figure: Trajectory of the basic reproduction number $R_0(t)$ in China.

• Our model was used to assess the community-wide impact of early lockdown in China, Italy and the US, as well as various levels of lockdown lifting in the US states of Maryland, Iowa, and Texas.

Thanks.

Q-&-A

Instructor: Jingyi Zheng Department of Mat

3

メロト メポト メヨト メヨト