Poisson-Distributed Electron-Transfer Dynamics from Single Quantum Dots to C60 Molecules

Nianhui Song,† Haiming Zhu,† Shengye Jin,† Wei Zhan,‡ and Tianquan Lian†,*

†Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States, and ‡Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States

ABSTRACT Functional quantum dot (QD)-based nanostructures are often constructed through the self-assembly of QDs with binding partners (molecules or other nanoparticles), a process that leads to a statistical distribution of the number of binding partners. Using single QD fluorescence spectroscopy, we probe this distribution and its effect on the function (electron-transfer dynamics) in QD—C60 complexes. Ensemble-averaged transient absorption and fluorescence decay as well as single QD fluorescence decay measurements show that the QD exciton emission was quenched by electron transfer from the QD to C60 molecules and the electron-transfer rate increases with the C60-to-QD ratio. The electron-transfer rate of single QD—C60 complexes fluctuates with time and varies among different QDs. The standard deviation increases linearly with the average of electron-transfer rates of single QD—C60 complexes, and the distributions of both quantities obey Poisson statistics. The observed distributions of single QD—C60 complexes and ensemble-averaged fluorescence decay kinetics can be described by a model that assumes a Poisson distribution of the number of adsorbed C60 molecules per QD. Our findings suggest that, in self-assembled QD nanostructures, the statistical distribution of the number of adsorbed partners can dominate the distributions of the averages and standard deviation of their interfacial dynamical properties.

KEYWORDS: quantum dots · fullerene · interfacial electron transfer · single particle spectroscopy

In this paper, we report a study of electron transfer (ET) from single QDs to adsorbed fullerene C60 as a model system of QD—molecule and QD—nanoparticle complexes. C60 is a well-characterized electron acceptor, and electron transfer from CdSe QDs to C60 has been previously reported by ensemble-averaged measurements.41–44 The monomalonic derivative of fullerene C60 (C60) molecules used in this study (shown in Figure 1a, inset) have two carboxylic groups that facilitate their binding with QDs. We probe directly the fluorescence decay of single QD—C60 complexes, from which the distribution of electron-transfer rates is obtained. We show that the ET rates vary among different single QD—C60 complexes and fluctuate with time, and the extent of the dynamic fluctuation (quantified by standard deviation) increases with the average ET rate. Both the average and the standard deviation of ET rates in single...

*Address correspondence to tlian@emory.edu.

Received for review October 19, 2010 and accepted December 15, 2010.

Published online December 29, 2010. 10.1021/nn1028828

© 2011 American Chemical Society
ARTICLE

Figure 1. (a) UV–vis absorption spectra (lines) and (b) ensemble-averaged fluorescence decays (open symbols) of QD–C60 complexes from samples A (black, free QDs), B (red), C (blue), and D (green). The inset of (a) shows a scheme of a 1:1 QD–C60 complex. Solid lines in (b) are best fits according to the Poisson distribution model described in the main text. (c) Energetic diagram of the QD–C60 complex and possible charge-transfer processes: ET from the QD conduction band (CB) to C60 LUMO, followed by the back ET process.

QD–C60 complexes obey the Poisson distribution. We propose a model to account for these distributions, which is shown to be caused by the Poisson statistics of the number of adsorbed C60 on QDs in these self-assembled nanostructures.

RESULTS AND DISCUSSION

Ensemble-Averaged Fluorescence Decay. The UV–vis spectra of samples A, B, C, and D (QD–C60 water solution) used for the ensemble-averaged studies are displayed in Figure 1a. These spectra show the same first exciton peak absorption at 585 nm for the water-soluble CdSe/CdS$_{2}$ML/CdZnS$_{4}$ML/ZnS$_{2}$ML core/shell QDs, as well as increased C60 absorption (broad feature at <500 nm) from sample A to sample D, indicating a constant QD concentration and increasing C60-to-QD ratio from sample A (free QD without C60) to sample D. The exact adsorbed C60-to-QD ratios are not determined because the extinction coefficient of the QD is not known and there are some free C60 molecules in water due to the non-negligible solubility of C60 in water. Ensemble-averaged fluorescence decays of these samples are shown in Figure 1b. The measurement was carried out under the same conditions as the single QD fluorescence study (except for the lower concentration of QD–C60 complexes). For both measurements, the solutions were spin-coated on thin glass coverslips and dried in air. The QD fluorescence from 540 to 625 nm was collected after the excitation of the sample at 500 nm. It is clear from Figure 1b that a faster exciton decay was observed in QD–C60 complexes compared with the free QDs and the exciton quenching rate increases with the C60-to-QD ratio.

Possible reasons for the observed exciton quenching in QD–C60 complexes are discussed based on the relative positions of the conduction band (CB) and valence band (VB) in the QD and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of C60, as shown in Figure 1c. From the first exciton peak position of the QDs, the conduction and valence band levels can be estimated to be −3.84 and −5.77 V (relative to vacuum) according to the method reported in previous studies.$^{45-47}$ These values are consistent with measured ones for CdSe core only QDs of similar sizes.48,49 The LUMO and HOMO levels of C60 molecules were reported to be −4.30 and −6.60 V, respectively.50,51 Hole transfer from QDs to C60 is energetically forbidden in this system. Energy transfer is not possible, either, because of the lack of spectral overlap of the QD emission with C60 absorption.

Electron transfer from the QD conduction band to the LUMO of C60 is energetically allowed and has been reported in previous works.$^{41-44}$

To provide further evidence of the ET pathway, we also carried out a transient absorption study of the QD–C60 complexes. As shown in Figures S1 and S2 (Supporting Information), in the presence of C60, the QD 1s exciton bleach shows a faster recovery on the nanosecond time scale than the free QDs. The bleach of the 1s exciton absorption results from the filling of the 1s level in the conduction band by the excited electron, and its recovery indicates the removal of the 1s electron.$^{15-17,34,52,53}$ Faster bleach recovery in the QD–C60 complexes suggests an additional decay pathway for the 1s electron: by electron transfer to the C60 molecules. We have previously shown that the kinetics of QD exciton bleach recovery agrees with the formation of reduced adsorbates, confirming the assignment of the exciton bleach recovery to the interfacial ET process.15,16,34,53 Unfortunately, the absorption band of reduced C60 molecules falls in the near IR, beyond the spectral window of our current setup. We also showed previously that the transfer of holes from QDs to adsorbates does not lead to the recovery of the 1s exciton bleach.17 Together, the results of fluorescence decay and transient absorption suggest that exciton quenching in the QD–C60 complexes can be attributed to the electron transfer from excited QDs to adsorbed C60 molecules.

ET Dynamics in Single QD–C60 Complexes. Single QD fluorescence detection was carried out with a home-built scanning confocal microscope. A raster scan fluores-
cence image of single QD–C60 complexes is shown in Figure 2, indicating spatially well-separated single particles.

Four samples of QD–C60 complexes are compared in this study. The C60-to-QD ratios increase from sample 1 (free QD) to sample 4, although the exact ratio was not accurately determined due to the inability to record accurate absorption spectra under such a low concentration (∼10 pM) of QDs. Fifty single QDs from each sample were detected and examined, and each QD was followed for about 5 min. No noticeable permanent photobleach was observed in this time duration. For each detected photon, both the delay time (relative to the excitation pulse) and the arrival time (relative to the start of experiment) were recorded. For each QD, photons within 50 ms arrival time windows were binned to construct the intensity trajectory. The delay time histograms of photons within 2 s arrival time windows were constructed and fitted to single exponential decay functions (by nonlinear least-squares fit) to obtain the lifetime or decay rate trajectory. Typical intensity and lifetime trajectories of single QD and QD–C60 complexes from these samples are shown in panels a1–a4 in Figure 3. The lifetime trajectory follows the intensity trajectory for both free QDs and QD–C60 complexes, consistent with the reported positive correlation between the fluorescence intensity and lifetime of single QDs. States with higher fluorescence intensity (on-state) have longer exciton lifetimes, and states of low intensity (off-state) have shorter lifetimes. The off-states have been attributed to charged QDs, formed by photoinduced Auger ionization and/or charge transfer to trap states. We attribute all points with intensity within three standard deviations of the background level to off-states and all points with higher intensities to on-states. The exciton decay rate distributions for the single QDs shown in panels a1–a4 are plotted in panels b1–b4 (Figure 3). The green bar in each histogram indicates the occurrence of off-states with decay rates larger than 2 ns⁻¹ (or lifetimes < 0.5 ns). The decay rates at these points cannot be accurately determined because of limited photon numbers.

Similar fluorescence decay rate distributions were found in other single QDs and QD–C60 complexes. To represent the rate distribution of the ensemble of single QD–C60 complexes in each sample, total histograms of exciton decay rate distributions were constructed from the sum of 50 single QD–C60 rate histograms and are shown in Figure 3c1–c4. In the absence of adsorbed electron acceptors, single free QDs (Figure 3b1,c1) already show a fluctuation of exciton decay rates, from ~0.03 ns⁻¹ in the on-state to >0.5 ns⁻¹ in the off-state. The QD on-state decay rate shifts from 0.1 to 0.6 ns⁻¹ in samples 2–4, increasing with the average C60-to-QD ratios. The contributions of off-state increase in these samples, although their decay rates remain too fast to be measured. A similar behavior was also observed in a previous study of ET from single QDs to TiO₂, in which it was shown that the presence of the

![Figure 2. Raster scan fluorescence image of single QD–C60 complexes on a glass coverslip.](image)

![Figure 3. Typical fluorescence intensity (black line) and lifetime (blue circles) trajectories (a1) and histograms of the exciton quenching rate (with a 0.01 ns⁻¹ bin) (b1) of a representative single QD or QD–C60 complex from each sample (j = 1–4 for samples 1–4, respectively). (c1) Total histogram of exciton quenching rates constructed from 50 particles in each sample. Green bars in (b1) and (c1) indicate the occurrence of low fluorescence intensity points along the trajectories, for which the rates have been assumed to be >2 ns⁻¹.](image)
ET pathway increases the probability density of long off-states. The exciton decay rate of free QDs contains the contribution of the intrinsic radiative and nonradiative decay processes. For C60—QD complexes, the presence of the ET process adds an additional nonradiative pathway and increases the exciton decay rate. However, the fluctuation of exciton decay rates in free QDs complicates the determination of ET rates from the measured total exciton decay rates in single QD–C60 complexes. This complication can be removed by considering the dynamics in the on- and off-states separately. It was shown previously that, for single QDs on TiO2, the off-state decay rate was much faster than the ET rate and was dominated by the Auger recombination process in charged QDs. Thus, the off-state decay rates cannot be used to determine the ET rate and are not further discussed in this paper. Instead, we focus on the distribution and fluctuation of the on-state decay rates.

As shown in Figure 3c1–c4, the on-state decay rates increase in single QD–C60 complexes with higher C60-to-QD ratios. This trend is consistent with the ensemble-averaged fluorescence decay results shown in Figure 1b and suggests increased ET rates from sample 2 to sample 4. Furthermore, the distribution of on-states exciton decay rates in free QDs (Figure 3c1), showing an average intrinsic decay rate \(k_0 \) at 0.048 ns\(^{-1}\), is much narrower than those in QD–C60 complexes (Figure 3c2–c4). We assume that ET from QD to C60 adds an additional decay pathway, \(k_{\text{ET}}(t) \), but does not affect the distribution of intrinsic exciton decay processes (with an average rate \(k_0 \)) in the QD–C60 complexes. Within this model, the fluctuation of the exciton on-state decay rates in QD–C60 complexes results mainly from the fluctuation of ET rates. Because of the narrow distribution of intrinsic decay rates, ET rate trajectories for QD \(i \) (\(k_{\text{ET},i}(t) \)) can be calculated from the exciton decay rate trajectory \(k_i(t) \) following eq 1:

\[
k_{\text{ET},i}(t) = k_i(t) - k_0
\]

Using eq 1, the total histogram of ET rates for all QD–C60 complexes in each sample can be obtained, as shown in Figure 4a. To quantify the static heterogeneity of ET rates in different QD–C60 complexes, the average ET rate of each single QD, \(<k_{\text{ET}}> \), was calculated as the arithmetic mean of ET rates along its trajectory:

\[
<k_{\text{ET},i}> = \frac{1}{N} \sum_{j=1}^{N} k_{\text{ET},i}(t_j)
\]

Here, \(t_j \) and \(N \) are the \(j \)th and total number of on-state points, respectively, along the trajectory. The probability distributions of the average ET rates of samples 2–4 are shown in Figure 4b.

In addition to varying average ET rates among different QD–C60 complexes, single QD–C60 complexes also show different degrees of fluctuations of ET rates along their trajectories. To characterize the fluctuation, we calculate the standard deviation (SD) of ET rates for each complex:

\[
\text{SD}_i = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (k_{\text{ET},i}(t_j) - <k_{\text{ET},i}>)^2}
\]

Histograms of the SD for the three QD–C60 samples are compared in Figure 4c2–c4. With increasing C60-to-QD ratios, the fluctuations of ET rates become larger. However, the relative standard deviations, defined as the ratio of the SD to the average...
ET rate, for these complexes are similar, as shown in Figure S3 (Supporting Information). It suggests that the standard deviation increases linearly with the average ET rate for single QD—C60 complexes. To further quantify this linear relationship, we also plot the SD as a function of the average ET for all single QDs. As shown in Figure 4d, linear fits to these plots reveal approximately equal slopes of 0.26, 0.26, and 0.24 for samples, 2, 3, and 4, respectively.

Model for Poisson-Distributed ET Dynamics in Single QD—C60 Complexes. As shown in Figure 4b,c, the histograms of the averages and standard deviations of ET rates for single QD—C60 complexes show Poisson-like distributions, and these quantities are positively correlated. This suggests that the heterogeneities in both the average and the standard deviation are caused by a common underlying distribution. In the following, we propose a model to describe the observed distributions. In this model, we assume that these distributions result mainly from the distribution of the number of adsorbates on each QD within that sample. The QD—C60 complexes are formed by self-assembly, which leads to a distribution of the number of C60s on QDs. Each C60 has only two closely spaced COOH groups (see Figure 1a, inset) and can only bind to one QD, but each QD, with its larger surface area, can accommodate more than one C60. If the adsorption process can be assumed to be random, then the number (n) of adsorbates per QD obeys a Poisson distribution,

\[p(n;m) = \frac{m^n e^{-m}}{n!} \]

(4)

Here, \(p(n;m) \) is the probability of finding QDs with n adsorbates and m is the average number of adsorbates per QD for the sample. Let \(k_1 \) and SD1 denote the average and standard deviation of ET rates in the 1:1 C60—QD complexes. It is further assumed that, in the n:1 C60—QD complex, the n C60 molecules act as n independent electron acceptors. As a result, the average, \(k_n \), and standard deviation, SDn, of ET rates in the n:1 C60—QD complex are given by

\[k_n = nk_1 \]

(5)

\[SD_n = nSD_1 \]

(6)

In a sample with an average C60-to-QD ratio of \(m \), the probability distribution of average ET rates and standard deviations in QD—C60 complexes is given by

\[p(m;k_1) = \left(\frac{m}{k_1} \right)^m \frac{e^{-m}}{m} \]

(7)

Within this model, the dynamic fluctuation of ET rates for the n:1 complexes should lead to a Gaussian distribution of ET rates with a center at \(nk_1 \) and width of nSD1. Furthermore, there is a distribution of the number of C60 molecules on the QDs in the ensemble of self-assembled single QD—C60 complexes. Accounting for both effects, the total distribution of the ET rate in each sample of single QD—C60 complexes can be written as

\[p(k_\text{ET}) = \sum_{n=1}^{\infty} \frac{m^n e^{-m}}{n!} \cdot \frac{1}{\sqrt{2\pi nSD_1}} e^{-\frac{(k_\text{ET} - nk_1)^2}{2(nSD_1)^2}} + e^{-m} \delta(k_\text{ET}) \]

(9)

where the last term represents the contribution of free QDs in the ensemble.

The distributions shown in Figure 4a—c can be fitted according to eqs 9, 7, and 8, respectively. For each sample, the same value of m is used to fit the total distribution of ET rates and the distributions of the average and standard deviations of ET rates. Furthermore, for samples of different ratios, the same \(k_1 \) and SD1 values are used, whereas the m values are allowed to change. Because of the linear relationship between \(k_1 \) and SD1 (shown in Figure 4d), we have restrained the value of SD1 to be 0.25\(k_1 \). In the fitting process, the histograms of the total ET rate distribution (Figure 4a) were first fitted to obtain the value for \(k_1 \) and SD1 and three m values (one for each sample). The histograms in Figure 4b,c were then binned according to the values of \(k_1 \) and SD1 and fitted using the same sets of four fitting parameters. This process is repeated until the best fits for all nine sets of distributions (panels a1—the) are obtained. These parameters, \(m \), \(k_1 \), and SD1, obtained from the best fits (shown in Figure 4) are listed in Table 1. From the fitting parameter \(k_1 \) (SD1), or we can also calculate the number of adsorbates, \(n \), for each average ET rate (standard deviation) according to eq 5 (6), which is also labeled in Figure 4b (c).

| TABLE 1. Fitting Parameters for the Distributions of the Averages and Standard Deviations of ET Rates in Single QD—C60 Complexes\(^a\,b\) |
|---|---|---|---|
| single QD—C60 fluorescence decay | ensemble-averaged fluorescence decay |
| \(k_1 \) (ns\(^{-1}\)) | SD1 (ns\(^{-1}\)) | sample no. | \(m^2 \) | sample no. | \(m^2 \) |
| 0.10 | 0.025 | B | 0.3 |
| 3 | 1.8 | C | 1.2 |
| 4 | 6 | D | 2.2 |

\(^a\)\(k_1 \) and SD1 are the average and standard deviation, respectively, of ET rates in 1:1 C60-to-QD complexes. \(^b\)\(m \) is the average C60-to-QD ratio of the sample.
The parameters obtained from the single QD measurement should also be able to describe the ensemble-averaged fluorescence decay curves shown in Figure 2. The ensemble-averaged fluorescence decay can be described by the following expression

\[[N(t)] = [N(0)] \left[\int_0^\infty p(k_{ET}) e^{-k_{ET}t} dk_{ET} \right] f_{free}(t) \]

where \([N(t)]\) and \([N(0)]\) are the population of excited QDs at time \(t\) and 0, respectively. \(f_{free}(t)\) is the fluorescence decay of free QDs, which can be independently measured and fitted. The values of \(k_1\) and \(SD\) were determined from fitting the data for single QD–C60 complexes, leaving only the average C60-to-QD ratio \(m\) as a fitting parameter. As shown in Figure 1b, the ensemble-averaged fluorescence decay curves for ratios B, C, and D can be well fitted to this model. The average ratios obtained from the fits are 0.3, 1.2, and 2.2, respectively, as shown in Table 1. These values agree with the trend of C60 absorption in the UV–visible spectra (Figure 1a) of these samples. Unfortunately, a quantitative comparison is not possible because the exact ratios of C60 to QD are not known in these samples due to the non-negligible solubility of modified C60 molecules in water.

As shown in Figure 4a–c, the proposed model under-represents the distributions at high ET rates and standard deviations. This may be caused by the contributions of off-states in these regions. It has been proposed previously that there exist various charged QD states with a continuous distribution of emission levels and lifetimes. Furthermore, charge separation in the QD–C60 complexes generates the electron-transfer rates from the QD to C60 in water. The QD exciton lifetime in this charge-separated state has not been measured. We have also assumed Gaussian distributions of the fluctuations of ET rates for the single QD–C60 complexes in eq 9, which do not accurately describe a small tail at the high ET rate region in the histograms of single QD–C60 complexes (see Figure 3b). Nevertheless, it appears that the proposed model can adequately describe the overall distributions of the averages and standard deviations of ET rates in single QD–C60 complexes, the ensemble-averaged fluorescence decay kinetics, and their dependences on the C60-to-QD ratio. It suggests that the most dominating heterogeneity in self-assembled QD heterostructures, such as the QD–C60 complexes, is caused by the Poisson distribution of the number of partners on the QD. This implies that other heterogeneities, such as the distribution of QD sizes, appear to be much smaller in comparison. The proposed model assumes a random adsorption process, which should be obeyed when the interaction between the adsorbates is negligible or is much smaller than the adsorbate–QD interaction. Under these conditions, it is also reasonable to assume that these adsorbates act as independent electron acceptors, which leads to the observed correlated Poisson distributions of the standard deviations and averages of ET rates. We believe that these assumptions are likely valid for many other self-assembled QD nanostructures and the averages and dynamical fluctuation (measured by standard deviations) of their properties (such as electron- and energy-transfer rates) may also follow the correlated Poisson distributions reported here for the QD–C60 complexes.

Our result shows that, in addition to the heterogeneity caused by the statistical distribution of the number of adsorbates in the QD–C60 complexes, there are significant dynamic fluctuations of ET rates in the 1:1 complexes. Unfortunately, the current experiment does not directly probe the origin of the fluctuation. According to the Marcus theory of nonadiabatic electron transfer, it can originate from the dynamic variation of reorganization energy, free energy change, and/or electronic coupling strength for electron transfer. Among these parameters, a change of electronic coupling strength is most likely because of the possibility of many C60-QD adsorption conformations. In a previous study of single molecule electron transfer from molecular sensitizers to TiO2, we show that the presence of adsorbate conformations at the interface is responsible for the dynamical fluctuation of ET rates on the single molecule level. It is likely that these dynamic fluctuations are another common feature for many interfacial ET processes in nanostructures.

In conclusion, the electron-transfer dynamics in self-assembled QD–C60 complexes were studied by single QD fluorescence spectroscopy and ensemble-averaged transient absorption and fluorescence decay measurements. Both the single QD and the ensemble-averaged measurements show that the exciton quenching rate increases with the C60-to-QD ratio and can be attributed to the increasing electron-transfer rates from the QD to C60 in these samples. Comparison with the fluorescence decay trajectories of free QDs show that the ET rates of single QD–C60 complexes exhibit large fluctuation with time. Furthermore, the amplitude of the fluctuation (as measured by the standard deviation) increases linearly with the average ET rate, and both obey Poisson statistics. This finding suggests that the distributions in these quantities are caused by a common heterogeneity in the sample. We propose a model that assumes a random adsorption process for C60 molecules on QDs and that the adsorbates act as independent electron acceptors. According to this model, both the averages and the standard deviations of ET rates obey Poisson distributions, caused by the Poisson distribution of
the number of adsorbates on the QDs. This model was shown to satisfactorily describe the measured distributions of ET rates, average ET rates, and standard deviations of single QD—C60 complexes, as well as the ensemble-averaged fluorescence decay kinetics. Our findings suggest that, in many self-assembled QD nanostructures, such as the QD—C60 complexes, there is a statistical distribution of the number of adsorbed partners on the QDs and this leads to distributions of the averages and standard deviation of their interfacial dynamic properties.

METHODS

Sample Preparation. Water-soluble CdSe/CdS$_{2.0}$/CdZnS$_{0.4}$/ZnS$_{0.2}$ core/shell QDs with the first exciton peak at 585 nm were obtained from Ocean NanoTech, LLC, USA. The monomeric derivative of fullerene C60 was prepared by the Bingel cyclopropanation1,2 reaction as previously detailed.3 The QD—C60 complexes were prepared by adding C60 powder into QD water solutions, followed by sonication of the mixture and filtration to remove undissolved C60. The C60-to-QD ratio was controlled by the sonication time. For the ensemble-averaged measurement, samples B, C, and D were prepared with the same QD concentration (\sim10$^{-6}$ M) and different sonication times (2, 4, and 6 h, respectively). A free QD sample (A) of the same concentration was also prepared for the comparison. Four samples (1—4) of increasing C60-to-QD ratio were also prepared in similar ways for single QD measurements, although the concentration of QDs is much lower (10 pM). Sample 1 is free QDs, and samples 2, 3, and 4 were prepared with sonication times of 10, 30, and 60 min, respectively. For both single QD and ensemble-averaged fluorescence measurements, the solutions were spin-coated on thin glass coverslips and dried in air.

Single and Ensemble-Averaged QD Fluorescence Decay. The single QD fluorescence decay was measured using a home-built scanning confocal microscope. Femtosecond laser pulses (\sim100 fs) with a repetition rate of 80 MHz were generated with a mode-locked Ti: Sapphire laser (Kfs, SPC 600). The output centered at 1000 nm was passed through a pulse picker (Conoptics, USA) to reduce the repetition rate by a factor of 9. Excitation pulses at 500 nm were passed through a pulse picker (Conoptics, USA) to reduce the repetition rate of 80 MHz were generated with a mode-locked Ti: Sapphir laser (Kfs, SPC 600). The output centered at 1000 nm was used to excite the sample. The resulting epifluorescence from the sample was detected by an avalanche photodiode (Avalanche photodiode, USA) to reduce the repetition rate by a factor of 9. Excitation pulses at 500 nm were generated by second-harmonic generation of the 1000 nm pulses in a BBO crystal. The excitation beam (\sim200 W) was focused through an objective (100×, NA 1.4, oil immersion, Olympus) down to a diffraction-limited spot on the sample, which was spin-coated onto glass coverslips and placed on a piezo scanner (Mad City Laboratories). The resulting epifluorescence was detected by a single-channel photomultiplier (Hamamatsu, USA) attached to a streak camera (Hamamatsu, USA) to detect the pulse shape of the fluorescence from the sample.

Supporting Information Available: Ensemble-averaged transient absorption spectra and kinetics and relative standard deviations of ET rates in single QD—C60 complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

20. Rossetti, R.; Brus, L. E. Picosecond Resonance Raman Scattering Study of Methyliologen Reduction on the

