1. (III.3.5) Let \(R \) be a principal ideal domain.
 (a) Every proper ideal is a product \(P_1 P_2 \cdots P_n \) of maximal ideals, which are uniquely determined up to order.

 (b) An ideal \(P \) in \(R \) is said to be primary if \(ab \in P \) and \(a \notin P \) imply \(b^n \in P \) for some \(n \). Show that \(P \) is primary if and only if for some \(n \), \(P = (p^n) \), where \(p \in R \) is prime (=irreducible) or \(p = 0 \).

 (c) If \(P_1, \cdots, P_n \) are primary ideals such that \(P_i = (p^n_i) \) and the \(p_i \) are distinct primes (up to associate), then \(P_1 P_2 \cdots P_n = P_1 \cap P_2 \cap \cdots \cap P_n \).

 (d) Every proper ideal in \(R \) can be expressed (uniquely up to order) as the intersection of a finite number of primary ideals.

2. (III.3.11) Let \(R \) be a Euclidean ring and \(a \in R \). Then \(a \) is a unit in \(R \) if and only if \(\varphi(a) = \varphi(1_R) \).

3. If \(R \) is a principal ideal domain, then a greatest common divisor of \(X \subset R \) exists and is of the form \(r_1a_1 + \cdots + r_na_n \) for some \(a_i \in X \) and \(r_i \in R \).

4. Let \(S \) be a multiplicative subset of \(R \).
 (a) If \(I \) is an ideal of \(R \), then \(S^{-1}I \) is an ideal of \(S^{-1}R \). Conversely, every ideal of \(S^{-1}R \) is of the form \(S^{-1}I \) for \(I \subset R \).

 (b) If \(J \) is another ideal of \(R \), then the following equalities hold for ideals of \(S^{-1}R \):

 \[
 S^{-1}(I + J) = S^{-1}I + S^{-1}J, \quad S^{-1}(IJ) = (S^{-1}I)(S^{-1}J), \quad S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J
 \]

 You are required to prove only one of the equalities.

5. (III.4.16) Every nonzero homomorphic image of a local ring is local.

6. (III.6.11) If \(c_0, c_1, \cdots, c_n \) are distinct elements of an integral domain \(D \) and \(d_0, \cdots, d_n \) are any elements of \(D \), then there is at most one polynomial \(f \) of degree \(\leq n \) in \(D[x] \) such that \(f(c_i) = d_i \) for \(i = 0, 1, \cdots, n \). [For the existence of \(f \), see Exercise III.6.12]

7. (III.6.14) Let \(R \) be an integral domain and \(c, b \in R \) with \(c \) a unit.
 (a) Show that the assignment \(x \mapsto cx + b \) induces a unique automorphism of \(R[x] \) that is the identity on \(R \). What is its inverse?

 (b) Show that every automorphism of \(R[x] \) that is the identity on \(R \) is of the type above.

8. (IV.1.6) A finitely generated \(R \)-module need not be finitely generated as an abelian group.