Chapter 2

Modules

2.1 Modules, Homomorphisms, and Exact Sequences

(IV.1) Module over a ring R is a generalization of abelian group. You may view an R-mod as a “vector space over R”.

Def. Let R be a ring. A left R-module is an additive abelian group A together with a function $R \times A \rightarrow A$ (by $(r,a) \mapsto ra$) such that for all $r,s \in R$ and $a,b \in A$:

1. $r(a + b) = ra + rb$.
2. $(r + s)a = ra + sa$.
3. $r(sa) = (rs)a$.

If R has an identity 1_R and

4. $1_Ra = a$ for all $a \in A$,

then A is said to be a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space.

The right R-module are similarly defined.

In this chapter, we assume that R is a ring with identity, and the R-modules refer to the left unitary R-modules.

Ex. A vector space V over a field F is a F-mod.

Ex. Abelian group $(G, +) \iff Z$-module G.

Ex. subring $S \leq R \iff R$ is a S-mod.
Ex. Suppose I is a left ideal of R.

1. I is a left R-mod under ring multiplication. In particular, 0 and R are R-mods.

2. R/I is a left R-module with the multiplication $r(r_1 + I) := rr_1 + I$.

Ex. $\varphi : R \to S$ a ring homomorphism. Every S-module A can be made into an R-module by $rx := \varphi(r)x$ for $x \in A$. The R-mod structure of A is given by pullback along φ.

Ex. Let $R = C^{3 \times 3}$. Let $A = C^{3 \times 2}$. Then under matrix multiplication, A is a left R-mod.

Ex. Let A be an abelian group (resp. ring, vector space, module), and $\text{End} A$ its (corresponding) endomorphism ring. Then A is a unitary $\text{End} A$-mod, with $fa := f(a)$ for $f \in \text{End} A$ and $a \in A$.

Def. A an R-module. A subset B of A is a submodule of A (denoted by $B \leq R A$ or $B \leq A$) if B is an additive subgroup of A and $rb \in B$ for all $r \in R$, $b \in B$.

Ex. • A subspace of a vector space is a submodule.

• A subgroup H of an abelian group G is a \mathbb{Z}-submodule of G.

• Both $R[x]$ and $R[[x]]$ are R-modules, and $R[x]$ is an R-submodule of $R[[x]]$.

Lem 2.1. An R-mod. Then $B \subseteq A$ is an R-submod of A iff:

1. $a - b \in B$ for all $a, b \in B$.

2. $ra \in B$ for all $r \in R$ and $a \in B$.

Thm 2.2. Let A be an R-module, $\{B_i \mid i \in I\}$ a family of submodules of A. Then $\bigcap_{i \in I} B_i$ and $\sum_{i \in I} B_i$ are submodules of A.

Ex. Let X be a subset of a R-mod A. The intersection of all submodules of A containing X is called the submodule generated by X.

Thm 2.3. Let R be a ring with identity, A a unitary left R-module.

1. Given $a \in A$, $Ra = \{ra \mid r \in R\}$ is the submodule of A generated by $\{a\}$. It is called the cyclic submodule generated by a.
2. Given a subset \(X \) of \(A \), the submodule generated by \(X \) is
\[
RX = \left\{ \sum_{i=1}^{s} r_i a_i \mid s \in \mathbb{N} \cup \{0\}; \ a_i \in X; \ r_i \in R \right\} = \sum_{x \in X} Rx
\]

Def. Let \(A \) and \(B \) be \(R \)-modules over \(R \). A function \(f: A \to B \) is an \(R \)-module homomorphism provided that for \(a, c \in A \) and \(r \in R \):
\[
f(a + c) = f(a) + f(c) \quad \text{and} \quad f(ra) = rf(a).
\]
If \(R \) is a division ring, then an \(R \)-mod hom is called a linear transformation.

The kernel of \(f: A \to B \) is the following submodule of \(A \):
\[
\text{Ker } f = \{ a \in A \mid f(a) = 0 \} \leq A.
\]
The image of \(f \) is the following submodule of \(B \):
\[
\text{Im } f = \{ f(a) \mid a \in A \} \leq B.
\]

Likewise, we can define \(R \)-module
monomorphism \(\text{Ker } f = \{ 0_A \} \)
epimorphism \(\text{Im } f = B \)

isomorphism monomorphism + epimorphism

Ex. Let \(f: A \to B \) be a \(R \)-mod homom.
- If \(C \leq A \), then \(f(C) \leq B \).
- If \(D \leq B \), then \(f^{-1}(D) = \{ a \in A \mid f(a) \in D \} \leq A \).

Ex. An abelian group homomorphism \(f: A \to B \) is a \(\mathbb{Z} \)-mod homom.

Ex. Let \(A \) be a \(R \)-mod and \(a \in A \). The map \(\phi_a : R \to Ra \) given by \(\phi_a(r) = ra \) is an epimorphism. The kernel
\[
\text{Ker } \phi_a = \{ r \in R \mid ra = 0_A \} := \text{Ann}(a)
\]
is a left ideal of \(R \).

Thm 2.4. Let \(A \) be an \(R \)-mod and \(B \leq A \). Then the quotient group \(A/B \) is an \(R \)-module with
\[
r(a + B) = ra + B \quad \text{for} \quad r \in R, \ a \in A.
\]
The map \(\pi: A \to A/B \) given by \(a \mapsto a + B \) is an \(R \)-module epimorphism with kernel \(B \) (called canonical epimorphism or projection).
Similar to group and ring homomorphisms, we have three isomorphism theorem for R-module homomorphisms.

Thm 2.5. If $f : A \to A'$ is an R-mod homom, then $A/\text{Ker} f \simeq \text{Im} f$ as R-mods.

Thm 2.6. Let B and C be submods of an R-mod A.

1. $T B/(B \cap C) \simeq (B + C)/C$ as R-mods;

2. If $C \leq B$, then $B/C \leq A/C$, and $(A/C)/(B/C) \simeq A/B$ as R-mods.

(The constructions of isomorphisms are the same as those for groups.)

We define the **product** and **coproduct** of R-modules.

Thm 2.7. Let R be a ring and $\{A_i \mid i \in I\}$ a nonempty family of R-modules, $\prod_{i \in I} A_i$ the direct product of the abelian groups A_i, and $\sum_{i \in I} A_i$ the direct sum of the abelian groups A_i.

1. $\prod_{i \in I} A_i$ is an R-module with the action of R given by $r\{a_i\} = \{ra_i\}$.

2. $\sum_{i \in I} A_i$ is an submodule of $\prod_{i \in I} A_i$.

3. For each $k \in I$, we have the commutative diagram:

$$
\begin{array}{ccc}
A_k & \xrightarrow{id} & A_k \\
\downarrow{\iota_k} & & \downarrow{\pi_k} \\
\prod_{i \in I} A_i & \xrightarrow{\pi_k} & A_k
\end{array}
$$

where the canonical injection ι_k is an R-mod monomorphism, and the canonical projection π_k is an R-mod epimorphism. Similarly, we have the commutative diagram for coproduct (direct sum) of $\{A_i \mid i \in I\}$:

$$
\begin{array}{ccc}
A_k & \xrightarrow{id} & A_k \\
\downarrow{\iota_k} & & \downarrow{\pi_k} \\
\sum_{i \in I} A_i & \xrightarrow{\pi_k} & A_k
\end{array}
$$

Thm 2.8. Let R be a ring and $\{A_i \mid i \in I\}$ a family of R-modules.

1. If C is an R-mod and $\{\varphi_i : C \to A_i \mid i \in I\}$ is a family of R-mod homoms, then there is a unique R-mod homom $\varphi : C \to \prod_{i \in I} A_i$
such that $\pi_k \circ \varphi = \varphi_k$ for all $k \in I$. The R-mod $\prod_{i \in I} A_i$ is uniquely determined up to isomorphism by this property.

\[
\begin{array}{ccc}
\prod_{i \in I} A_i & \xrightarrow{\varphi} & C \\
\downarrow{\pi_k} & & \downarrow{\varphi_k} \\
A_k & \rightarrow & \end{array}
\]

2. If D is an R-mod and $\{\psi_i : A_i \rightarrow D \mid i \in I\}$ is a family of R-mod homoms, then there is a unique R-mod homom $\psi : \sum_{i \in I} A_i \rightarrow D$ such that $\psi \circ \iota_k = \psi_k$ for all $k \in I$. The R-mod $\sum_{i \in I} A_i$ is uniquely determined up to isomorphism by this property.

\[
\begin{array}{ccc}
\sum_{i \in I} A_i & \xrightarrow{\psi} & D \\
\uparrow{\iota_k} & & \uparrow{\psi_k} \\
A_k & \rightarrow & \end{array}
\]

(proof)

Thm 2.9. Let R be a ring and $\{A_i \mid i \in I\}$ a family of submodules of an R-module A such that

1. A is the sum of the family $\{A_i \mid i \in I\}$;

2. for each $k \in I$, $A_k \cap A_k^* = \{0\}$, where A_k^* is the sum of the family $\{A_i \mid i \neq k\}$. Then there is an isomorphism $A \cong \sum_{i \in I} A_i$.

(exercise)

Def. A pair of module homomorphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is said to be **exact** at B provided $\text{Im } f = \text{Ker } g$. A sequence of module homomorphisms

\[
\cdots \xrightarrow{f_{i-1}} A_{i-1} \xrightarrow{f_i} A_i \xrightarrow{f_{i+1}} A_{i+1} \xrightarrow{f_{i+2}} \cdots
\]

is **exact** provided that $\text{Im } f_i = \text{Ker } f_{i+1}$ for all indices i.

Note that for any module A, there are unique module homomorphisms $0 \rightarrow A$ and $A \rightarrow 0$.

1. The sequence of R-mod homoms $0 \rightarrow A \xrightarrow{f} B$ is exact if and only if f is a monomorphism.
2. The sequence of R-mod homoms $B \xrightarrow{g} C \rightarrow 0$ is exact if and only if g is an epimorphism.

3. If $A \xrightarrow{f} B \xrightarrow{g} C$ is exact, then $gf = 0$.

An exact sequence of the form $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is called a short exact sequence. In such a sequence,

$$A \simeq \text{Im } f = \text{Ker } g, \quad B/A \simeq B/\text{Ker } g \simeq \text{Im } g = C.$$

In general, if A is a submod of B, then we have the exact sequence

$$0 \rightarrow A \xrightarrow{\iota} B \xrightarrow{\pi} B/A \rightarrow 0$$

Ex. If $f : A \rightarrow B$ is an R-mod homom, then $A/\text{Ker } f$ is the coimage of f (denoted $\text{Coim } f$), and $B/\text{Im } f$ is the cokernel of f (denoted $\text{Coker } f$). We have the exact sequences:

$$0 \rightarrow \text{Ker } f \rightarrow A \rightarrow \text{Coim } f \rightarrow 0$$
$$0 \rightarrow \text{Im } f \rightarrow B \rightarrow \text{Coker } f \rightarrow 0$$

Lem 2.10. (The Short Five Lemma) Let R be a ring and

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\gamma} 0$$

a commutative diagram of R-mod homoms such that each row is a short exact sequence. Then

1. α and γ are monomorphisms \implies β is a monomorphism;
2. α and γ are epimorphisms \implies β is an epimorphism;
3. α and γ are isomorphisms \implies β is an isomorphism;

(proof)

When α, β, and γ above are isomorphisms, the row short exact sequences are said to be isomorphic, and we have the commutative diagram:

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\gamma} 0$$

$$0 \rightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{\gamma^{-1}} 0$$
Thm 2.11. Let R be a ring and $0 \to A_1 \xrightarrow{f} B \xrightarrow{g} A_2 \to 0$ a short exact sequence of R-mod homoms. Then the following conditions are equivalent:

1. There is a R-mod homom $h : A_2 \to B$ with $gh = 1_{A_2}$;
2. There is a R-mod homom $k : B \to A_1$ with $kf = 1_{A_1}$;
3. The given sequence is isomorphic to the direct sum short exact sequence $0 \to A_1 \xrightarrow{i_1} A_1 \oplus A_2 \xrightarrow{i_2} A_2 \to 0$; in particular $B \cong A_1 \oplus A_2$. We call such a sequence a split exact sequence.

(proof)
2.2 Free Modules and Vector Spaces

Def. Let A be an R-mod and X a subset of A.

- X is **linearly independent** if for distinct $x_1, \cdots, x_n \in X$ and $r_i \in R$,
 \[r_1 x_1 + \cdots + r_n x_n = 0 \implies r_i = 0 \text{ for every } i. \]

- X spans A if every $a \in A$ can be written as
 \[a = r_1 x_1 + \cdots + r_n x_n \text{ for } r_1, \cdots, r_n \in R, \ x_1, \cdots, x_n \in X. \]

- X is a **basis** of A if X is linearly independent and X spans A.

Def. A unitary R-mod A with a nonempty basis X is called a **free R-module** on the set X.

Ex.

1. A finitely generated free abelian group is isomorphic to \mathbb{Z}^n. It is a free \mathbb{Z}-mod.

2. The vector space \mathbb{K}^n for a field \mathbb{K} is a free module of \mathbb{K}. It can be generated by n elements (i.e. $\dim_{\mathbb{K}} \mathbb{K}^n = n$). We can define linear independence, spanning set, basis, dimensions, etc, on \mathbb{K}^n.

3. \mathbb{Z}_m for $m \in \mathbb{N}$ is not a free \mathbb{Z}-module.

4. \mathbb{Q} is not a free \mathbb{Z}-mod. However, \mathbb{Q} is a free \mathbb{Q}-mod. Similarly, \mathbb{R} and \mathbb{C} are not free \mathbb{Z}-mods.

5. A ring R with no zero divisor is a free R-mod.

Thm 2.12. The following conditions on a unitary R-mod F are equivalent:

1. F has a nonempty basis;

2. F is the internal direct sum of a family of cyclic R-mods, each of which is isomorphic as a left R-mod to R.

3. F is isomorphic to a direct sum of copies of the left R-mod R;

4. there exists a nonempty set X and a function $\iota : X \to F$ with the following property: given any unitary R-mod A and function $f : X \to A$, there exists a unique R-mod homom $\overline{f} : F \to A$ such that $\overline{f}\iota = f$.
2.2. FREE MODULES AND VECTOR SPACES

(proof)

Cor 2.13. Every unitary \(R \)-mod \(A \) is the homomorphic image of a free \(R \)-mod \(F \). If \(A \) is finitely generated, then \(F \) may be chosen to be finitely generated.

(proof)

Thm 2.14. Let \(R \) be a ring with identity and \(F \) a free \(R \)-mod with an infinite basis \(X \), then every basis of \(F \) has the same cardinality as \(X \).

Proof. Let \(Y \) be another basis of \(R \).

1. Claim: \(Y \) is infinite.

Suppose on the contrary, \(Y \) were finite. Since every element of \(Y \) is a linear combination of a finite number of elements of \(X \), there is a finite subset \(\{x_1, \ldots, x_m\} \) of \(X \) that generates all elements of \(Y \) and thus generates \(F \). Then every \(x \in X - \{x_1, \ldots, x_m\} \) is a linear combination of \(x_1, \ldots, x_m \), which contradicts the linear independence of \(X \). So \(Y \) is infinite.

2. Claim: \(Y \) has the same cardinality as \(X \).

Let \(K(Y) \) be the set of all finite subsets of \(Y \). Then \(|K(Y)| = |Y| \). Define a map \(f : X \rightarrow K(Y) \) by \(x \mapsto \{y_1, \ldots, y_n\} \), where \(x = r_1y_1 + \cdots + r_ny_n \) and \(r_i \neq 0 \) for all \(i \). It is well-defined since \(Y \) is a basis of \(F \).

For every \(T \in K(Y) \), \(f^{-1}(T) \) is a finite subset of \(X \) (by the similar argument as in the preceding paragraph). For each \(T \in \text{Im} \ f \), order the elements of \(f^{-1}(T) \), say \(x_1, \ldots, x_n \), and define an injective map \(g_T : f^{-1}(T) \rightarrow \text{Im} \ f \times \mathbb{N} \) by \(x_k \mapsto (T, k) \). Then we get an injective map \(X \rightarrow \text{Im} \ f \times \mathbb{N} \). Therefore,

\[
|X| \leq |\text{Im} \ f \times \mathbb{N}| = |\text{Im} \ f| \leq |K(Y)| = |Y|.
\]

Similar argument shows that \(|Y| \leq |X| \). Therefore, \(|Y| = |X| \).

\(\square \)

Theorem 2.14 works only on free \(R \)-mods with infinite cardinality bases. For finitely generated \(R \)-modules, we consider the rings \(R \) with invariant dimension property.
Def. Suppose ring \(R \) satisfies that any two bases of any free \(R\text{-mod} \) \(F \) have
the same cardinality. Then \(R \) is said to have the invariant dimension
property (IDP) and the cardinality number of any basis of \(F \) is called the
dimension (or rank) of \(F \) over \(R \).

Prop 2.15. Let \(E \) and \(F \) be free mods over a ring \(R \) with the IDP. Then
\(E \simeq F \) if and only if \(E \) and \(F \) have the same dimension. \((\text{exercise})\)

Lem 2.16. \(R \) a ring with identity. \(I \triangleleft R \). \(F \) a free \(R\text{-mod} \) with basis \(X \).
\(\pi : F \to F/IF \) the canonical projection. Then \(F/IF \) is a free \(R/I\text{-mod} \) with
basis \(\pi(X) \) and \(|\pi(X)| = |X| \).

\((\text{sketch of proof: } 1. \, \pi(X) \text{ generates } F/IF. \, 2. \, \pi(X) \text{ are linearly inde-
pendent. } 3. \, |\pi(X)| = |X|.\)\)

Prop 2.17. Let \(f : R \to S \) be a nonzero epimorphism of rings with identity.
If \(S \) has the IDP, then so does \(R \).

\((\text{Use Lemma 2.16 and } S \simeq R/I \text{ for } I := \ker f \triangleleft R.)\)

Ex. Some examples of rings with IDP

1. If \(R \) is a ring with identity that has a homomorphic image which is a
division ring, then \(R \) has the IDP. In particular, every commutative
ring with identity has the IDP.

2. Every division ring \(D \) has IDP. In fact, every \(D\text{-mod} \) \(V \) is free. \(V \) is
called a vector space over \(D \).

Prop 2.18. Let \(V \) be a vector space over a division ring \(D \).

1. \(V \) always has a basis and is a free \(D\text{-mod} \).

2. Every maximal linearly independent subset \(X \) of \(V \) is a basis of \(V \).

3. If \(Y \) is a subset of \(V \) that spans \(V \), then \(Y \) contains a basis of \(V \).

4. Every two bases of \(V \) have the same cardinality.

Prop 2.19. Let \(V \) be a vector space over a division ring \(D \). Let \(W \) and \(U \)
be subspaces of \(V \).

1. \(\dim_D V = \dim_D W + \dim_D (V/W) \). In particular, \(\dim_D W \leq \dim_D V \); \(\text{and if } \dim_D W = \dim_D V \text{ is finite, then } W = V. \)
2.2. FREE MODULES AND VECTOR SPACES

2. $\dim_D U + \dim_D W = \dim_D (U + W) + \dim_D (U \cap W)$.

(Proof by constructing the bases.)

The following result would be used in Galois Theory.

Thm 2.20. Let R, S, T be division rings such that $R \subset S \subset T$. Then

$$\dim_R T = (\dim_S T)(\dim_R S).$$

Precisely, if $\{s_i \mid i \in I\}$ is a basis of S over R, and $\{t_j \mid j \in J\}$ is a basis of T over S, then $\{s_i t_j \mid i \in I, j \in J\}$ is a basis of T over R.
2.3 Projective and Injective Modules

(IV.3)

2.3.1 Projective Modules

Def. An R-mod P is \textbf{projective} if given any R-mod homom diagram

\[
\begin{array}{ccc}
P & \xrightarrow{f} & A \\
\downarrow & & \downarrow \\
B & \xrightarrow{g} & 0
\end{array}
\]

with bottom row exact (i.e. g an epimorphism), there exists an R-mod homom $h : P \to A$ such that $g \circ h = f$:

\[
\begin{array}{ccc}
P & \xrightarrow{f} & A \\
\downarrow{h} & & \downarrow{g} \\
B & \xrightarrow{g} & 0
\end{array}
\]

Projective modules include all free modules:

\textbf{Thm 2.21.} Every free R-module is projective.

(Proof: Suppose F is a free module with a basis X. We construct the commutative diagram on X first. Then apply Theorem 2.12 (4).)

\textbf{Cor 2.22.} Every module A is the homomorphic image of a projective R-module.

(Proof: Recall that if X generates A, then A is the homomorphic image of the free module generated by X.)

Projective modules are characterized by the important theorem below.

\textbf{Thm 2.23.} The following condition on an R-mod P are equivalent:

1. P is projective;

2. Every short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} P \to 0$ is split exact (hence $B \simeq A \oplus P$);

3. there is a free module F and an R-module K such that $F \simeq K \oplus P$.
2.3. PROJECTIVE AND INJECTIVE MODULES

(Proof: $1 \to 2$, $2 \to 3$, $3 \to 1$.)

So a module is projective if and only if it is the direct sum component of a free module.

Ex. Let $R = \mathbb{Z}_6$. Then $\mathbb{Z}_6 \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3$ as \mathbb{Z}_6-modules. So both \mathbb{Z}_2 and \mathbb{Z}_3 are projective \mathbb{Z}_6-modules, although they are not free \mathbb{Z}_6-modules.

Ex. \mathbb{Z}_2 is NOT a projective \mathbb{Z}_4-module.

Thm 2.24. A direct sum of R-mods $\bigoplus_{i \in I} P_i$ is projective if and only if each P_i is projective.

(Proof)

2.3.2 Injective Modules

Injectivity is the dual notation to projectivity.

Def. An R-mod J is injective if given any R-mod homom diagram:

$$
\begin{array}{ccc}
0 & \longrightarrow & A \\
& & \downarrow g \\
& & B \\
& & \downarrow f \\
& & J \\
\end{array}
$$

with top row exact (i.e. g a monomorphism), there exists an R-mod homom $h : B \to J$ such that $h \circ g = f$:

$$
\begin{array}{ccc}
0 & \longrightarrow & A \\
& & \downarrow g \\
& & B \\
& & \downarrow f \\
& & J \\
& & \downarrow h \\
\end{array}
$$

There is a dual result to Cor 2.22 for injective modules:

Prop 2.25. Every R-mod A may be embedded in an injective R-module.

(The proof is complex and we skip it.)

Thm 2.26. The following conditions on an R-mod J are equivalent:

1. J is injective;

2. every short exact sequence $0 \to J \xrightarrow{f} B \xrightarrow{g} C \to 0$ is split exact (hence $B \cong J \oplus C$).
3. \(J \) is a direct summand of any module \(B \) of which \(J \) is a submodule.

(proof)

The dual result to Thm 2.24 for injective module is:

Thm 2.27. A direct product of \(R \)-mods \(\prod_{i \in I} J_i \) is injective if and only if \(J_i \) is injective for every \(i \in I \).

(exercise)
2.4 Modules over a Principal Ideal Domain

(IV.6) In this section, the ring \(R \) is a principal ideal domain (PID).

Ex. An finitely generated abelian group (i.e. a finitely generated \(\mathbb{Z} \)-module) is isomorphic to \(\mathbb{Z}^r \oplus \bigoplus_{i=1}^k \mathbb{Z}_{p_i^{s_i}} \) for (not necessary distinct) primes \(p_i \) and integers \(r, k, s_i \).

Thm 2.28. Let \(R \) be a PID, \(F \) a free \(R \)-module, and \(G \) a submodule of \(F \). Then \(G \) is a free \(R \)-mod and rank \(G \) \(\leq \) rank \(F \).

Proof. Let \(\{ x_i \mid i \in I \} \) be a basis of \(F \). Choose a well ordering \(\leq \) of \(I \) (Introduction, Section 7), and denote the immediate successor of \(i \) by \(i + 1 \) (Introduction, Ex 7.7). Choose \(\alpha \notin I \). Let \(J = I \cup \{ \alpha \} \) and let \(i < \alpha \) for all \(i \in I \). For each \(j \in J \) Let \(F_j \) be the submodule generated by \(\{ x_i \mid i < j \} \).

1. \(F_{i+1}/F_i \simeq Rx_i \simeq R \) (apply 3rd Isomorphism Thm on the canonical projection \(F_{i+1} \to Rx_i \)).

2. \(G_i = G_{i+1} \cap F_i \).

3. \(G_{i+1}/G_i = G_{i+1}/(G_{i+1} \cap F_i) \simeq (G_{i+1} + F_i)/F_i \).

But \((G_{i+1} + F_i)/F_i \) is a submodule of \(F_{i+1}/F_i \simeq R \), and every submodule of \(R \) is an ideal and is of the form \(Rc \) for some \(c \in R \). So \(G_{i+1}/G_i \) is free of rank 0 or 1. Then \(0 \to G_i \to G_{i+1} \to G_{i+1}/G_i \to 0 \) is split exact. So \(G_{i+1} = G_i \oplus Rb_i \) for \(b_i = 0 \) or \(b_i \in G_{i+1} - G_i \). Let \(B = \{ b_i \mid b_i \neq 0, i \in I \} \). Then \(|B| \leq |I| \). We can show that \(B \) is a basis of \(G \) (Exercise).

Likewise, if every ideal of a generic ring \(R \) is finitely generated (for example, if \(R \) is a Noetherian Ring), then every submodule of a finitely generated \(R \)-module is finitely generated.

Cor 2.29. Let \(R \) be a PID. If \(A \) is a finitely generated \(R \)-mod generated by \(n \) elements, then every submodule of \(A \) may be generated by \(m \) elements with \(m \leq n \).

Cor 2.30. A module \(A \) over a PID \(R \) is free if and only if \(A \) is projective.

Lem 2.31. Let \(A \) be a left module over a PID \(R \) and for each \(a \in A \) let \(O_a = \{ r \in R \mid ra = 0 \} \).

1. \(O_a \) is an ideal of \(R \) for each \(a \in A \).
2. \(A_t = \{ a \in A \mid O_a \neq 0 \} \) is a submodule of \(A \), the **torsion submodule** of \(A \). Indeed, \(O_{ra} \supseteq O_a \) and \(O_{a+b} \supseteq O_a \cap O_b \) for \(r \in R - \{0\} \) and \(a, b \in A \).

3. For each \(a \in A \) there is an isomorphism of left modules

\[
R/O_a \simeq Ra = \{ ra \mid r \in R \}.
\]

Remark.

1. \(A \) is a **torsion module** if \(A = A_t \); \(A \) is **torsion-free** if \(A_t = 0 \).

2. Every free module is torsion-free. However, a torsion-free (not finitely generated) module may not be free. The \(\mathbb{Z} \)-module \(\mathbb{Q} \) is a counterexample. See theorem below for the finitely generated case.

3. Given \(a \in A \), suppose that \(O_a = (r) \) for \(r \in R \). Then

\[
Ra \simeq R/O_a = R/(r)
\]

is said to be **cyclic of order** \(r \).

Ex. Let \(A \) be an abelian group (i.e. \(\mathbb{Z} \)-module). If the group theoretic order of \(a \in A \) is \(n \in \mathbb{N} \), then \(\mathbb{Z}a \simeq \mathbb{Z}/(n) \) as \(\mathbb{Z} \)-mod; if \(a \) has infinite order, then \(\mathbb{Z}a \simeq \mathbb{Z}/(0) \simeq \mathbb{Z} \).

Thm 2.32. A finitely generated torsion-free module \(A \) over a PID \(R \) is free.

Proof. Let \(X \) be a set of elements that generate \(A \). Let \(S = \{ x_1, \ldots, x_k \} \) be a maximal subset of \(X \) such that

\[
r_1x_1 + \cdots + r_kx_k = 0 \quad \Rightarrow \quad r_1 = \cdots = r_k = 0.
\]

Then \(S \) is nonempty. Let \(F \) be the submodule generated by \(S \). Then \(F \) is a free submodule of \(A \). Given \(y \in X - S \), there exists \(r_y \neq 0 \) and \(r_1, \ldots, r_k \in R \) such that \(r_y y + r_1x_1 + \cdots + r_kx_k = 0 \). Then \(r_y y \in F \). This shows that there exists \(r = \prod_{y \in X - S} r_y \neq 0 \), such that \(rX \leq F \). Then \(X \simeq rX \) is free. \(\square \)

Thm 2.33. If \(A \) is a finitely generated module over a PID \(R \), then \(A = A_t \oplus F \), where \(F \) is a free \(R \)-module of finite rank and \(F \simeq A/A_t \).

Let us investigate the torsion part of \(A \).
2.4. MODULES OVER A PRINCIPAL IDEAL DOMAIN

Lem 2.34. Let A be a torsion module over a PID R and for each prime $p \in R$ let $A(p) = \{ a \in A \mid a \text{ has order a power of } p \}$.

1. $A(p)$ is a submodule of A for each prime $p \in R$;

2. $A = \bigoplus A(p)$, where the sum is over all primes $p \in R$. If A is finitely generated, only finitely many of the $A(p)$ are nonzero.

Proof. 1. Easy.

2. Given $a \in A$, suppose $O_a = (r)$ and $r = p_1^{n_1} \cdots p_k^{n_k}$. Let $r_i \in R$ satisfy that $r = p_1^{n_1} r_i$. Then $\gcd(r_1, \cdots, r_k) = 1$ and there exist $s_1, \cdots, s_k \in R$ such that $s_1 r_1 + \cdots + s_k r_k = 1$. Then $a = s_1 r_1 a + \cdots + s_k r_k a$ and $s_i r_i a \in A(p_i)$. So $A = \sum A(p)$. Now for any prime p, we set $A_p := \sum_{q \neq p} A(q)$. Verify that $A(p) \cap A_p = \{0\}$. Then $A = \bigoplus A(p)$.

If $A = \langle a_1, \cdots, a_n \rangle$. Let $O_{a_i} = (r_i)$. Let q_1, \cdots, q_ℓ be all distinct primes (up to associate) that divides one of r_1, \cdots, r_n. Then $A = \bigoplus_{i=1}^\ell A(q_i)$.

Lem 2.35. Let R be a PID and $p \in R$ be a prime. Let A be a fin gen R-mod such that every nonzero element of A has order a power of p. Then

$A \simeq \bigoplus_{i=1}^k R/(p_i^{n_i})$ for some $n_1 \geq n_2 \geq \cdots \geq n_k \geq 1$.

(The proof is skipped here.)

Lem 2.36. If $r = p_1^{n_1} \cdots p_k^{n_k}$ where p_i are distinct primes, then

$R/(r) \simeq \bigoplus_{i=1}^k R/(p_i^{n_i})$ as left R-modules.

Proof. Define $\phi : R/(r) \to \bigoplus_{i=1}^k R/(p_i^{n_i})$ by

$\phi(a + (r)) = (a + (p_1^{n_1}), a + (p_2^{n_2}), \cdots, a + (p_k^{n_k}))$.

Verify that ϕ is a well-defined R-mod monomorphism. Let $A_i = (p_i^{n_i})$ in R. Then $A_i + A_j = R$ for $i \neq j$. By Chinese Remainder Theorem, ϕ is an epimorphism.

The classification theorem of finitely generated modules over a PID is:

Thm 2.37. Let A be a finitely generated module over a PID R.
CHAPTER 2. MODULES

1.

$$A \cong R^r \bigoplus_{i=1}^{k} R/(p_i^{s_i}),$$

where $r \in \mathbb{N}$, p_1, \ldots, p_k are (not necessary distinct) primes in R and s_1, \ldots, s_k are (not necessary distinct) positive integers. The elements $p_1^{s_1}, \ldots, p_k^{s_k}$ are called the **elementary divisors** of A. The rank r and the list of ideals $(p_1^{s_1}), \ldots, (p_k^{s_k})$ are uniquely determined by A.

2.

$$A \cong R^r \bigoplus_{j=1}^{t} R/(r_j)$$

where $r \in \mathbb{N}$, r_1, \ldots, r_t are (not necessary distinct) nonzero nonunit elements of R such that $r_1 \mid r_2 \mid \cdots \mid r_t$. The elements r_1, \ldots, r_t are called the **invariant factors** of A. The rank r and the list of ideals $(r_1), \ldots, (r_t)$ are uniquely determined by A.

Ex. The \mathbb{Z}-mod $A = \mathbb{Z}^6 \oplus \mathbb{Z}_7 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_{14} \oplus \mathbb{Z}_{18} \oplus \mathbb{Z}_{24}$ is classified by

$$A \cong \mathbb{Z}^6 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_84 \oplus \mathbb{Z}_{2520}$$

We work out the following table:

<table>
<thead>
<tr>
<th>$p_i^{s_i}$</th>
<th>p</th>
<th>t_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^4</td>
<td>2^4</td>
<td>5</td>
</tr>
<tr>
<td>2^2</td>
<td>2^2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Therefore, A has another classification into cyclic modules:

$$A \cong \mathbb{Z}^6 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_{84} \oplus \mathbb{Z}_{2520} \quad \text{where} \quad 2 \mid 2 \mid 6 \mid 84 \mid 2520$$

Cor 2.38. Two finitely generated modules A and B over a PID are isomorphic if and only if A/A_t and B/B_t have the same rank and A and B have the same invariant factors (resp. elementary divisors).