Chapter 1

Rings

1.1 Definitions and Examples

(III.1, III.2)

Def. A ring $\langle R, +, \cdot \rangle$ consists of

a nonempty set R and two binary operations $+$ and \cdot

that satisfy the axioms:

1. $\langle R, + \rangle$ is an abelian group;
2. $(ab)c = a(bc)$ (associative multiplication);
3. $a(b + c) = ab + ac$, $(b + c)a = ba + ca$. (distributive laws)

Moreover, the ring R is a

- **commutative ring** if $ab = ba$;
- **ring with identity** if R contains an element 1_R such that
 $1_R a = a 1_R = a$ for all $a \in R$.

Conventions: (1) $ab = a \cdot b$; (2) $na = a + a + \cdots + a$ (n summands) for $n \in \mathbb{Z}$ and $a \in R$; (3) 1_R denotes either the identity of R, or the identity map $1_R : R \to R$.

Ex. The ring \mathbb{Z} of integers is a commutative ring with identity. So are \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_n, $\mathbb{R}[x]$, etc.

Ex. $3\mathbb{Z}$ is a commutative ring with no identity.
Ex. The ring $\mathbb{Z}^{2\times 2}$ of 2×2 matrices with integer coefficients is a noncommutative ring with identity.

Ex. $(3\mathbb{Z})^{2\times 2}$ is a noncommutative ring with no identity.

Basic Properties of Rings: Let R be a ring. Then

1. $0a = a0 = 0$;
2. $a(-b) = (-a)b = -(ab)$;
3. $(-a)(-b) = ab$;
4. $(na)b = a(nb) = n(ab)$ for all $n \in \mathbb{Z}$ and $a, b \in R$;
5. $(\sum_{i=1}^{n}a_i)(\sum_{j=1}^{m}b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m}a_ib_j$ for all $a_i, b_j \in R$.

Def. A nonzero element $a \in R$ is a left zero divisor if there is a nonzero $b \in R$ such that $ab = 0$ (so b is a right zero divisor.) The element a is a zero divisor if a is both a left zero divisor and a right zero divisor.

A ring R has no left/right divisors iff the left/right cancellation laws hold in R: for all $a, b, c \in R$ with $a \neq 0$,

$$ab = ac \text{ or } ba = ca \implies b = c.$$

Def. An element a in a ring R with identity is left invertible if there is $c \in R$ such that $ca = 1_R$. An element a is invertible or a unit if it is both left and right invertible.

Ex. \mathbb{Z} is an integral domain. So is $\mathbb{Z}[x]$.

Ex.

1. \mathbb{Z}_6 is a commutative ring with identity.
 - identity: 1
 - units: 1, 5
 - zero divisors: 2, 3, 4
2. \mathbb{Z}_7 is a field. We have $1 \cdot 1 = 2 \cdot 4 = 3 \cdot 5 = 6 \cdot 6 = 1$ in \mathbb{Z}_7.

3. In general, if n is a positive integer and is not a prime, then \mathbb{Z}_n has zero divisors; if p is a positive prime, then \mathbb{Z}_p is a field.

Def. Let R be a ring. If there is a least positive integer n such that $na = 0$ for all $a \in R$, then R is said to have **characteristic** n (char $R = n$). If no such n exists, then R is said to have **characteristic zero**.

Ex. \mathbb{Z}_n has characteristic n. In general, if a ring R has identity 1_R, then char R is the least positive integer n (if it exists) such that $n1_R = 0$.

Ex (polynomial ring). If R is a ring, then $R[x] = \{ \sum_{i=0}^{n} r_i x^i \mid n \in \mathbb{Z} \}$ is the polynomial ring of R. The ring $R[x]$ is commutative iff R is. The ring $R[x]$ has identity iff R has. R can be viewed as a subring of $R[x]$.

Ex (endomorphism ring). Let A be an abelian group and $\text{End}A$ be the set of group homomorphisms $f : A \to A$. Define addition in $\text{End}A$ by $(f + g)(a) = f(a) + g(a)$, and the multiplication in $\text{End}A$ by $(fg)(a) = f(g(a))$. Then $\text{End}A$ is a ring with identity. The matrix ring is a special case of endomorphism ring.

Ex (external direct product). Let R_i $(i \in I)$ be rings. Then

$$\prod_{i \in I} R_i = \{(a_i)_{i \in I} \mid a_i \in R_i \text{ for } i \in I\}$$

is a ring under the following operations:

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}, \quad (a_i)_{i \in I} (b_i)_{i \in I} = (a_i b_i)_{i \in I}$$

Ex. Let A_1, \ldots, A_n be ideals in a ring R such that

1. $A_1 + \cdots + A_n = R$ and
2. for each k $(1 \leq k \leq n)$, $A_k \cap (A_1 + \cdots + A_{k-1} + A_{k+1} + \cdots + A_n) = 0$

Then there is a ring isomorphism $R \simeq A_1 \times \cdots \times A_n$. The ring R is said to be the **internal direct product** of the ideals A_i, written as $R = \prod A_i$ or $R = A_1 \times \cdots \times A_n$. Note that each of the A_i is contained in R, which is slightly different from the external direct product.

(proof)
Ex (coproduct (direct sum)). The coproduct (direct sum) of R_i ($i \in I$) is a subring of the direct product of R_i ($i \in I$):

$$\prod_{i \in I} R_i = \bigoplus_{i \in I} R_i = \{ (a_i)_{i \in I} \mid a_i \in R_i \text{ for } i \in I, \text{ only finitely many } a_i \neq 0 \}$$

Ex (group ring). If G is a multiplicative group and R is a ring, we define the group ring $R(G)$, such that every element $\sum_{g \in G} r_g g$ of $R(G)$ has only finitely many nonzero summands, and

1. $0g = 0$ for all $g \in G$.
2. Given $r_i, s_j \in R$ and $g_i, h_j \in G$,

$$\sum_{i=1}^{n} r_i g_i + \sum_{i=1}^{n} s_i g_i = \sum_{i=1}^{n} (r_i + s_i) g_i$$

$$\left(\sum_{i=1}^{n} r_i g_i \right) \left(\sum_{j=1}^{m} s_j h_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{m} (r_i s_j) (g_i h_j)$$
1.2 Subrings, Ideals, and Ring Homomorphisms

(III.1, III.2)

1.2.1 Subrings and Ideals

Def. Let R be a ring. Let S be a nonempty subset of R that is closed under $\, +, -,$ and \cdot. Then S has a ring structure and is called a **subring** of R.

Def. A subring I of R is a **left ideal** provided

$$r \in R \text{ and } x \in I \implies rx \in I.$$

I is an **ideal** if it is both a left and right ideal.

Ex. The **center** of a ring R is the set $C = \{c \in R \mid cr = rc \text{ for all } r \in R\}$ is a subring of R, but may not be an ideal of R. Think about the situation $R = \mathbb{C}^{2 \times 2}$ (exercise).

Ex. Consider the matrix ring $R = \mathbb{Z}^{2 \times 2}$. Then

1. $I_1 = \begin{bmatrix} 2\mathbb{Z} & \mathbb{Z} \\ 2\mathbb{Z} & \mathbb{Z} \end{bmatrix}$ is a left ideal (but not a right ideal) of R;

2. $I_2 = \begin{bmatrix} 2\mathbb{Z} & 2\mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix}$ is a right ideal (but not a left ideal) of R;

3. $I = (2\mathbb{Z})^{2 \times 2} = \begin{bmatrix} 2\mathbb{Z} & 2\mathbb{Z} \\ 2\mathbb{Z} & 2\mathbb{Z} \end{bmatrix}$ is an ideal of R;

4. $S = \begin{bmatrix} \mathbb{Z} & 0 \\ 0 & \mathbb{Z} \end{bmatrix}$ is a subring (but not an ideal) of R.

A ring R always contains the trivial ideal 0 and the ideal R itself. The other ideals of R are called **proper ideals**.

Thm 1.1. A nonempty set I of a ring R is a [left] ideal of R iff for all $a, b \in I$ and $r \in R$:

1. $a, b \in I \implies a - b \in I$; and

2. $a \in I, r \in R \implies ra \in I$.

Cor 1.2. Let R be a ring and each A_i a [left] ideal of R.

1. The intersection $\bigcap_{i \in I} A_i$ is a [left] ideal;
2. The sum
\[\sum_{i \in I} A_i = \{ a_1 + a_2 + \cdots + a_n \mid n \in \mathbb{Z}^+, \quad a_j \in \bigcup_{i \in I} A_i \text{ for } j = 1, 2, \cdots, n. \} \]
is a left ideal;

3. Let
\[A_1 A_2 \cdots A_n = \{ \sum_{j=1}^{m} a_{j1}a_{j2} \cdots a_{jn} \mid m \in \mathbb{Z}^+, \quad a_{jk} \in A_k, \quad k = 1, 2, \cdots, n. \} \]
Then \(A_1 A_2 \cdots A_n \) is also a left ideal.

Thm 1.3. If \(A, B, C, A_1, \cdots, A_n \) are left ideals of a ring \(R \), then

1. \((A + B) + C = A + (B + C)\);
2. \((AB)C = A(BC)\);
3. \(B(A_1 + \cdots + A_n) = BA_1 + \cdots + BA_n; \) and \((A_1 + \cdots + A_n)C = A_1C + \cdots + A_nC\).

Def. Let \(X \) be a subset of a ring \(R \), let \(\{ A_i \mid i \in I \} \) be the family of all ideals in \(R \) which contain \(X \). Then \(\bigcap_{i \in I} A_i \) is called the ideal generated by \(X \), denoted by \((X) \). The element of \(X \) are called the generators of the ideal \((X) \). If \(X \) has finite cardinality, then \((X) \) is a finitely generated ideal. In particular, an ideal \((a) \) generated by a single element \(a \in R \) is called a principal ideal.

Thm 1.4. For \(X \subseteq R \), we have \((X) = \sum_{a \in X} (a)\).

Thus it is important to describe the principal ideals.

Thm 1.5. Suppose \(R \) is a ring and \(a \in R \).

1. The principal ideal \((a)\) consists of all elements of the form
\[na + ra + as + \sum_{i=1}^{m} r_i a s_i, \quad \text{where } r, s, r_i, s_i \in R, \quad m \in \mathbb{Z}^+, \quad n \in \mathbb{Z}. \]
2. If \(R \) has an identity, then
\[(a) = \left\{ \sum_{i=1}^{n} r_i a s_i \mid r_i, s_i \in R, \quad n \in \mathbb{Z}^+ \right\} \]
3. If \(a \) is in the center of \(R \) (e.g. \(R \) is a commutative ring), then
\[
(a) = \{na + ra \mid r \in R, \ n \in \mathbb{Z}\}
\]

4. If \(R \) has an identity and \(a \) is in the center of \(R \), then
\[
(a) = aR = Ra
\]

If \(I \) is an ideal of \(R \), then the cosets
\[
R/I = \{a + I \mid a \in R\}
\]
has a well-defined factor ring structure by the following operations:
\[
(a + I) + (b + I) = (a + b) + I
\]
\[
(a + I)(b + I) = ab + I
\]

Ex. If \(I \) is only a left ideal of \(R \), can we define the factor ring \(R/I \)?

Ex. Let \(I \) be an ideal of \(R \). If \(R \) is commutative or has an identity, then so is \(R/I \). The converse is not true. For examples,

1. \(R = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z} \end{bmatrix}, \ I = \begin{bmatrix} 0 & \mathbb{Z} \\ 0 & 0 \end{bmatrix} \).

2. \(R = 2\mathbb{Z} \) and \(I = 6\mathbb{Z} \).

1.2.2 Homomorphisms

Def. A function \(f : R \to S \) between two rings \(R \) and \(S \) is a ring homomorphism if \(f \) preserves the corresponding operations: for all \(a, b \in R \),

\[
f(a + b) = f(a) + f(b), \quad f(ab) = f(a)f(b).
\]

Different kinds of homomorphisms:
- **monomorphism** injective homomorphism
- **epimorphism** surjective homomorphism
- **isomorphism** bijective homomorphism
- **automorphism** isomorphism of a ring \(R \) to \(R \) itself

Let \(f : R \to S \) be a homomorphism. Then
\[
\text{Ker } f = \{r \in R \mid f(r) = 0\} \\
\text{Im } f = \{s \in S \mid s = f(r) \text{ for some } r \in R\}.
\]

where \(\text{Ker } f \) is an ideal of \(R \), and \(\text{Im } f \) is a subring of \(S \).
Ideals and ring homomorphisms are closely related to each other. We have seen that $\text{Ker } f$ is an ideal of R above. Conversely, given an ideal I of R, we have the **canonical epimorphism** (or projection)

$$\pi : R \to R/I \quad \text{defined by} \quad \pi(r) = r + I,$$

such that $\text{Ker } \pi = I$.

The following theorems and proofs are similar to those for the groups.

Thm 1.6 (First Isomorphism Theorem). If $f : R \to S$ is a ring homomorphism, then f induces a ring isomorphism $R/\text{Ker } f \simeq \text{Im } f$.

Thm 1.7. Let I and J be ideals of a ring R.

1. **(Second Isomorphism Theorem)** There is a ring isomorphism

 $$I/(I \cap J) \simeq (I + J)/J.$$

2. **(Third Isomorphism Theorem)** If $I \subset J$, then J/I is an ideal in R/I and there is a ring isomorphism

 $$(R/I)/(J/I) \simeq R/J.$$

Thm 1.8. Let I be an ideal of R. There is a one-to-one correspondence between the set of all ideals of R which contains I and the set of all ideals of R/I, given by $J \mapsto J/I$. So every ideal in R/I is of the form J/I for $I \subset J \subset R$.

1.2.3 Prime Ideals and Maximal Ideals

Def. An ideal P in a ring R is a **prime ideal** if $P \neq R$ and for any ideals A, B in R

$$AB \subset P \implies A \subset P \quad \text{or} \quad B \subset P$$

There are several equivalent characterizations of prime ideals (See Ex III.2.14). A very useful one is below

Thm 1.9. If P is an ideal in a ring R such that $P \neq R$ and for all $a, b \in R$

$$ab \in P \implies a \in P \quad \text{or} \quad b \in P \quad (1.1)$$

then P is prime. Conversely if P is prime and R is commutative, then P satisfies condition (1.1).
1.2. SUBRINGS, IDEALS, AND RING HOMOMORPHISMS

(proof)

For commutative ring R, (1.1) is an equivalent condition for prime ideals.

Ex. The zero ideal of an integral domain is prime.

Ex. Let R be a commutative ring with identity $1_R \neq 0$. Then an ideal P is prime iff the quotient ring R/P is an integral domain.

Def. An ideal M in a ring R is maximal if $M \neq R$ and for every ideal N such that $M \subset N \subset R$, either $M = N$ or $N = R$.

Thm 1.10. Let R be a ring with identity. Then every ideal in R is contained in a maximal ideal. Moreover, every maximal ideal M in R is prime.

(proof)

Ex. What happen if R has no identity. Consider $R = 2\mathbb{Z}$.

1. $M_1 = 4\mathbb{Z}$ is a maximal ideal, but M_1 is not a prime ideal.

2. $M_2 = 6\mathbb{Z}$ is a maximal ideal as well as a prime ideal. $2\mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}_3$.

However, the identity of $2\mathbb{Z}/6\mathbb{Z}$ is $4 + 6\mathbb{Z}$.

Ex. Let R be a commutative ring with identity $1_R \neq 0$. Then M is a maximal ideal of R iff R/M is a field. In particular, R is a field iff 0 is a maximal ideal in R.

1.2.4 Chinese Remainder Theorem

Let A be an ideal in a ring R and $a, b \in R$. Then a is congruent to b modulo A (denoted $a \equiv b \mod A$) if $a - b \in A$. In other words,

$$a \equiv b \mod A \iff a - b \in A \iff a + A = b + A$$

We have

$$a_1 \equiv a_2 \mod A, \ b_1 \equiv b_2 \mod A \implies a_1 + b_1 \equiv a_2 + b_2 \mod A, \ a_1 b_1 \equiv a_2 b_2 \mod A.$$

Thm 1.11 (Chinese Remainder Theorem). Let A_1, \ldots, A_n be ideals in a ring R such that

1. $R^2 + A_i = R$ for all i and
2. $A_i + A_j = R$ for all $i \neq j$.
Then for any \(b_1, \cdots, b_n \in R \), there exists \(b \in R \) such that
\[
b \equiv b_k \pmod{A_k} \quad (k = 1, 2, \cdots, n).
\]
Furthermore \(b \) is uniquely determined up to congruence modulo the ideal \(A_1 \cap A_2 \cap \cdots \cap A_n \).

Remark. If \(R \) has identity, then \(R^2 = R \), and \(R^2 + A_i = R \) always holds.

Cor 1.12. Let \(m_1, \cdots, m_n \), be positive integers such that \((m_i, m_j) = 1\) for \(i \neq j \). If \(b_1, \cdots, b_n \) are any integers, then the system of congruences
\[
\begin{align*}
x &\equiv b_1 \pmod{m_1} \\
x &\equiv b_2 \pmod{m_2} \\
\vdots \\
x &\equiv b_n \pmod{m_n}
\end{align*}
\]
has an integral solution that is uniquely determined modulo \(m = m_1 \cdots m_n \).

Proof of the theorem: We proceed in three steps.

1. **Claim:** \(R = A_1 + (A_2 \cap \cdots \cap A_n) \).

 Clearly \(R = A_1 + A_2 \). Suppose that \(R = A_1 + (A_2 \cap \cdots \cap A_{k-1}) \). Then
 \[
 R = A_1 + R^2 = A_1 + (A_1 + A_k)(A_1 + (A_2 \cap \cdots \cap A_{k-1})) \subset A_1 + A_k(A_2 \cap \cdots \cap A_{k-1}) \subset A_1 + (A_2 \cap \cdots \cap A_k) \subset R.
 \]

 So \(R = A_1 + (A_2 \cap \cdots \cap A_k) \). By induction, \(R = A_1 + (A_2 \cap \cdots \cap A_n) \).

2. Similarly, \(R = A_k + (\bigcap_{i \neq k} A_i) \) for \(k = 1, \cdots, n \). For \(b_k \) in the theorem, write \(b_k = a_k + r_k \) for \(a_k \in A_k \) and \(r_k \in (\bigcap_{i \neq k} A_i) \).

3. Denote \(r = r_1 + \cdots + r_n \). By \(r_i \in A_k \) for \(i \neq k \), we can verify that \(r \equiv r_k \pmod{A_k} \). The rest is clear.
1.3 Factorization in Integral Domain

The ring R in this section is an integral domain. Some results here may be generalized to commutative rings.

Def. $a, b \in R \setminus \{0\}$ is said to divide b in R (notation: $a \mid b$) if $ax = b$ for some $x \in R$. $a, b \in R \setminus \{0\}$ are **associate** if $a \mid b$ and $b \mid a$.

Prop 1.13. Let $a, b, u, r \in R$.

1. $a \mid b \iff (b) \subset (a)$.
2. a and b are associate $\iff (a) = (b) \iff a = br$ for a unit $r \in R$.
3. u is a unit $\iff u \mid r$ for all $r \in R \iff (u) = R$.

Def. Suppose $p \in R \setminus \{0\}$ is not a unit. Then p is irreducible if $p = ab \implies a$ or b is a unit. p is prime if $p \mid ab \implies p \mid a$ or $p \mid b$.

Thm 1.14. R an integral domain. $p \in R \setminus \{0\}$.

1. p is prime $\iff (p) \neq (0)$ is prime;
2. p is irreducible $\iff (p)$ is maximal in the set S of all proper principal ideals of R.
3. Every prime element of R is irreducible.

Remark. An irreducible element in an integral domain may not be a prime. See Ex III.3.3 (exercise).

Def. An integral domain R is a **unique factorization domain** if every nonzero nonunit element $a \in R$ can be “uniquely” expressed as $a = c_1 \cdots c_n$ with all c_i irreducible.

The uniqueness in the above definition means that: if $a = c_1 \cdots c_n = d_1 \cdots d_m$, then $n = m$, and there is a permutation σ of $\{1, \cdots, n\}$ such that c_i and $d_{\sigma(i)}$ are associate for every i.

Thm 1.15. If R is a unique factorization domain, then p is prime if and only if p is irreducible.
An integral domain R is a principal ideal domain if every ideal of R is a principal ideal.

Ex. NOT principal ideal domains:

1. $\mathbb{Z}[x]$;
2. $F[x, y]$ where F is a field.

Thm 1.16. Every principal ideal domain is a unique factorization domain.

(Proof is skipped. See Theorem III.3.7.)

Remark. The converse is false. $\mathbb{Z}[x]$ is a unique factorization domain, but not a principal ideal domain.

Def. An integral domain R is a Euclidean domain if there is a function $\varphi : R - \{0\} \rightarrow \mathbb{N}$ such that:

1. $\varphi(a) \leq \varphi(ab)$ for $a, b \in R - \{0\}$.
2. if $a, b \in R$ and $b \neq 0$, then there exist $q, r \in R$ such that $a = qb + r$, where either $r = 0$ or $\varphi(r) < \varphi(b)$.

Ex. Examples of Euclidean domains (which are also principal ideal domains):

1. The ring \mathbb{Z} with $\varphi(x) = |x|$ is a Euclidean domain.
2. A field F with $\varphi(x) = 1$ for all $x \in F - \{0\}$.
3. $F[x]$ where F is a field, with $\varphi(f(x)) = \deg f(x)$ for $f(x) \in F[x] - \{0\}$.
4. $\mathbb{Z}[i]$ with $\varphi(a + bi) = a^2 + b^2$.

Thm 1.17. Every Euclidean domain is a principal integral domain.

Proof: Let $I \subseteq R$. If $I = \{0\}$ then it is principal. Otherwise, choose $x \in I \setminus \{0\}$ such that $\varphi(x) \in \mathbb{N}$ is minimal. Then show that $I = \langle x \rangle$.

Def. Let X be a nonempty subset of an integral domain R. An element $d \in R$ is a greatest common divisor (gcd) of X provided:

1. $d \mid a$ for all $a \in X$.
2. $c \mid a$ for all $a \in X \implies c \mid d$.
If 1_R is the greatest common divisor of $a_1, \cdots, a_n \in R$, then a_1, \cdots, a_n are said to be relative prime.

Prop 1.18. Let R be an integral domain.

1. The greatest common divisor of $X \subset R$, if exists, is unique up to association (i.e. up to a multiple of units).

2. $d \in R$ is a greatest common divisor of $\{a_1, \cdots, a_n\}$ such that $d = r_1a_1 + \cdots + r_na_n$ for $r_i \in R$ if and only if $(d) = (a_1) + \cdots + (a_n)$.

3. If R is a unique factorization domain, then there exists a greatest common divisor for every nonempty $X \subset R$.

4. If R is a principal ideal domain, then a greatest common divisor of $X \subset R$ exists and is of the form $r_1a_1 + \cdots + r_na_n$ for some $a_i \in X$ and $r_i \in R$.

Proof.
1. Easy

2. Interpret the definition of gcd in terms of ideal inclusion.

3. Easy

4. By 2.

\[\square \]
1.4 Ring of Quotients and Localization

In this section, R denotes a commutative ring. Sometimes we require that R has identity.

Ex. Consider the integral domain \mathbb{Z}. The field $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}$ can be viewed as constructed from \mathbb{Z} by quotients. In \mathbb{Q}, we have $a/b = c/d$ iff $ad - bc = 0$.

We can define quotients in the other rings.

Def. A nonempty set S of a ring R is **multiplicative** if

$$a, b \in S \implies ab \in S.$$

Lem 1.19. Let S be a multiplicative subset of a commutative ring R. The relation \sim defined on $R \times S$ by

$$ (r, s) \sim (r', s') \iff s_1(rs' - r's) = 0 \quad \text{for some} \quad s_1 \in S $$

is an equivalent relation.

Again, let r/s denote the equivalent class of (r, s).

Thm 1.20. Let S be a multiplicative subset of a commutative ring R. Let $S^{-1}R$ be the set of equivalent classes of $R \times S$ defined in Lemma 1.19. Then $S^{-1}R$ is a commutative ring with identity, where $+$ and \cdot are defined by

$$r/s + r'/s' = (rs' + r's)/ss' \quad \text{and} \quad (r/s)(r'/s') = (rr')/(ss').$$

The ring $S^{-1}R$ is the **ring of quotients** or **quotient ring** of R by S.

Ex. If R is an integral domain, and S consists of all nonzero elements of R, then $S^{-1}R$ is a field (the **field of quotients** of R) where R is embedded as a subring. Consider the situations:

1. $R = \mathbb{Z}$.
2. $R = \mathbb{R}[x]$.

Ex. If all elements of S are units, then $S^{-1}R \simeq R$.

Ex. S is a multiplicative set including 0. What is $S^{-1}R$?

Ex. $R = \mathbb{Z}$, $S = 3\mathbb{Z}^+$, what is $S^{-1}R$?
1.4. RING OF QUOTIENTS AND LOCALIZATION

Thm 1.21. Let S be a multiplicative subset of R.

1. The map $\varphi_S : R \rightarrow S^{-1}R$ given by $r \mapsto rt/t$ (for any $t \in S$) is a well-defined homomorphism such that $\varphi_S(t)$ is a unit in $S^{-1}R$ for every $t \in S$.

2. If $0 \notin S$ and S contains no zero divisors, then φ_S is a monomorphism.

3. If S consists of units, then φ_S is an isomorphism.

(sketch of proof)

Thm 1.22. S a mult subset of comm. ring R. T a comm. ring with identity. If a ring homom. $f : R \rightarrow T$ satisfies that $f(s)$ is a unit in T for all $s \in S$, then there exists a unique ring homom. $\bar{f} : S^{-1}R \rightarrow T$ such that $f \circ \varphi_S = \bar{f}$. The ring $S^{-1}R$ is completely determined by this property.

Prop 1.23. S a mult subset of comm. ring R.

1. If I is an ideal of R, then $S^{-1}I$ is an ideal of $S^{-1}R$. Conversely, every proper ideal of $S^{-1}R$ is of the form $S^{-1}I$ for $I \triangleleft R$ and $I \cap S = \emptyset$.

2. $S^{-1}I = S^{-1}R$ if and only if $S \cap I \neq \emptyset$.

3. If J is another ideal of R, then (exercise)

\[
\begin{align*}
S^{-1}(I + J) &= S^{-1}I + S^{-1}J \\
S^{-1}(IJ) &= (S^{-1}I)(S^{-1}J) \\
S^{-1}(I \cap J) &= S^{-1}I \cap S^{-1}J
\end{align*}
\]

4. If P is a prime ideal of R and $S \cap P = \emptyset$, then $S^{-1}P$ is a prime ideal in $S^{-1}R$. If Q is another prime ideal of R with $S \cap Q = \emptyset$ and $P \neq Q$, then $S^{-1}P \neq S^{-1}Q$.

(proof of 4.)

Let P be a prime ideal of R. Then $S = R - P$ is a multiplicative subset of R. The ring $S^{-1}R (= R_P)$ is called the localization of R by P. If I is an ideal in R, then $S^{-1}I$ is denoted by I_P.

Thm 1.24. Let P be a prime ideal of R.

1. There is a one-to-one correspondence between the set of prime ideals of R which are contained in P and the set of prime ideals of R_P, given by $I \mapsto I_P$.

 RAW TEXT END

2. The ideal P_P is the unique maximal ideal of R_P.

Def. A local ring is a commutative ring with identity which has a unique maximal ideal.

Ex. If p is prime and $n \geq 1$, then \mathbb{Z}_{p^n} is a local ring with unique maximal ideal (p).

Prop 1.25. If R is a local ring with unique maximal ideal M, then M consists of all nonunits of R. Conversely, if all nonunits of a commutative ring R with identity form an ideal, then R is a local ring.
1.5 Rings of Polynomials and Factorizations

(III.5, III.6) In this section, D is an integral domain; E is an integer domain that contains D; F denotes the quotient field of D.

1.5.1 Rings of Polynomials and Formal Power Series

• Define the **ring of polynomials** over D:

$$D[x] = \{a_0 + a_1 x + \cdots + a_n x^n \mid a_i \in D, \ n \in \mathbb{N}\}$$

with $+$ and \cdot defined in the usual way.

Let $f = a_n x^n + \cdots + a_1 x + a_0 \in D[x]$ with $a_n \neq 0$:

- **coefficients:** all $a_i \in D$
- **leading coefficient:** a_n
- **constant term:** a_0
- **indeterminate:** x
- **degree of f:** $\deg f = n$

• The **ring of polynomials in n indeterminates** over D is $D[x_1, \cdots, x_n] := (D[x_1, \cdots, x_{n-1}])[x_n]$. It consists of

$$f = \sum_{(k_1, \cdots, k_n) \in \mathbb{N}^n} a_{k_1, \cdots, k_n} x_1^{k_1} \cdots x_n^{k_n} = \sum_{I \in \mathbb{N}^n, \ |I| \leq m} a_I x^I,$$

where $m \in \mathbb{N}$, $x = (x_1, \cdots, x_n)$, $I = (k_1, \cdots, k_n) \in \mathbb{N}^n$, and

$$|I| := k_1 + \cdots + k_n, \quad a_I := a_{k_1, \cdots, k_n}, \quad x^I := x_1^{k_1} \cdots x_n^{k_n}.$$

The elements a_I are **coefficients**. The elements x_1, \cdots, x_n are **indeterminates**. A polynomial of the form $a x_1^{k_1} \cdots x_n^{k_n}$ is called a **monomial**. We can define the **degree of a polynomial**, and homogeneous polynomial of degree k.

Prop 1.26. Let D be an int dom and $f, g \in D[x_1, \cdots, x_n]$.

1. $\deg(f + g) \leq \max(\deg f, \deg g)$.
2. $\deg(fg) = \deg f + \deg g$.

(Proof is skipped)
Def. Let \(D \) and \(E \) be int dom with \(D \subseteq E \). An element \((c_1, \cdots, c_n) \in E^n\) is said to be a **root** or a **zero** of \(f \in D[x_1, \cdots, x_n] \) if \(f(c_1, \cdots, c_n) = 0 \).

- The **ring of formal power series** over the ring \(D \) is

\[
D[[x]] = \left\{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in D \right\}.
\]

It forms a ring under the usual + and \(\cdot \).

1.5.2 **Factorizations over an integer domain**

Thm 1.27 (Division Algorithm). Let \(f, g \in D[x] \). If the leading coefficient of \(g \) is a unit in \(D \), then there exist unique polynomials \(q, r \in D[x] \) such that

\[
f = qg + r \quad \text{and} \quad \deg r < \deg g.
\]

Cor 1.28 (Remainder Theorem). Let \(f(x) = \sum_{i=0}^{n} a_i x^i \in D[x] \). For any \(c \in D \) there exists a unique \(q(x) \in D[x] \) such that

\[
f(x) = q(x)(x - c) + f(c).
\]

In particular, \(c \in D \) is a root of \(f(x) \) if and only if \((x - c) \) divides \(f(x) \).

Prop 1.29. If \(f \in D[x] \) has degree \(n \), then \(f \) has at most \(n \) distinct roots in any integer domain \(E \supseteq D \).

(sketch of proof)

Def. The **formal derivative** of \(f = \sum_{k=0}^{n} a_k x^k \in D[x] \) is

\[
f' = \sum_{k=0}^{n} k a_k x^{k-1} \in D[x].
\]

It satisfies the usual derivative properties (sum/product/quotient/chain rules, etc.). For example, \(c \in D \) is a multiple root of \(f \) iff \(f(c) = 0 \) and \(f'(c) = 0 \).
1.5.3 Factorizations over a UFD

* From now on, we consider polynomial rings over a unique factorization domain (UFD). Let D be a UFD with quotient field F.

Def. Let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. Every element in $\gcd(a_0, \cdots, a_n)$ is called a content of f, denoted by $C(f)$. If $C(f)$ is a unit in D, then f is said to be primitive.

- Every polynomial $f \in D[x]$ can be written as $f = C(f)f_1$ with $f_1 \in D[x]$ primitive.
- $C(fg) = C(f)C(g)$ for $f, g \in D[x]$.

We write $a \sim_D b$ to denote that a and b are associate in D.

Prop 1.30. Let D be a UFD with quotient field F. Let f and g be primitive polynomials in $D[x]$.

1. $f \overset{D[x]}{\sim} g$ if and only if $f \overset{F[x]}{\sim} g$.

2. f is irreducible in $D[x]$ if and only if f is irreducible in $F[x]$.

Proof.

1. If $f \overset{F[x]}{\sim} g$, then $f = gu$ for a unit $u \in F[x]$. Then $u \in F$, say $u = c/d$ for $c, d \in D$. Then $df = cg$. So $dC(f) \overset{D}{\sim} C(df) \overset{D}{\sim} C(cg) \overset{D}{\sim} cC(g)$.

Then $c \overset{D}{\sim} d$ since f and g are primitive. So $u = c/d$ is a unit in D and $f \overset{D[x]}{\sim} g$. The converse is trivial.

2. Suppose f is irreducible in $D[x]$ and $f = gh$ with $g, h \in F[x]$ and $\deg g \geq 1$, $\deg h \geq 1$. We can write $g = (a/b)g_0$ and $h = (c/d)h_0$ with $a, b, c, d \in D$, $g_0, h_0 \in D[x]$ primitive. Then $bd = acg_0h_0$ in $D[x]$. Then $bd \overset{D}{\sim} C(bdf) \overset{D}{\sim} C(acg_0h_0) \overset{D}{\sim} ac$. Then $f \overset{D[x]}{\sim} g_0h_0$, a contradiction!

Conversely, if f is irreducible in $F[x]$ and $f = gh$ with $g, h \in D[x]$, then one of g and h, say g, is a unit in $F[x]$. So g is a constant. Then $C(f) = gC(h)$. Since f is primitive, g must be a unit in D. Hence f is irreducible in $D[x]$.

\[\square\]
Note the $F[x]$ for a field F is a Euclid dom/PID/UFD. We use it to prove the following theorem.

Thm 1.31. If D is a UFD, then $D[x_1, \ldots, x_n]$ is a UFD.

Proof. It suffices to prove that D is a UFD implies that $D[x]$ is a UFD. Let F be the quotient field of D.

Existence: Every $f \in D[x]$ can be written as $f = C(f)f_1$, where $f_1 \in D[x]$ is primitive. $C(f) = 1$ or $C(f) = c_1 \cdots c_m$, with each c_i irreducible in D and hence irreducible in $D[x]$. If $\deg f_1 > 0$, we write $f_1 = p_1^*p_2^* \cdots p_n^*$ with each p_i^* irreducible in $F[x]$ (a UFD); write $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $p_i \in D[x]$ is primitive in $D[x]$ and irreducible in $F[x]$ (whence p_i is irreducible in $D[x]$); write $a = a_1 \cdots a_n$ and $b = b_1 \cdots b_n$. Then $bf_1 = ap_1 \cdots p_n$. Since f_1 and p_1, \ldots, p_n are primitive, a $\frac{D}{D}$ b. Then $u = a/b$ is a unit in D and $f = C(f)f_1 = c_1 \cdots c_m (up_1)p_2 \cdots p_n$ is a product of irreducible elements in $D[x]$.

Uniqueness: Suppose $f \in D[x]$ has two decompositions

$$f = c_1 \cdots c_mp_1 \cdots p_n = d_1 \cdots d_rq_1 \cdots q_s,$$

where $c_i, d_j \in D$ are irreducible, and $p_k, q_l \in D[x]$ have positive degree and irreducible. Then $c_1 \cdots c_m \sim d_1 \cdots d_r$ as they are contents of f. Then $p_1 \cdots p_n \sim q_1 \cdots q_s$. By the uniqueness of decompositions in D and $F[x]$, we get the uniqueness of decomposition of f. \hfill \Box

Thm 1.32 (Eisenstein’s Criterion). Let D be a UFD with quotient field F. If $f = \sum_{i=0}^n a_i x^i \in D[x]$, $\deg f \geq 1$, and p is irreducible in D such that

$$p | a_n; \quad p \nmid a_i \quad \text{for} \quad i = 0, 1, \cdots, n-1; \quad p^2 \nmid a_0,$$

then f is irreducible in $F[x]$. If f is primitive, then f is irreducible in $D[x]$.

Proof. $f = C(f)f_1$ with f_1 primitive in $D[x]$. The coefficients of $f_1 = \sum_{k=0}^n a_k^* x^k$ satisfy that:

$$p | a_n^*; \quad p \nmid a_i^* \quad i = 0, 1, \cdots, n-1; \quad p^2 \nmid a_0^*.$$

It suffices to show that f_1 is irreducible in $D[x]$. Suppose on the contrary, $f_1 = gh$ with $g = \sum_{i=0}^r b_i x^i \in D[x]$, $\deg g = r \geq 1$; and $h = \sum_{j=0}^s c_j x^j \in D[x]$, where $r \geq s$.
deg \(h = s \geq 1 \). The irreducible element \(p \) is prime since \(D \) is a UFD. \(p \mid a_0^* = b_0c_0 \). So \(p \mid b_0 \) or \(p \mid c_0 \), say \(p \mid b_0 \). Then \(p \mid c_0 \) since \(p^2 \mid a_0^* \). Some coefficient \(b_\ell \) of \(g \) is not divisible by \(p \). Suppose \(\ell \) is the integer such that

\[
p \mid b_i \quad \text{for} \quad i < \ell \quad \text{and} \quad p \not\mid b_\ell.
\]

Then \(\ell \leq r < n \) and \(p \mid a_\ell^* = b_0c_\ell + b_1c_{\ell-1} + \cdots + b_\ell c_0 \). So \(p \mid b_\ell c_0 \), which is a contradiction since \(p \) is prime, \(p \nmid b_\ell \) and \(p \nmid c_0 \). Therefore, \(f_1 \) must be irreducible in \(D[x] \).

Ex. Use Eisenstein’s Criterion to show that:

1. \(f = 2x^5 - 6x^3 + 9x^2 - 15 \in \mathbb{Z}[x] \) is irreducible in \(\mathbb{Z}[x] \).

2. Suppose \(R \) is a UFD. Then \(f = y^3 + x^2y^2 + x^3y + x \in R[x,y] \) is irreducible in \(R[x,y] \).

3. \(x^n - p \) and \(x^n + p \) are irreducible if \(p \in D \) is irreducible.

4. Let \(f_n(x) = (x^n - 1)/(x - 1) = x^{n-1} + x^{n-2} + \cdots + x + 1 \). Then \(f_n(x) \) is irreducible in \(\mathbb{Q}[x] \) (and \(\mathbb{Z}[x] \)) if and only if \(n \) is prime. (Hint: When \(n \) is prime, consider \(g_n(x) = f_n(x+1) \)).