Algebra I Homework One

Name:___________________

Instruction: In the following questions, you are requested to work out the solutions in a clear and concise manner. You may discuss the ideas with peers, but you should write down the solutions independently. Three questions will be randomly selected and checked for correctness; they count 50% grades of this homework set. The other questions will be checked for completeness; they count the rest 50% grades of the homework set. You should self-check the answers with those posted on the course website. Staple this sheet of paper as the cover page of your homework set.

1. (Section 0.7) Let \(S \) be a set. A choice function for \(S \) is a function from the set of all nonempty subsets of \(S \) to \(S \) such that \(f(A) \in A \) for all \(A \neq \emptyset, A \subset S \). Show that the Axiom of Choice is equivalent to the statement that every set \(S \) has a choice function.

2. (Section 0.8) Let \(A, B \) and \(C \) be sets such that \(B \) and \(C \) are disjoint and the cardinality numbers \(|A| = \alpha, |B| = \beta \) and \(|C| = \gamma \). Define \(\alpha^\beta \) to be the cardinal number of the set of all functions \(B \to A \). Recall that \(\beta + \gamma := |B \cup C| \) and \(\beta\gamma := |B \times C| \).
 (a) Show that \(\alpha^{\beta+\gamma} = (\alpha^\beta)(\alpha^\gamma); \ (\alpha\beta)^\gamma = (\alpha^\gamma)(\beta^\gamma); \ \alpha^{\beta\gamma} = (\alpha^\beta)^\gamma \).
 (b) If \(\alpha \leq \beta \), then \(\alpha^\gamma \leq \beta^\gamma \).
 (c) If \(P(A) \) is the power set of a set \(A \), then \(|P(A)| = 2^{|A|} \).

3. (Section 1.1) Write down a group table for the group \(D_4^* \), the group of symmetries of a square.

4. (Section 1.1) Prove that the symmetric group on \(n \) letters, \(S_n \), has order \(n! \).

5. (Section 1.2) If \(f : G \to H \) is a homomorphism of groups, then \(f(e_G) = e_H \) and \(f(a^{-1}) = f(a)^{-1} \) for all \(a \in G \). Show by example that the first conclusion may be false if \(G, H \) are monoids that are not groups.

6. (Section 1.2) Let \(f : G \to H \) be a homomorphism of groups, \(A \) a subgroup of \(G \), and \(B \) a subgroup of \(H \).
 (a) \(\text{Ker} \ f \) and \(f^{-1}(B) \) are subgroups of \(G \).
 (b) \(f(A) \) is a subgroup of \(H \).

7. (Section 1.3) If \(f : G \to H \) is a homomorphism, \(a \in G \), and \(f(a) \) has finite order in \(H \), then \(|a| \) is infinite or \(|f(a)| \) divides \(|a| \).

8. (Section 1.4) If \(H, K \) and \(N \) are subgroups of a group \(G \) such that \(H < N \), then \(HK \cap N = H(K \cap N) \).

9. (Section 1.5) If \(H \) is a cyclic subgroup of a group \(G \) and \(H \) is normal in \(G \), then every subgroup of \(H \) is normal in \(G \).

10. (Section 1.5) If \(f : G \to H \) is a homomorphism with kernel \(N \) and \(K < G \), then prove that \(f^{-1}(f(K)) = KN \). Hence \(f^{-1}(f(K)) = K \) if and only if \(N < K \).