4.3 36. SYLOW THEOREMS AND APPLICATIONS

The structures of finite abelian groups are well classified. The structures of finite nonabelian groups are much more complicated (Think about S_n, A_n, D_n, etc). Sylow theorems are very useful in studying finite nonabelian groups. Here we survey the classical results of Sylow theorems and apply them to examples.

Def 4.30. Let p be a fixed prime. A group G is a p-**group** if every element in G has order a power of p. A subgroup of a group G is a p-**subgroup** of G if the subgroup is itself a p-group.

Thm 4.31 (Cauchy’s Theorem). Let G be a finite group. Let p be a prime factor of $|G|$. Then G has a subgroup of order p.

Cor 4.32. A finite group G is a p-group if and only if $|G|$ is a power of p.

Proof by Cauchy’s Theorem. If $|G|$ is a power of p, then the order of every element g of G divides $|G|$. So the order of g must be a power of p. Thus G is a p-group.

If $|G|$ is not a power of p, then $|G|$ has another prime factor q. By Cauchy’s Theorem, there is a subgroup H of G of order q. Any nonidentity element in H has order q. So G is not a p-group.

Thm 4.33 (First Sylow Theroem). Let G be a finite group with $|G| = p^n m$ where $n \geq 1$ and the prime p does not divide m. Then

1. G contains a subgroup of order p^i for each i where $1 \leq i \leq n$.
2. Every subgroup H of G of order p^i is a normal subgroup of a subgroup of p^{i+1} for $1 \leq i < n$.

Ex 4.34. S_4 has order $4! = 24 = 2^3 \cdot 3$. By the first Sylow theorem, S_4 must contain subgroups of orders 2^i ($1 \leq i \leq 3$) and 3. In Example 8.10, D_4 is realized as a subgroup of S_4 (see page 80). We can easily find subgroups of S_4 of order 8 (D_4), 4, 2. The subgroup of S_4 generated by $(1,2,3)$ is a subgroup of order 3.

Ex 4.35. S_6 has order $6! = 720 = 2^4 \cdot 3^2 \cdot 5$. By the first Sylow theorem, S_6 must contain subgroups of orders 2^i ($1 \leq i \leq 4$), 3^j ($1 \leq j \leq 2$), and 5. Every subgroup of S_6 of order 4 must be a normal subgroup of certain subgroup of S_6 of order 8.

Ex 4.36. Every finite p-group is solvable.
Def 4.37. A *Sylow p-subgroup* P of a group G is a maximal p-subgroup of G.

If G is a finite group and $|G| = p^n m$ where $n \geq 1$ and the prime p does not divide m, then a Sylow p-subgroup of G is exactly a subgroup of G of order p^n.

Ex 4.38. With the correspondence in Example 8.10 (page 80), D_4 is a Sylow 2-subgroup of S_4. In S_6, a Sylow 2-subgroup has order 16; a Sylow 3-subgroup has order 9; a Sylow 5-subgroup has order 5.

Thm 4.39 (Second Sylow Theorem). Let p be a fixed prime factor of a finite group G. Then all Sylow p-subgroups of G are conjugate to each other. In other words, if P_1 and P_2 are both Sylow p-subgroups of G, then there exists $g \in G$ such that $P_2 = gP_1g^{-1}$.

Ex 4.40. The cyclic subgroups $\langle (1,2,3) \rangle$ and $\langle (1,4,2) \rangle$ are both Sylow 3-subgroups of S_4. They are conjugate to each other.

Thm 4.41 (Third Sylow Theorem). If G is a finite group and p divides $|G|$, then the number of Sylow p-subgroups is congruent to 1 modulo p and divides $|G|$.

Ex 4.42. Let N be the number of the Sylow 3-subgroups of S_4. Then $N \equiv 1 \pmod{3}$ and N divides $|S_4| = 24$. N can be 1 or 4. In fact, there are 4 Sylow 3-subgroups of S_4:

$$\langle (1,2,3) \rangle, \quad \langle (1,2,4) \rangle, \quad \langle (1,3,4) \rangle, \quad \langle (2,3,4) \rangle.$$

Ex 4.43 (Ex 36.13, p.326). If G is a group with $|G| = 15$, then G contains a normal subgroup of order 5. So G is solvable and is not simple.

4.3.1 Homework, Section 36, p.326-p.327

2, 3, 6, 11, 13.