1.7 Generating Sets and Cayley Digraphs

1.7.1 Generating Sets

Ex 1.81 (Ex 7.1, p68). The Klein 4-group \(V = \{ e, a, b, c \} \) is generated by \(\{ a, b \} \). It is also generated by \(\{ b, c \}, \{ c, a \}, \{ a, b, c \} \).

Ex 1.82. The generating sets of \(\mathbb{Z}_6 \).

Def 1.83. Let \(\{ S_i \mid i \in I \} \) be a collection of sets. Here \(I \) may be any set of indices. Then \(\bigcap_{i \in I} S_i \) is the set of all elements that are in all the sets \(S_i \); that is,

\[
\bigcap_{i \in I} S_i = \{ x \mid x \in S_i \text{ for all } i \in I \}.
\]

Ex 1.84. \(S_1 \cap S_2 \cap \cdots \cap S_n \).

Thm 1.85. If \(G \) is a group, and \(H_i \) is a subgroup of \(G \) for all \(i \in I \). Then \(\bigcap_{i \in I} H_i \) is a subgroup of \(G \).

Def 1.86. Let \(G \) be a group and let \(a_i \in G \) for \(i \in I \). The smallest subgroup of \(G \) containing \(\{ a_i \mid i \in I \} \) is the subgroup generated by \(\{ a_i \mid i \in I \} \).

If this subgroup is \(G \), then \(\{ a_i \mid i \in I \} \) generates \(G \), and \(\{ a_i \mid i \in I \} \) is a set of generators of \(G \). If \(G \) is generated by a set of finite elements then \(G \) is finitely generated.

Thm 1.87. If \(G \) is a group and \(a_i \in G \) for \(i \in I \), then the subgroup \(H \) of \(G \) generated by \(\{ a_i \mid i \in I \} \) has as elements precisely those of \(G \) that are finite products of integral powers of the \(a_i \), where powers of a fixed \(a_i \) may occur several times in the product.

1.7.2 Cayley Digraphs (omit)

Similar to group table, a Cayley digraph of a group \(G \) uses digraph to represent the multiplication relationship via a set of generators of \(G \).

1.7.3 Homework, I-7, p72-73

1, 3.

(opt) 19