1.6 Cyclic Subgroups

Recall: cyclic subgroup, cyclic group, generator.

Def 1.68. Let G be a group and $a \in G$. If the cyclic subgroup $\langle a \rangle$ is finite, then the order of a is $|\langle a \rangle|$. Otherwise, a is of infinite order.

1.6.1 Elementary Properties

Thm 1.69. Every cyclic group is abelian.

Thm 1.70. If $m \in \mathbb{Z}^+$ and $n \in \mathbb{Z}$, then there exist unique $q, r \in \mathbb{Z}$ such that

$$n = mq + r \quad \text{and} \quad 0 \leq r \leq m.$$

In fact, $q = \lfloor \frac{n}{m} \rfloor$ and $r = n - mq$. Here $\lfloor x \rfloor$ denotes the maximal integer no more than x.

Ex 1.71 (Ex 6.4, Ex 6.5, p60).

1. Find the quotient q and the remainder r when $n = 38$ is divided by $m = 7$.

2. Find the quotient q and the remainder r when $n = -38$ is divided by $m = 7$.

Thm 1.72 (Important). A subgroup of a cyclic group is cyclic.

Proof. (refer to the book)

Ex 1.73. The subgroups of $\langle \mathbb{Z}, + \rangle$ are precisely $\langle n\mathbb{Z}, + \rangle$ for $n \in \mathbb{Z}$.

Def 1.74. Let $r, s \in \mathbb{Z}$. The greatest common divisor (\gcd) of r and s is the largest positive integer d that divides both r and s. Written as $d = \gcd(r, s)$.

In fact, d is the positive generator of the following cyclic subgroup of \mathbb{Z}:

$$\langle d \rangle = \{nr + ms \mid n, m \in \mathbb{Z}\}.$$

So d is the smallest positive integer that can be written as $nr + ms$ for some $n, m \in \mathbb{Z}$.

Ex 1.75. $\gcd(36, 63) = 9$, $\gcd(36, 49) = 1$. (by unique prime factorization, or so)

Def 1.76. Two integers r and s are relative prime if $\gcd(r, s) = 1$.

If r and s are relative prime and r divides sm, then r must divide m.
1.6.2 Structure

Thm 1.77. Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomorphic to $\langle \mathbb{Z}, + \rangle$. If G has finite order n, then G is isomorphic to $\langle \mathbb{Z}_n, +_n \rangle$.

1.6.3 Subgroups of Cyclic Groups

The subgroups of infinite cyclic group \mathbb{Z} has been presented in Ex 1.73.

Thm 1.78. Let $G = \langle a \rangle$ be a cyclic group with n elements. A cyclic subgroup of $\langle a \rangle$ has the form $\langle a^s \rangle$ for some $s \in \mathbb{Z}$. The subgroup $\langle a^s \rangle$ contains n/d elements for $d = \gcd(s, n)$. Two cyclic subgroup $\langle a^s \rangle$ and $\langle a^t \rangle$ are equal if and only if $\gcd(s, n) = \gcd(t, n)$.

So given $\langle a \rangle$ of order n and $s \in \mathbb{Z}$, we have $\langle a^s \rangle = \langle a^d \rangle$ for $d = \gcd(s, n)$.

Thm 1.79. If $G = \langle a \rangle$ is a cyclic group of order n, then all of G’s generators are a^r, where $1 \leq r < n$ and r is relative prime to n.

Ex 1.80. The subgroup diagram of \mathbb{Z}_{24}.

1.6.4 Homework, I-6, p66-68

6, 13, 23, 44, 45, 50
(opt) 32, 49, 51, 52, 53.