Organismal Biology Test 3

Growth

- Primary growth: increase in length, primary plant body
 - Primary plant body: parts produced by primary growth
 - Green herbivorous
 - Meristems – zone of rapid mitosis
 - Apical: shoot, root
 - Initials and derivatives
 - 3 tissue systems

- Secondary growth: occurs 2nd year of life, secondary plant body
 - Increase in girth (gets wider)
 - Lateral growth
 - Woody
 - Meristems
 - Vascular cambium
 - Xylem to inside
 - Phloem to outside
 - Newest part right next to vascular cambium
 - Xylem is accumulated year after year, phloem is not
 - Count xylem for age
 - Cork cambium
 - Produces periderm (around trunk)
 - Development of secondary meristems
 - 1st year stem
 - Picture:
What is bark?
- Xylem is wood
- Vascular Cambium – meristem
- Secondary Phloem
- Periderm = complicated: 2 layers + meristem
 - Phelloderm
 - Phellogen = cork cambium
 - Phellum

What is Girdling?
- Kills the tree
- Cutting off a ring of bark
- Meristems are removed in the entire ring to where it won't grow back

Why are there rings in wood?
- Seasonal change
- Dormant + spring (rain) + water = BIG cells → then summer = dryer → then they stop = dormant & repeat
- Picture:
What is heart wood?
- In the center
- Older wood
- May or may not be functional
- Die but still alive

What is sap wood?
- New wood
- Functional

Plant Physiology= how?
- Plant hormones= organic chemical produced by plants in response to environment and produce response in other plant parts
 - Response to environmental influence
 - Stimulatory/inhibitory regulation
 - Allows plants to do right thing at right time

1. Auxins
 - Apical dominance
 - leaf abscission
 - increased mitosis
 - phototropism
 - Phototropism= plant bends to face light
 - Sun inhibits auxins
 - Up mitosis
2. Cytokinins
 - Influence cell division
 - oppose auxins
 - balanced growth
3. Ethylene
 - Fruit ripening
 - smallest hormone
 - same in every plant
 - can influence other plants
4. Abscisic Acid
 - Response to Stress and dormancy
 - Inhibits growth
5. Gibberellins
 - Cell division and elongation
 - Dwarfism – lack of gibber
 - Causes dwarfism when absent
Plant Behavior

- Response to environmental influence through hormones
- Tropisms = directional response (growth) to environmental stimulus
 - Phototropism: light
 - Positive (usually) – heliotropism
 - Negative = scototropism (rare)
 - Heliotropism = tracking movement of sun
 - Ex: sunflowers
 - Positive
 - Tortilifoliation = twisting of leaves
 - Gravitropism = plant stems grow up (negative), roots grow down (positive)
 - Hydrotropism = water response
 - Thigmotropism = touch; twining
 - Reduces growth rate
 - Jasmine

Nastic Movements

- Non-directional = nasty
- Nyctinasty
 - Night
 - In response to darkness
 - Prayer plant
- Thigmonasty
 - In response to touch
 - Venus Fly Trap

Kingdom Fungi

- Heterotrophic – not capable of making their own food
 - Exoenzymes – feeding takes place on the outside of their body
 - Absorptive – no indigestion
 - Decomposers – feed on dead organisms
 - Saprobic
 - Parasitic/pathogenic – feed on living organisms
 - Mutualists – each get a benefit; host & dependent

Sessile: No movement (most)

- Some with flagellate spores
- Growth
- Spore dispersal

Zygotic meiosis– haploid organism

- Syngamy
 - Plasmogamy → n + n = dikaryotic cells
 - Plasmogamy + karyogamy = 2n = zygote
• Single-celled
 o Ex: yeast
 o Budding
• Multicellular – most fungi
 o Hypha (-ae)
 ▪ Septate= with divisions between cells
 ▪ Nonseptate= no divisions
 ▪ Nonseptate=coenocytic
 o Mycelium
 o Haustoria=specialized cells that allow fungi to penetrate host cells
 ▪ Mycorrhizae
 o Spores= variety
 ▪ Used for dispersal and dormancy
 ▪ n, 2n
 ▪ single cells, some multi
 ▪ asexual/sexual
• Phylum Chytridiomycota
 o Aquatic fungi with flagellated zoospores including parasites of amphibian skin
 o Only group with motile spores (zoospores)
• Phylum Zygomycota
 o means “cat” bc mushrooms
 o Bread molds, sugar molds, and pin fungi
 o Thick-walled dormant zygospores
 o Spores → inside spore containers
 ▪ Yolk fungi
 o Terrestrial
 o Has zygosporangium that contains zygospores
• Phylum Glomeromycota
 o Arbuscular mycorrhizae (most)
 ▪ Tree-like fungus roots
 ▪ Have structures that penetrate host cells and look like trees
• Phylum Ascomycota
 o The sac fungi
 o Asexual spores= conidia
 o Sexual spores= ascospores
 o Ascocarp
 ▪ Ascus
 • Ascospores
 o Conidium
 ▪ Asexual spores
 o Morel
- Bread yeast, brewer’s yeast
- Dutch elm disease, chestnut blight
- Ringworm
- Truffles- smells like hogs breath; hard wood trees in Europe
- **Claviceps purpurea**
 - Ergot/ergotism
 - LSD is made from this
 - St. Anthoney’s
- Life Cycle of an Ascomycota:
- **Phylum Basidiomycota** – “club fungi”
 - Club fungi
 - Mushrooms and toadstools
 - No asexual spores, no gametangia
 - Sexual spores = basidiospores
 - Basidium – 4 spores on the outside
 - Toadstools = poisonous
 - Life cycle:

- **Lichens** – group of fungi (2 phyla)
 - Composite organisms
 - Photobiont and mycobiont
 - Mutualism
 - Crustose
 - Foliose
 - Leaf-like
 - Fruticose
 - Most common
- **Imperfect fungi** – group of fungi – may not all be related
 - No sexual stages known
 - *Aspergillus niger*
 - Causes black mold; common food contaminant
 - Trichophyton sp.
 - Causes athlete’s foot
Kingdom Flanimalia

- Metazoa (not Protozoa)
- Multicellular
- Movement= locomotory structures
 - Some sessile
- Heterotrophic (consumes food)
 - Ingest → digest → egest
 - Some with symbiosis
- No cell walls
- Gametic meiosis
 - Asexual and/or sexual reproduction
- Evolutionary Trends:
 - 1. Level of Organization
 - Protoplasmic
 - Cellular
 - Tissue
 - Organ and organ system
 - 2. Symmetry
 - Asymmetry
 - Rare
 - Occurs in sponges
 - Radial
 - Associated with animals that don’t move much
 - Biradial=bilateral + radial
 - Bilateral
 - Associated with more locomotion
 - Cephalization=development of heads
 - Secondary radial symmetry
 - 3. Body Cavity
 - Acoelomate= without body cavity
 - Pseudocoelomate= no true body cavity
 - In smaller animals
 - Simple, not large cavity
 - Eucoelomate with peritoneum
 - Most animals
 - 4. Embryological development
 - Picture:
5. Metamerism = segmentation
 - Repeating body parts
 - Tagmosis

6. Ecdysis
 - Molting
 - “ecdysozoa” = one of the three main lineages of bilaterian animals; animals that molt (shed)

7. Larval types, feeding structures
 - “Lophotrochozoa” = one of the three main lineages of bilaterian animals; organisms that have lophophores or trophophore larvae

Basal Metazoa (= Animalia)
 - Basal = sponge – “beginning”

Organism of the week:
 - Cliona celata – the boring sponge
 - Bioerosion – function: speeding up of calcium carbonate
 - Hard sponge – sclerosponges, hard, calcareous

- Phylum Porifera
 - Sponges cellular level of organization
 - Lack of symmetry – asymmetry
 - Sessile adults
 - No structures for locomotion
 - Cells unattached in sponges
 - No tissues (only group without tissues)
 - Matrix – mesophyl (with cells and skeleton imbedded)
 - Gel like substance secreted by cells
 - Cell types
 - Choanocytes
 - Respiration
 - Waste removal
 - Filter feeding

Picture:

- Cell Types:
 - Choanocytes
 - Archaeocytes
- Function: food transfer
- Ameboid shape – flexible
- secreting skeleton
- totipotent – grow back
 - Porocytes
 - Not found anywhere else
 - Cells that make up spores
 - Tubular shape
 - Ostium: in simple sponge- opening for water entry
 - Water movement
 - Smallest
 - Picture:

- Pinacocytes
 - Found on external surface (covers surface)
 - Thin and flat
 - Also internal: maintain shape of canals

- Skeleton:
 - Organic fibers
 - Collagen
 - Sponging – protein fibers
 - Inorganic spicules
 - Hard; made of silicon dioxide or calcareous – calcium carbonate
 - Silicious – glass like
 - Triaxons:
 - Hexactines:

- 3 body types
 - Simple (ascon)
 - Single osculum
• Choanocytes line spongocoel
• Porocytes form ostia
 ▪ Intermediate (sycon)
 • Single osculum
 • Choanocytes line flagellated chambers
 • Ostia lead to incurrent canals
 • Prosopyles
 • LARGE sponges
 ▪ Complex (leucon)
 • Multiple oscula
 • No spongocoel (atrium)
 • Incurrent & excurrent canals
 • Prosopyles & apopyles

Picture:

- Aquiferous systems: trace water flow through structures
- **Class Calcarea**
 - Named by calcareous spicuals
 - All marine
 - All small
 - May exhibit any of 3 body types
- **Class Hexactinellida**
 - “glass sponges” – silicious spicuals
 - Spongicola – sponge loving shrimp
 • Symbiosis – only benefit to one side
 • + 0 (plus zero)= commen salism
 - Sycon
- **Class Demospongiae** – largest of them all!!!
- Spongy & fibers
- Silicious spicuals
- Leucon (all)
- Freshwater sponges
 - Environment changes
 - Winter = harsh – set aside dormant
- Gemmules
 - Dormancy + dispersal
 - Matrix: mesophyll – holds it all together

Phylum Ctenophora
- Ctenophora – sister vs. Porifera – sister hypotheses (an unsettled debate)
 - Basal
 - Ctene = “cone like” = 8 ctene rows
 - Bioluminescence
 - Irridescence
 - Biradial symmetry
 - Diploblastic -2 layers of tissues
 - Ctenes & colloblasts
 - Ctenes used in locomotion & feeding
 - Contractile – not bendable
 - Many transparent & bioluminescent
 - Ctenophoran diversity
 - 200 + species
 - 2 classes (with and without tentacles)
 - Most plankton

Organism-of-the-week:
- **Species:** *Grammostola rosea*
 - Rose hair tarantula
- **Genus:** *Grammostola*
- **Family:** Theraphosidae
- **Order:** Aranea
- **Class:** Arachnida
- **Phylum:** Arthropoda
- **Kingdom:** Animalia
- **Domain:** Eukarya
- **Characteristics:**
 - Chelicera-first pair of clawlike feeding appendages characteristic of chelicerates
 - Pedipalps – second pair of appendages
 - Mouth accessories
 - Spinnerets
 - Urticating hairs- not in other spinder
Super Phylum Radiata

- Phylum Cnidaria
 - Radial symmetry
 - Diploblastic = 2 layers of tissue in embryo
 - Tissue level of organization - no organs
 - 2 developmental body forms: polyp and medusa
 - Mouth
 - Hypostome or manubrium
 - Tentacles
 - Body column or bell
 - Attached or unattached pedal disc
 - Thick or thin mesoglea
 - Words of position: oral and aboral
 - Simple gut — only one opening (no complex development)
 - Medusa = capable of sexual reproduction (mature) — final stage of maturity
 - Polyp = asexual reproduction only — normal stage to find
 - When medusa is lost, polyp undergoes sexual and asexual reproduction
 - epidermis, mesoglea, gastrodermis, gastrovascular cavity
 - epidermis comes from embryonic ectoderm
 - gastroderm comes from embryonic endoderm
 - gastroderm lines the gut
 - mesoglea = layer between epidermis and gastroderm
 - mesoglea = glue-like noncellular layer (not a tissue)
 - gastrovascular cavity = gut (simple gut)
 - Develops from gastalation
 - Digestion
 - Nutrients & wastey hormones are distributed
 - Fluid filled — hydrostatic
 - Pressurized
 - hydrostatic skeleton
 - Medusa:
 - Unattached
 - Jelly: mesoglea = thick
 - Bell
 - Manubrium
 - Planktonic
 - Think mesoglea
 - Thinner gastrovascular cavity
 - Polyp:
 - Attached
- Body column
- Hypostome → becomes manubrium
- Pedal disc
- Thin mesoglea

○ Cnidocytes with nematocysts
 ▪ Cnidocytes are stinging cells
 ▪ Comes only from Cnidea
 ▪ Nematocysts deliver the sting
 • Eversible = turns inside out

○ Germ layers of embryo
 ▪ Ectoderm = outer → becomes epidermis
 ▪ Endoderm = inner → becomes gastrodermis

○ **Class Hydrozoa**
 ▪ Hydra = genus, chlorohydra, and others
 • Polyp predominates
 ▪ Why is chlorohydra green?
 • Green alga living within tissues
 • Lives of these animals depend on the alga
 ▪ Budding: form of asexual reproduction in polyp
 ▪ Colonial polyps with polymorphism
 • Portugese man-o-war (venomous)
 • Blue Button
 • By-the-wind sailor
 • Jelly fish = medusa
 • Stinging colony
 • Axial polyps = pneumatophore
 ○ Gastrozooids = feeding polyps - stomach
 ○ Gonozooids = reproductive polyps
 ○ Dactylozooids = stinging polyps
 ▪ **Craspedacusta sowerbyi** - freshwater jellyfish
 • not a member of true class
 ▪ Larva of cnidarians = planula
 ▪ Colony = gastrozooids and gonozooids

○ **Class Scyphozoa**
 ▪ Scyphozoan life cycle:
 • Egg and sperm
 • Lava = Planula
 ○ Characteristics of all Cniderans
 ○ Short distance dispersal
 • Scyphistoma
 • Strobila
- Ephyra → 8 lappets → young medusa (snowflake looking)
- Medusa
 - *Cyanea gigantean* – giant jellyfish
 - Upside-down jellyfish - sunlight
 - Thimble jellies
 - Stalked jellies
- **Class Cubozoa**
 - Box jellyfish
 - *Chironex fleckeri* = sea wasp
 - extremely potent venom
 - strong swimmers that overtake prey
 - Austrailia
 - Strong swimmers
 - deadly
- **Class Anthozoa**
 - Anemones = solitary, no skeleton
 - Anthro = flower
 - Corals = colonial, produces exoskeleton
 - Largest class of Cnidaria
 - all lack medusa
 - sexual & asexual due to absence
 - polyp only
 - capable of both asexual and sexual reproduction
 - largest polyp
 - body wall folded for support and to divide gastrovascular cavity
 - septum
 - pharynx → just inside mouth (tube within a tube)
 - gastrovascular cavity is divided into separate compartments
 - *Fungia sp.*
 - Solitary coral, mushroom coral
 - Other stony corals → colonial
 - Soft corals, gorgonians
 - Called gorgonians because they have the protein gorgonian dominant in their exoskeleton

Super Phylum Bilateria
- No body cavity
- Bilateral symmetry
- Lophotrochozoa
- Platyzoa
- **Phylum Platyhelminthes**
 - Flat worms
- Triploblastic
- Acoelomate
- Protostome= “first mouth”; formed from first opening called the blastophore
- Organs and organ systems
- “acoelomate bilateria”
- **Class Lophotrochozoans**
 - Named for two common characteristics:
 - Lophophore= a feeding structure with tentacles for filter feeding
 - A possible remnant from larval stage
 - A distinct larval stage called a trochophore
- Why are Platyhelminthes flat?
 - The bigger they are the flatter they are
 - They are flat because they are acoelomate
 - Lack a body cavity
 - They only have 1 maximum distance that materials can be transported across solid tissue
- Ribbon worms
- Tape worms
- Digestive System:
 - Gastrovascular cavity (usually branched)
 - Pharynx
- Excretory System:
 - Osmoregulation
 - Protonephridium
 - Flame cells, ducts, nephriodiopores
 - For osmoregulation
 - Kidney-like
 - Fresh water – plananon anatomy
 - Flame cells excrete water with waste
- Nervous system:
 - Ganglia, cords, sensory structures (ocellus and auricles)
 - Auricles= ears, but they smell not hear
 - Ocellus = eye spots
 - Development of head=cephalization
- Regeneration: recover from wounding; reproduce asexually
- Neoblast, blastema
 - Neoblast=totipotent
- Reproductive system: most are monoecious
- **Class Turbellaria**
 - Planarians= flat or leaf-like
Most are free-living
- Only class that includes free-living
- Largest = marine form

Class Trematoda
- Flukes
- Digenia (two generations or two hosts)
 - Including: schistosomes
 - Blood flukes
 - Swimmer’s itch
 - No rediae, no metacercaria
- 1. Adult in human liver
 - capable of sexual reproduction through cell fertilization
 - eggs released in feces
 - get to gut through bile duct
- 2. Eggs hatch in fresh water → miracidium larva (first larval stage)
- 3. Eaten by snail → sporocyst (2nd larval stage)
 - Schizogony – capable of divisions into many (could be 1,000)
- 4. Redia
 - 3rd larval stage
 - Schizogony
 - Asexual reproduction
- 5. Cercaria (4th larval stage)
 - Exit snails body
 - Temporarily free-living
 - One function: find a host (fish)
 - Burrow into fish
- 6. Metacercariae-
 - dormant
 - Encyst: Bladder-like covering
- 7. Eaten by human
 - Then starts all over with number 1
 - Could develop into adult if eaten by human → end up in gut → blood

- Host → Host = environmental conditions
 - Fecal water
 - Snail & fish present
 - Human eat uncooked fish

- Cestoda – tapeworms
 - Scolex – consist of acetabula/ suckers
 - For host attachment
- Beef tapeworm – Taema Saginatus
 - Cows
- Largest tapework = 75ft
- No gut
- Microtiches = small hairs increase that increase surface area
- Bud = proglottids
 - Youngest: immature
 - Mature
 - Gravid
 - Chain – longitudily = strobila
 - Scolex + Stobila
- L.C
 - 1. Grand proglottids
 - Fecal contamination
 - 2. Eaten by cows
 - 3. Hatch into oncosphere (larva stage)
 - 4. Burrow in gut wall and end in circulatory system; encyst (becomes part of bladder – dormant) in muscle tissue
 - 5. Cysticercus L = bladderworm
 - Inside out scolex (young tapeworm)
 - 6. Eaten by human (under cooked)
 - Everts scolex, attaches, strobilizes
- Acoelomate bilateria (cont.)
- **Phylum Nemertea** – proboscis worms, ribbon worms
 - Rhynchocoel – snout cavity – lined with circular muscles to push proboscis out
 - Complete gut – 2 openings (mouth and anus)
 - True circulatory system
 - Lineus longissimus – the bootlace worm – longest animal

Picture:

Animals with body cavity
- Lophotrochozoa
 - **Phylum Annelida** – segmented worms
 - Protostomes, eucelomate, trophophore larvae
 - Metamerism – somites
 - Repetition of organs
 - EX: metanephridia
 - Metanephridium
 - Nephrostome – mouth like
 - Post septal coiled tubule, capillary network
 - Nephridiopore
 - **Class Oligochaeta** – “relatively few”
 - Clitellum – mucus production for mutual sperm transfer and cocoon formation
 - Sperm groove
 - Gonopore
 - **Class Polychaeta**
 - Errant & sedentary marine worms
 - Nereis – sandworms
 - Parapodia – leg on the side (lateral projections)
 - Sea mouse
 - Errant
 - Chaetopterus
 - Parachment tubeworm
 - Sedentary
 - Heteronomy – segments are different depending on region bc parapodia are different
 - Sabellids- feather duster fan worms
 - Sedentary
 - Radioles – extremely long and feathery; move particles to mouth for filter feeding
 - Lugworm – Arenicola
 - Sedentary burrow castings
 - Palolo – Eunice viridis
 - Errant
 - Epitoky
 - Negative phototaxis – atoke
 - Positive phototaxis – epitoke
 - Strobili
 - Sexually mature
 - Synchronous swarming
 - External fertilization
 - **Class Hirudinea**
- Parasitic & predaceous leeches
- Ectoparasitic – feeds on larger animals
- Half and half
- Hirudo medicinalis – medical leech
 - Stylets within anterior suckers
 - Mouth parts
 - Can puncture capillaries
 - Salivary secretions
 - Anaesthetic
 - Anticoagulant – prevent clotting
 - Most famous: hypouden
 - Heart drug
 - Antiseptic – kills bacteria