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5.8 More on Triple Integrals

As we would expect, there is a change of variable theorem for solid
integrals that is quite similar to the one for surface integrals.

(x, y, f(x, y))

(x, y, g(x, y))

(x, y, 0)

Figure 1.a Two bounding
functions over a surface in the
xy–plane.

S

D

Figure 1.b A solid bounded
between two functions over a
surface in the xy–plane.

Theorem 1 (Change of Variables) Let P and Q be simple
solids, and let ~h be a continuous function from P to Q such that:

(a) ~h is one-to-one on the interior of P ;

(b) J(~h(~r)) is continuous; and

(c) J(~h(~r)) 6= 0 on the interior of P.

If f is a continuous function from Q into R, then∫∫∫
Q
f dV =

∫∫∫
P
f(~h(~r))J(~h(~r)) dV.

We can use the change of variables theorem to derive some for-
mulas for integrating over certain types of solids without having to
resort to parametrizations for the solid.

Theorem 2 Suppose that S is a surface in xy–space and that f
and g are defined on S such that f(x, y) > g(x, y) for all (x, y) in
S, and f and g have continuous first partial derivatives on S. The
set of points (x, y, z) satisfying the conditions that (x, y) is in S
and g(x, y) ≤ z ≤ f(x, y) defines a solid D (see Figure 1). If ρ is
a continuous function on D, then∫∫∫

D
ρ dV =

∫∫
S

∫ f(x,y)

g(x,y)
ρ(x, y, z) dz dS.

Proof: Let ~h be a parametrization for S with domain the rectangle
bounded by a ≤ u ≤ b and c ≤ v ≤ d.

First, we prove the theorem for the special case that f(x, y) =
1 and g(x, y) = 0. Let V be the resulting solid. Let ~h(u, v) =
(x(u, v), y(u, v)) be a parametrization for S with domain the rect-
angle bounded by a ≤ u ≤ b and c ≤ v ≤ d. Let B be the box
bounded by the planes u = a, u = b, v = c, v = d,w = 0, and w = 1.
Let ~s be the function from B into V defined by

~s(u, v, w) =

 x(u, v)
y(u, v)
w

 .
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It is easily verified that J(~s(u, v, w)) = J(~h(u, v)). Thus∫∫∫
V
ρ dV =

∫ d

c

∫ b

a

∫ 1

0
ρ(u, v, w)J(~s(u, v, w)) dw du dv

=
∫ d

c

∫ b

a

∫ 1

0
ρ(u, v, w)J(~h(u, v)) dw du dv

=
∫∫

S

∫ 1

0
ρ(u, v, w) dw dS.

For the general case of the theorem, let g and f be arbitrary
functions satisfying the conditions of the theorem, and let D be the
resulting solid. Let ~r be the function defined by

~r(x, y, t) =

 x
y

g(x, y) + t[f(x, y)− g(x, y)]

 .

It is a straightforward computation to show that ~r(x, y, t) takes the
solid V (defined in the argument of the special case) onto the solid
D, that J(~r(x, y, t)) = [f(x, y) − g(x, y)], and that ~r satisfies the
conditions of the Change of Variable Theorem. Therefore, we have
from Theorem 1 that∫∫∫

D
ρ dV =

∫∫∫
V
ρ(~r(x, y, t))J(~r(x, y, t)) dV

=
∫∫

S

∫ 1

0
ρ(x, y, g(x, y) + t[f(x, y)− g(x, y)])

[f(x, y)− g(x, y)]dt dS.

Letting u(t) = g(x, y)+t[f(x, y)−g(x, y)], we see that du
dt = f(x, y)−

g(x, y), u(0) = g(x, y), and u(1) = f(x, y). Thus∫∫∫
D
ρ dV =

∫∫
S

∫ f(x,y)

g(x,y)
ρ(x, y, u) du dS.

EXAMPLE 1: Let D be the solid bounded between the graphs
of z = y, z = −y, and x2 + y2 = 1 and such that y ≥ 0. Calculate∫∫∫

Dz
2 dV .

Solution: If we let S be the half disc parametrized by

~r(ρ, θ) = (ρ cos(θ), ρ sin(θ)) , 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π,
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then D is the set of points (x, y, z) bounded by the graphs of z = y
and z = −y such that (x, y) is in S. See Figures 2a and 2b. Applying
Theorem 1, we have

z=y

z=–y

x
y

z

Figure 2.a The bounding
graphs for the solid in
Example 1.

x

y

z

Figure 2.b The solid in
Example 1.

∫∫∫
D
z2 dV =

∫∫
S

∫ y

−y
z2dz dS =

∫∫
S

2
y3

3
dS

=
2
3

∫ π

0

∫ 1

0
r3 sin3(θ)r dr dθ

=
2
15

∫ π

0
sin3(θ) dθ

=
2
15

∫ π

0
(1− cos2(θ) sin(θ) dθ let u = cos(θ)

=
2
15

∫ u=−1

u=1
1− u2du =

4
45
.

EXAMPLE 2: Let S be the triangle in xy–space with vertices
(0, 1), (1, 0), and (0, 0). Let f(x, y) = y2 and g(x, y) = 0. Let D be the
solid consisting of the points (x, y, z) satisfying the conditions that
(x, y) is in S and 0 ≤ z ≤ y2 (See Figure 3). Calculate

∫∫∫
Dxyz dV.

Solution: By Theorem 1,

x

y

z

Figure 3. The solid in
Example 2.

∫∫∫
D
xyz dV =

∫∫
S

∫ y2

0
xyz dz dS

=
∫∫

S
xy
z2

2

∣∣∣∣z=y2
z=0

dS =
∫∫

S
x
y5

2
dS.

S is the surface in xy–space that is bounded by the lines y = 1−x,
the x–axis and the y–axis. Thus

∫∫
S
x
y5

2
dS =

∫ 1

0

∫ 1−x

0
x
y5

2
dy dx =

∫ 1

0
x
y6

12

∣∣∣∣y=1−x

y=0

dx

=
1
12

∫ 1

0
x
(
1− 6x+ 15x2 − 20x3 + 15x4 − 6x5 + x6

)
dx

=
1

672
.

EXAMPLE 3: Let S be the surface in xy–space bounded by the
x–axis, the line x = 1, and the graph of y = x2, and let V be the
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solid containing the points (x, y, z) that satisfy the conditions that
(x, y) is in S and 0 ≤ z ≤ x + y. Figures 4.a and 4.b display two
views of S.

(a) Compute the volume of V ; and

(b) Compute
∫∫∫

V (x+ y + z) dV.

x

z

y

Figure 4.a The solid in
Example 3 viewed from the
negative side of the xz–plane.

x
y

z

Figure 4.b The solid in
Example 3 viewed from the
positive side of the xz–plane.

Solution:

(a) The volume of V is given by

∫∫∫
V
dV =

∫∫
S

∫ x+y

0
dz dS

=
∫∫

S
(x+ y) dS =

∫ 1

0

∫ x2

0
(x+ y) dy dx

=
∫ 1

0

(
x3 +

x4

2

)
dx =

1
4

+
1
10

=
7
20
.

(b)

∫∫∫
V

(x+ y + z) dV =
∫∫

S

∫ x+y

0
(x+ y + z) dz dS

=
∫ 1

0

∫ x2

0

∫ x+y

0
(x+ y + z) dz dy dx

=
∫ 1

0

∫ x2

0

(
xz + yz +

z2

2

) ∣∣∣∣z=x+y
z=0

dy dx

=
∫ 1

0

∫ x2

0

(
2x2 + 4xy + 2y2

)
dy dx

=
∫ 1

0

(
2x2y +

4xy2

2
+

2y3

3

) ∣∣∣∣y=x2

y=0

dx

=
∫ 1

0

(
2x4 + 2x5 +

2x6

3

)
dx =

29
45
.
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Useful Observation

Examples 2 and 3 point toward a general situation where the prob-
lem of parametrizing certain types of solids can be avoided entirely.
If

(a) a and b are numbers such that a < b.

(b) f and g are functions defined on a subset of the real numbers
such that

(i) for each x between a and b, we have g(x) < f(x); and

(ii) the set of points in xy–space bounded by the graphs
of f and g and the lines x = a and x = b is a simple
surface S.

(c) F and G are real valued functions defined on the surface S
such that:

(i) for each (x, y) in the interior of S, we have that
G(x, y) < F (x, y); and

(ii) the set of points in xyz–space satisfying a ≤ x ≤
y, g(x) ≤ y ≤ f(x), and G(x, y) ≤ z ≤ F (x, y) is a
simple solid V ,

then

∫∫∫
V
ρ(x, y, z) dV =

∫∫
S

∫ F (x,y)

G(x,y)
ρ(x, y, z) dz dS

=
∫ b

a

∫ f(x)

g(x)

∫ F (x,y)

G(x,y)
ρ(x, y, z) dz dy dx.

EXAMPLE 4: Describe the solid that is the domain of the inte-
gral

∫ 1

0

∫ x2

0

∫ 1+x+y

sin(xy)
f(x, y, z)dz dy dx.
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Solution: The integral∫ 1

0

∫ x2

0

∫ 1+x+y

sin(xy)
f(x, y, z)dz dy dx

is of the form ∫∫
S

∫ 1+x+y

sin(xy)
f(x, y, z)dz dy dx,

where S is the region in the plane bounded by the x–axis and the
graphs of x = 1 and y = x2. The solid is bounded above by the graph
of f(x, y) = 1 + x+ y and below by g(x, y) = sin(xy). Thus the solid
is the set of points (x, y, z) such that sin(xy) ≤ z ≤ (1 + x + y),
0 ≤ x ≤ 1 and 0 ≤ y ≤ x2. See Figure 5.

z=1+x+y

z=sin(xy)

The surface
in the planex

y
z

Figure 5. The bounding
surfaces for the solid in
Example 4.

EXAMPLE 5: The integral∫ 1

0

∫ z2

−z

∫ y+z

0
f(x, y, z)dx dy dz

is of the form ∫∫
S

∫ y+z

0
f(x, y, z)dx dS.

In this case, the surface S is the region in the yz–plane bounded
between the graphs of y = −z, y = z2 + 1 and the lines z = 0 and
z = 1. The point (x, y, z) is in the domain of the integral provided
0 ≤ z ≤ 1, −z ≤ y ≤ 1 + y2, and 0 ≤ x ≤ y + z. The bounding
surfaces and the solid are illustrated in Figure 6.

x 
y

zx=y+z
The set S in 
the yz-plane

Figure 6.a The bounding
surfaces for the domain of the
integral in Example 5.

x

y

z

Figure 6.b The domain of
the integral in Example 5.

In general:

An expression of the form
∫
S

∫ β
α f(x, y, z)dz dS only makes sense

if S is a surface in the xy–coordinate plane. α and β must be
functions of x and y.
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An expression of the form
∫
S

∫ β
α f(x, y, z) dy dS only makes

sense if S is a surface in the xz–coordinate plane. α and β
must be functions of x and z.

An expression of the form
∫
S

∫ β
α f(x, y, z) dx dS only makes

sense if S is a surface in the yz–coordinate plane. α and β
must be functions of x and z.

EXAMPLE 6: The expression
∫ 1
0

∫ 1
−x
∫ z
0 dz dy dx does not make

sense. This would be expected to be an integral of the form
∫
S

∫ β
α f(x,

y, z)dz dS. However, β is not a function of x and y.

EXERCISES 5.8

In Exercises 1–4, evaluate the triple integral.

1.
∫ 1

0

∫ 0

−z

∫ z

−y

dx dy dz.

2.
∫ 1

−1

∫ z

0

∫ z2

x+z

x dy dx dz.

3.
∫ 1

0

∫ x2

−x

∫ y+x

0

x+ y dz dy dx.

4.
∫ 1

0

∫ y2

y3

∫ y

−x

xy dz dx dy.

In Exercises 5–9 the integral is of the form∫∫
S

∫ G(y,z)

F (y,z)
f(x, y, z) dx dS,

∫∫
S

∫ G(x,z)

F (x,z)
f(x, y, z) dy dS,

or
∫

S

∫ G(x,y)

F (x,y)
f(x, y, z) dz dS. Describe the set S and

determine which of the coordinate planes it is in.

5.
∫ 1

0

∫ 2

0

∫ 2

−1

f(x, y, z) dx dy dz.

6.
∫ 1

0

∫ 0

−z

∫ z

−y

f(x, y, z) dx dy dz.

7.
∫ 2

0

∫ 2+x2

−x

∫ x+y

−y

f(x, y, z) dz dy dx.
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8.
∫ 2

0

∫ 2+x2

−x

∫ x+z

−x

f(x, y, z) dy dz dx.

9.
∫ 2

0

∫ 2+z2

−z

∫ y+z

−z

f(x, y, z) dx dy dz.

In Exercises 10–15, f(x, y, z) is a continuous function.
Determine whether the expression makes sense. If the
expression is integrable, describe the domain of the in-
tegral.

10.
∫ 1

0

∫ 0

−z

∫ z

−y

f(x, y, z) dx dy dz.

11.
∫ 1

0

∫ 0

−z

∫ z

−y

f(x, y, z) dz dx dy.

12.
∫ 1

0

∫ 0

−z

∫ z

−y

f(x, y, z) dy dx dz.

13.
∫ 1

0

∫ 0

−z

∫ x+y+z

0

f(x, y, z) dx dy dz.

14.
∫ 1

0

∫ 0

−z

∫ y+z

−y2
f(x, y, z) dz dy dx.

15.
∫ 1

0

∫ 0

−z

∫ y+x

−y2
f(x, y, z) dx dy dz.

In Exercises 16–22, find the volume of the solid V con-
sisting of all points (x, y, z) such that (x, y) is in the
surface S in xy–space and G(x, y) ≤ z ≤ F (x, y).

16. S is the region bounded by the x–axis, the graph
of y = x2, and the line x = 2. G(x, y) = −x and
F (x, y) = x+ y.

17. S is the region bounded by the graphs of y = x2

and y = −x2, and the line x = 2. G(x, y) = −x
and F (x, y) = x+ y.

18. S is the region bounded by the graphs of y = x
and y = x2. G(x, y) = −xy and F (x, y) = x2.

19. S is the region bounded by the circle x2+y2 = 1.
G(x, y) = 0 and F (x, y) = 2− x.

20. S is the parallelogram with two adjacent edges
the line segments [ ~A, ~B] and [ ~A, ~C], where ~A =
(0, 0), ~B = (1, 1), and ~C = (1, 2). G(x, y) = −2
and F (x, y) = x+ y.

21. S is the parallelogram with two adjacent edges
the line segments [ ~A, ~B] and [ ~A, ~C], where ~A =
(0, 0), ~B = (1, 1), and ~C = (1, 3). G(x, y) = x−y
and F (x, y) = x2 + y + 1.

22. S is the triangle with vertices ~A = (0, 0), ~B =
(1, 1), and ~C = (1, 2). G(x, y) = −2 and
F (x, y) = x+ y.

Find the volume of the solid V in Exercises 23–
28.

23. S is the surface in xz–space bounded by the x–
axis, the graph of z = x2, and the line x = 2. V
is the set of points (x, y, z) such that (x, z) is in
S and −x ≤ y ≤ x+ z.

24. S is the surface in yz–space bounded by the y–
axis, the graph of z = y2, and the line y = 2. V
is the set of points of (x, y, z) such that (y, z) is
in S and −y ≤ x ≤ y + z.

25. S is the region in xz–space bounded by the
graphs of x = z2, x = −z2, and the line z = 2.
V is the set of points (x, y, z) such that (x, z) is
in S and −z ≤ y ≤ z.

26. S is the region in yz–space bounded by the
graphs of y = z2 and y = 8 − z2. V is the set
of points (x, y, z) such that (y, z) is in S and
−y ≤ x ≤ y.

27. S is the triangle in yz–space with vertices
(1, 0), (2, 2), and (3, 1). V is the set of points
(x, y, z) such that (y, z) is in S and −y ≤ x ≤ z.

28. S is the set of points in xz–space satisfying x2

4 +
z2 ≤ 1, and V is the set of points (x, y, z) such
that (x, z) is in S and 0 ≤ y ≤ x+ 5.

In Exercises 29–33, find the volume of the solid
bounded by the graphs (in xyz–space) of the given equa-
tions.

29. y = x2, y + z = 1, and z = 0.

30. x+ y + z = 1 and the three coordinate planes.

31. z = x2, z = 1− x2, y = 0, and y = z.

32. x2 + y2 = 1 and y2 + z2 = 1.
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33. x2 + y2 − 1 = z and 1− x2 − y2 = z.

In Exercises 34–40, calculate
∫∫∫

V
f(x, y, z) dV .

34. V is defined in Exercise 16, f(x, y, z) = x.

35. V is defined in Exercise 16, f(x, y, z) = xy.

36. V is defined in Exercise 17, f(x, y, z) = x+y+z.

37. V is defined in Exercise 20, f(x, y, z) = x2 + y2.

38. V is defined in Exercise 22, f(x, y, z) = xy + z.

39. V is defined in Exercise 23, f(x, y, z) = x+y+z.

40. V is defined in Exercise 25, f(x, y, z) = x+y+z.


