
Introduction to Vector Calculus

Phillip Zenor
Department of Mathematics

Auburn University

Edward E. Slaminka
Department of Mathematics

Auburn University

Donald Thaxton
Department of Physics

Auburn University

October 15, 2008
Copyright c©1992



34

5.4 Some Applications of Surface Integrals

In the development of the surface integral in Section 14.3, we paramet-
rized the surface with a function ~h having as its domain a rectangle
R. We then partitioned R into small rectangles Ri,j for i = 1, . . . , n,
j = 1, . . . ,m and then used the Ri,j ’s, via ~h, to divide the surface
S into nonoverlapping pieces Si,j , i = 1, . . . , n, j = 1, . . . ,m, where
Si,j = ~h(Ri,j). We then chose selection points ~si,j from Ri,j and
calculated

∑∑
︸ ︷︷ ︸

Sum of
a lot of
pieces of
the
surface

f(~h(~s)i,j))︸ ︷︷ ︸
f evaluated
at a point
in a piece of
the surface

[J(~h(~si,j))Area(Ri,j)]︸ ︷︷ ︸
Approximation of
the area of a small
piece of the surface

as our approximation for
∫∫

S
f dS.

While there is no rigor in the following, it is helpful in applications
of surface integrals to associate

∫∫
Sf dS with the above mentioned

sums; that is,

∑∑
︸ ︷︷ ︸

Sum of
many
pieces of
the
surface

f(~h(~si,j))︸ ︷︷ ︸
f evaluated
at a point
in a piece of
the surface

[J(~h(~si,j))Area(Ri,j)]︸ ︷︷ ︸
Approximation of
the area of a small
piece of the surface

≈
∫∫

S︸︷︷︸
Sum of
many
pieces of
the
surface

f︸︷︷︸
f evaluated
at a point
in a piece of
the surface

dS︸︷︷︸
Approximation
of the area of
a small piece
of the surface
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A Rule of Thumb for Surface Integrals

Generally, surface integrals will be applied in the following situa-
tion:

(a) S is a simple surface and ρ is a real-valued function defined
on S.

(b) Q is a physical quantity that can be approximated by:

(i) Breaking S into “very small” non overlapping pieces
Si,j , i = 1, . . . , n, j = 1, . . . , m.

(ii) Choosing an arbitrary “selection point” ~si,j from each
Si,j .

(iii) Calculating the sum
∑∑

ρ(~si,j) Area(Si,j) to approxi-
mate Q.

EXAMPLE 1: Suppose that S is a surface in R3 and ρ(x, y, z)
gives the mass density of S at (x, y, z). Assuming that ρ is contin-
uous, if ∆S is a very small piece of S and ~s is a point of ∆S, then
the product of ρ(~s) and Area(∆S) will be an approximation of the
mass of ∆S. Thus, using our rule of thumb above,

∫∫
Sρ dS is the

mass of S.

EXAMPLE 2: Let S be the surface in R2 bounded by the graphs
of y = x2, the x–axis, and the line x = 1. See Figure 1.

Let ρ(x, y) = xy denote the mass density of S at (x, y). Then the
mass of S is given by

∫∫
Sxy dS. We can employ Theorem 1 of the

previous section to calculate this integral without parametrizing S.

∫∫
S
xy dS =

∫ 1

0

∫ x2

0
xy dy dx =

∫ 1

0

xy2

2

∣∣∣y=x2

y=0
dx

=
∫ 1

0

x5

2
dx =

1
12
.

In Section 11.5 we computed the center of mass for a thin wire
that was modeled by a fundamental curve. We can apply these same
techniques to find the center of mass for a surface in R3. Let S be
a surface parametrized by ~r. Partition S by P = {Si,j | 1 ≤ i ≤
n, 1 ≤ j ≤ m}, and let S = {~s1,1, . . . , ~sn,m} be a selection from P,
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where ~si,j = (xi,j , yi,j , zi,j). Assume that there is a density function
ρ(x, y, z) on S. If we let X be the number approximated by∑n

i=1

∑m
j=1 xi,jρ(~si,j)(area of Si,j)
total mass of S

,

then

y=x2

x=1

Figure 1. The surface
bounded by the graphs of
y = x2, the x–axis, and the
line x = 1.

X =

∫∫
Sxρ(~r) dS∫∫
Sρ(~r) dS

.

Similarly, let

Y =

∫∫
Syρ(~r) dS∫∫
Sρ(~r) dS

and Z =

∫∫
Szρ(~r) dS∫∫
Sρ(~r) dS

.

The point (X,Y, Z) is called the center of mass of S. As in the
case of curves, there is no reason that the center of mass need be on
the surface.

EXAMPLE 3: Let S be the upper hemisphere of the sphere of
radius R with center at the origin. Let ρ(x, y, z) = 1 be the mass
density function. Find the center of mass of S.

Solution: We parametrize S by ~r(s, t) = (R cos(s) sin(t), R sin(s)
sin(t), R cos(t)) for 0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2 . The Jacobian of ~r is
R2 sin(t). Thus

X =

∫∫
Sxρ(~r) dS∫∫
Sρ(~r) dS

=

∫ π/2
0

∫ 2π
0 R cos(s) sin(t)R2 sin(t) ds dt∫ π/2

0

∫ 2π
0 R2 sin(t) ds dt

=
0

2πR2
;

Y =

∫∫
Syρ(~r) dS∫∫
Sρ(~r) dS

=

∫ π/2
0

∫ 2π
0 R sin(s) sin(t)R2 sin(t) ds dt∫ π/2

0

∫ 2π
0 R2 sin(t) ds dt

=
0

2πR2
;

Z =

∫∫
Szρ(~r) dS∫∫
Sρ(~r) dS

=

∫ π/2
0

∫ 2π
0 R cos(t)R2 sin(t) ds dt∫ π/2
0

∫ 2π
0 R2 sin(t) ds dt

=
πR3

2πR2
=
R

2
.

(X,Y, Z) =
(

0, 0,
R

2

)
.

EXAMPLE 4: Suppose that S is a simple surface with a mass
density function ρ(~r) and that S is rotating about the z–axis with
an angular speed w rad/[unit of time]. If ∆S is a small piece of S
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and ~s = (x, y, z) is a point of ∆S, then w(x2 + y2)1/2 approximates
the speed of ∆S and ρ(x, y, z) area(∆S) approximates the mass of
∆S. Thus

1
2

[
w
√
x2 + y2

]2
︸ ︷︷ ︸

Approximation
of the speed
squared of a
piece of the
surface.

ρ(x, y, z) area(∆S)︸ ︷︷ ︸
Approximation
of the mass
of a piece of
the surface.

approximates the kinetic energy mv2

2 of ∆S. If we break S up into
small non overlapping pieces and add up the kinetic energy of each
piece of S, then we have the total kinetic energy of the rotating mass.
Therefore, by our rule of thumb,∫∫

S

1
2

[w2(x2 +y2)]ρ(x, y, z) dS is the kinetic energy of the sur-

face rotating about the z–axis.

Of course we get similar formulas for the kinetic energy of a surface
rotating about the x–axis or the y–axis:∫∫

S

1
2

[w2(x2+z2)]ρ(x, y, z) dS is the kinetic energy of a surface

rotating about the y–axis with angular speed w and:∫∫
S

1
2

[w2(y2+z2)]ρ(x, y, z) dS is the kinetic energy of a surface

rotating about the x–axis with angular speed w.

Note that the formulas for the kinetic energy of a rotating surface
parallel those for fundamental curves as given in Section 11.5. We
can define the moments of inertia similarly.

Definition: Moment of Inertia

Ix =
∫∫

S
(y2 + z2)ρ(x, y, z) dS = moment of inertia about

the x–axis.

Iy =
∫∫

S
(x2 + z2)ρ(x, y, z) dS = moment of inertia about

the y–axis.

Iz =
∫∫

S
(x2 + y2)ρ(x, y, z) dS = moment of inertia about

the z–axis.

The kinetic energy of a surface rotating about an axis with an-



38

gular speed w is given by 1
2w

2Ia, where a = x, y, or z indicates the
axis of rotation.

EXAMPLE 5: Let S and ρ be as in Example 2. If S is rotating
about the x–axis at 2π rad/sec, what is the total kinetic energy
(where distance is measured in meters)?

Solution:

Kinetic Energy =
1
2
w2Ix =

1
2
w2

∫∫
S

(y2 + z2)ρ(x, y, z) dS

=
1
2
w2

∫∫
S

(y2 + z2)xy dS

=
1
2

(2π)2
∫ 1

0

∫ x2

0
y2xy dy dx

= 2π2

∫ 1

0

∫ x2

0
y2xy dy dx

= 2π2

∫ 1

0

(
y4

4

)
x
∣∣∣y=x2

y=0
dx

= 2π2

∫ 1

0

(
x8

4

)
x dx =

π2

20
Joules.
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Volumes of Solids Bounded Between Graphs of Func-
tions

Suppose that S is a simple surface lying in xy–space, and that
f and g are continuous functions from S into R such that f(x, y) ≥
g(x, y) for all (x, y) in S. Then the set of all points (x, y, z) such that
(x, y) is in S and f(x, y) ≥ z ≥ g(x, y) is a solid V as in Figures 2.a
and 2.b.

Figure 2.a V is the set of
all points (x, y, z) such that
(x, y) is in S and
f(x, y) ≥ z ≥ g(x, y).

x
y

z

f

g

∆S

Figure 2.b That part of V
lying “above” ∆S.

Let ∆S be a small piece of S and let ~s be a point in ∆S. Then
the part of V lying “above” ∆S can be approximated by [f(~s) −
g(~s)] area(∆S). By our rule of thumb, the total volume of V must
be
∫∫
S(f − g) dS.

In order to calculate the volume of a solid using the above method,
we must be able to identify the top and bottom boundaries of the
solid. It is often useful to sketch the solid, but this is not aways easy,
as illustrated by the next example.

EXAMPLE 6: Find the volume of the region inside the cylinder
x2 + y2 = 1 and between z = 1− x and z = −(x2 + y2).

In Figure 3.a, we draw the top bounding function, and the bottom
bounding graph is sketched in Figure 3.b. In Figures 4.a and 4.b, we
give views of the solid from above and from below. It is the concave
bottom bounding surface that makes the solid difficult to visualize.

x

y

z

Figure 3.a The top
bounding function z = 1− x.

x
y

z

Figure 3.b The bottom
bounding function
z = −(x2 + y2).
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x

y

z

Figure 4.a The solid
viewed from above.

x

y

z

Figure 4.b The solid
viewed from below.

Solution: Let S denote the disc (x2 + y2) ≤ 1. Note that −(x2 +
y2) < 1 − x, for all x and y in S. Thus the volume is given by∫∫
S(f − g) ds, where f(x, y) = 1− x, and g(x, y) = −(x2 + y2). The

polar transformation gives a convenient parametrization for S:

~ρ(r, θ) = (r cos(θ), r sin(θ)), 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

Since J(~ρ(r, θ)) = r, we have

∫∫
S

(f − g) dS =
∫∫

S
(1− x+ x2 + y2) dS

=
∫ 2π

0

∫ 1

0
(1− r cos(θ) + r2)r dr dθ

=
∫ 2π

0

[
r2

2
−
(
r3

3

)
cos(θ) +

r4

4

] ∣∣∣∣r=1

r=0

dθ

=
∫ 2π

0

[
3
4
−
(

1
3

)
cos(θ)

]
dθ

=
3π
2
.

r0
→

s→

Figure 5. The electric
potential at ~r0 due to the
charged piece of surface ∆S is
approximated by

κρArea(∆S)

‖~s− ~r0‖
.

EXAMPLE 7: Recall that if q is a point charge at ~r0, then
the electric potential at a position ~r is V (~r) = k

‖~r−~r0‖ . Suppose
that the unit sphere carries a charge that is uniformly distributed
on the sphere. The charge density is a constant ρ measured in
Coulombs/m2. Let ~r0 be a fixed point in space and let ~s be a point
in a small piece of the sphere ∆S, as illustrated in Figure 5. Then
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the electric potential at ~r0 due to the charged piece of surface ∆S is
approximated by

κρArea(∆S)
‖~s− ~r0‖

.

Therefore, if we divide the sphere into non overlapping pieces Si,j
and pick selection points ~si,j , then the electric field at ~r0 due to the
charged sphere will be approximated by the sum

∑∑(
κρ

‖~si,j − ~r0‖

)
Area(Si,j).

We conclude that the potential at ~r0 due to the charges sphere is

V (~r0) = κ

∫∫
S

ρ

‖~r0 − ~r‖
dS = κ

∫∫
S

ρ√
(x0 − x)2 + (y0 − y)2 + (z0 − z)2

dS

= κρ

∫ π

0

∫ 2π

0

1√
(x0 − cos(θ) sin(φ))2 + (y0 − sin(θ) sin(φ))2 + (z0 − cos(φ))2

sin(φ) dθ dφ.
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EXERCISES 5.4

1. The mass of a surface is 10 kg. The mass is uni-
formly distributed over the surface. The surface
area is 5 m2. What is the mass density of the
surface?

2. The mass of a surface is M. The mass is uni-
formly distributed over the surface. The surface
area is A. What is the mass density of the sur-
face?

In Exercises 3–11, S is the region in the xy–plane
bounded by the graph of y = x, the x–axis, and the
line x = 2. The mass density of S is given by
ρ(x, y) = x+ y.

3. Find the mass of S.

4. Find the center of mass of S.

5. Find the kinetic energy of S if it is rotating
about the x–axis with an angular speed of π
rad/sec.

6. Find the kinetic energy of S if it is rotating
about the y–axis with an angular speed of π

2
rad/sec.

7. Find the kinetic energy of S if it is rotating
about the origin in the xy–plane with an an-
gular speed of 2π rad/sec.

8. Find the kinetic energy of S if it is rotating
about the line x = 2 with an angular speed of
2π rad/sec.

9. Find the kinetic energy of S if it is rotating
about the point (−1,−1) in the xy–plane with
an angular speed of 2π rad/sec.

10. Find the volume of the solid consisting of
all points (x, y, z) where (x, y) is in S and
0 ≤ z ≤ ex+y.

Figure 6
Solid in Exercise 10.

x

y

z

11. Find the volume of the solid consisting of
all points (x, y, z), where (x, y) is in S and
−x ≤ z ≤ x2.

Figure 7
Solid in Exercise 11.

x

z

y

In Exercises 12–19, S is the region in the xy–plane
bounded by the graphs of y = x and y = x2. The mass
density of S is given by ρ(x, y) = x2y.

12. Find the mass of S.

13. Find the center of mass of S.

14. Find the kinetic energy of S if it is rotating
about the x–axis with an angular speed of 2π
rad/sec.

15. Find the kinetic energy of S if it is rotating
about the y–axis with an angular speed of 2π
rad/sec.
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16. Find the kinetic energy of S if it is rotating
about the z–axis with an angular speed of 2π
rad/sec.

17. Find the kinetic energy of S if it is rotating
about the line x = 1 in the xy–plane with an
angular speed of 2π rad/sec.

18. Find the volume of the solid consisting of
all points (x, y, z), where (x, y) is in S and
0 ≤ z ≤ x+ y.

Figure 8
The solid in Exercise 18.

x

y

z

19. Find the volume of the solid consisting of
all points (x, y, z), where (x, y) is in S and
x2 ≤ z ≤ x.

Figure 9
The solid in Exercise 19.

x

yz

20. Let S be the region in the xy–plane bounded
by xy = 4 and x + y = 5. Find the volume of
the solid containing (x, y, z) if (x, y) is in S and
0 ≤ z ≤ x+ y.

1 2 3 4

2
4
6
8

x

y

z

Figure 10. The region S and
the solid for Exercise 20.

In Exercises 21–25, S is the parallelogram with two ad-
jacent edges the line segments [ ~A, ~B] and [ ~A, ~C], where
~A = (1, 2, 1), ~B = (0, 1, 0), and ~C = (1, 1, 1).

21. Find the mass of S if the mass density of S is
given by ρ(x, y, z) = x+ z.

22. Find the center of mass of S if the mass density
of S is given by ρ(x, y, z) = x+ z.

23. Find the kinetic energy of S if it is rotat-
ing about the z–axis with angular speed of 2π
rad/sec and if it has a constant mass density k.

24. Find the kinetic energy of S if it is rotating
about the x–axis with an angular speed of 2π
rad/sec and if it has a constant mass density k.

25. Find the kinetic energy of S if it is rotating
about the z–axis with an angular speed of 2π
rad/sec and if its mass density is as in Exercise
21.

26. The surface of a sphere of radius 1 m with a
constant mass density ρ is rotating about a line
passing through the center of the sphere at a
rate of f rotations/sec. Find its kinetic energy.

In Exercises 27 and 28, a disc of radius R with con-
stant mass density ρ is rotating about a line passing
through its center at a rate of f rotations/sec.

27. Find the disc’s kinetic energy if the axis of ro-
tation lies in the plane containing the disc.

28. Find the disc’s kinetic energy if the axis of ro-
tation is perpendicular to the disc.

29. Let P be the plane passing through the origin
that is normal to the vector (1, 0, 1). Let V be
the solid containing the set of points (x, y, z)
that are below P , above the xy–coordinate
plane, and lying inside the cylinder x2 + y2 ≤ 1.
Find the volume of V .

Figure 11
The solid V for Exercise 29.

x

y

z
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30. Let P be the plane passing through the point
(0, 0, 2) that is normal to the vector (1, 1, 1).
Let V be the solid containing the set of points
(x, y, z) that are below P , above the xy–
coordinate plane, and lying inside the cylinder
x2 + y2 ≤ 1. Find the volume of V .

Figure 12
The solid V for Exercise 30.

x
y

z

31. Express the volume of the intersection of the
cylinders x2 + y2 ≤ 1 and x2 + z2 ≤ 1 as a
double integral.

Figure 13
The solid V for Exercise 31.

x
y

z

32. An electric charge of 5 Coulombs is uniformly
distributed on a surface with area 3 m2. What
is the charge density?

33. An electric charge is uniformly distributed on a
sphere as in Example 7. Show that the electric
potential is zero at the center of the sphere.

34. The vectors (1, 2, 3) and (1, 0, 0)) are drawn em-
anating from the the vector (1, 1, 1) to form ad-
jacent edges of a parallelogram P . An electric
charge is uniformly distributed on P . If ~r is not
on the parallelogram, V (~r) denotes the electric
potential at ~r due to the charge on P . If ρ de-
notes the charge density on P , express V (~r) as
a double integral.

5.5 Change of Variables

In Section 6.2 we developed the chain rule in reverse for integration
over a single variable. We now extend this result for integrals over
a surface. The derivative of a parametrization for a fundamental
curve, which is used in the chain rule in reverse, generalizes to the
Jacobian of a parametrization for a simple surface. Thus it should
not be too surprising to see the Jacobian in the following Change of
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Variables Theorem.

Theorem 1 (Change of Variables) Let P and Q be surfaces,
and let ~h be a differentiable function from P to Q such that

(a) ~h is one-to-one on the interior of P ;

(b) J(~h(~r)) is continuous; and

(c) J(~h(~r)) 6= 0 on the interior of P .

If f is a continuous function from Q into R, then∫∫
Q
f dS =

∫∫
P
f(~h(~r))J(~h(~r)) dS.

Notice that this theorem allows you to evaluate the surface inte-
gral by relating the surface to some other surface over which you can
integrate. This is more flexible than using the definition of surface
integral, which required that the surface in question be parametrized
over a rectangle.

EXAMPLE 1: LetQ be the triangle with vertices ~A = (1, 1, 1), ~B =
(0, 1, 2), and ~C = (1, 1, 0). Calculate

∫∫
Qx+ y + z dS.

Solution: We let P be the triangle in uv–space with vertices
(0, 0), (1, 0), and (0, 1), and let ~T be the linear transformation that
takes (1, 0) onto ~B− ~A = (−1, 0, 1) and (0, 1) onto ~C− ~A = (0, 0,−1).
If ~h is defined by ~h(~r) = ~A + ~T (~r), then ~h takes the unit square
onto the parallelogram with adjacent edges the line segments [ ~A, ~B]
and [ ~A, ~C], and ~h takes the triangle P in uv–space with vertices
(0, 0), (1, 0), and (0, 1) onto Q. See Figure 1.

(0, 1, 2)

(1, 1, 1)

(1, 1, 0)

u

v

v=1-u

h
→

Figure 1. The triangle in
uv–space is taken onto the
triangle in xy–space.

~h(u, v) =

 1
1
1

+

 −1 0
0 0
1 −1

( u
v

)
=

 1− u
1

1 + u− v


and

J(~h(u, v)) = 1.

Thus∫∫
Q
f dS =

∫∫
P
f(~h(~r))J(~h(~r)) dS

=
∫ 1

0

∫ 1−u

0
(1− u) + (1) + (1 + u− v) dv du
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=
∫ 1

0

∫ 1−u

0
3− v dv du =

∫ 1

0
3(1− u)− (1− u)2

2
du

=
∫ 1

0

5
2
− 2u− u2

2
du =

5
2
− 1− 1

6
=

4
3
.

EXAMPLE 2: Find the area of the region in xy–space that is
bounded by the set with polar equation r = sin(3θ), 0 ≤ θ ≤ π

3 .

Solution: We start by sketching the region in rθ–space and in
xy–space as shown in Figure 2. Let Q be the region in xy–space,
and let P be the region in rθ–space bounded by the graph of r =
sin(3θ), 0 ≤ θ ≤ π

3 , and the r–axis. Then the polar transformation
~P takes P onto Q.

0.5 1 1.5 2

–1

– 0.5

0.5

1

θ

r r=sin(3θ)

–0.2 0.2 0.4 0.6 0.8
–0.2

0.2

0.4

x

y

P
→

Figure 2. The polar
function ~P takes the region in
rθ–space onto the region in
xy–space.

Area =
∫∫

Q
dS =

∫∫
P
J(~P (~r)) dS =

∫ π/3

0

∫ sin(3θ)

0
r dr dθ

=
∫ π/3

0

sin2 3θ
2

dθ =
π

12
.

EXAMPLE 3: A region S lying in the xy–plane is bounded by the
set with polar equation r = 1−cos θ. Its mass density is the constant
ρ, and it is rotating about the z–axis with an angular frequency of f
rotations/sec. Find its kinetic energy.

Solution: Let P be the region in rθ–space bounded by the r–axis
and the graph of r = 1−cos θ, 0 ≤ θ ≤ 2π, and let S be the associated
region in xy–space as in Figure 3.

1 2 3 4 5 6

0.5

1

1.5

2

– 2 – 1.5 – 1 – 0.5

– 1

– 0.5

0.5

1

→
h

Figure 3. The polar function takes the region P in
rθ–space onto the surface S in xy–space.

The angular speed of S is 2πf. Therefore, its kinetic energy is
given by

K. E. =
1
2

(2πf)2
∫∫

S

(
x2 + y2

)
ρ dS
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=
1
2

(2πf)2ρ
∫∫

P

(
r2 cos2 θ + r2 sin2 θ

)
J(~P (~r)) dS

=
1
2

(2πf)2ρ
∫ 2π

0

∫ 1−cos θ

0
r3 dr dθ

=
1
2

(2πf)2
1
4
ρ

∫ 2π

0
(1− cos θ)4 dθ

=
1
2

(2πf)2
15π
16

ρ =
15π3f2ρ

8
.

(x, y, 0)

(x, y, f(x, y))

Figure 4. S is the graph of
f and P is the domain of f .

EXAMPLE 4: Let P be a surface in xy–space, and let f be a
function from P into R that is continuous and that has continuous
partial derivatives. Let S be the set of all points of the form (x, y, z),
where (x, y) is in P and z = f(x, y). Let ~h be the function from P
into S defined by ~h(x, y) = (x, y, f(x, y)). (See Figure 4.)

It is easily seen that

J(~h(x, y)) =

√(
∂f(x, y)
∂x

)2

+
(
∂f(x, y)
∂y

)2

+ 1.

Thus the area of such a surface S is given by

Area =
∫∫

S
dS =

∫∫
P
J(~h(~r)) dS

=
∫∫

P

√(
∂f(x, y)
∂x

)2

+
(
∂f(x, y)
∂y

)2

+ 1 dS.

EXAMPLE 5: Let T be the triangle in the plane with vertices
(0, 0), (1, 0), and (1, 1). Find the surface area of the set of points
(x, y, z) satisfying z = y + x2 for (x, y) in T .

Solution: We employ the formula developed in Example 4. Let
f(x, y) = y + x2. Then ∂f

∂x = 2x, ∂f∂y = 1, and√(
∂f(x, y)
∂x

)2

+
(
∂f(x, y)
∂y

)2

+ 1 =
√

2 + 4x2.

Thus the area is∫∫
S
dS =

∫∫
T

√
2 + 4x2 dS =

∫ 1

0

∫ x

0

√
2 + 4x2 dy dx

=
∫ 1

0

(
y
√

2 + 4x2
) ∣∣∣y=x

y=0
dx =

1
12

(
63/2 − 23/2

)
.
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EXERCISES 5.5

In Exercises 1–4, T is the triangle in Rn with vertices
~A, ~B, and ~C. Compute

∫∫
T
f dS.

1. ~A = (0, 0), ~B = (1, 1), ~C = (2, 0), and f(x, y) =
xy2.

2. ~A = (−1, 0), ~B = (1, 1), ~C = (2,−1), and
f(x, y) = e(x+y).

3. ~A = (1, 0, 0), ~B = (0, 1, 0), ~C = (0, 0, 1), and
f(x, y, z) = e(x+y+z).

4. ~A = (1, 0, 0), ~B = (0, 1, 0), ~C = (0, 0, 1), and
f(x, y, z) is the square of the distance from
(x, y, z) to the origin.

In Exercises 5–7, T is the triangle in Rn with ver-
tices ~A = (0, 1, 0), ~B = (1, 1, 0), and ~C = (1, 2, 1).
Assume that the mass density of T is a constant
ρ kg/m2.

5. Find the kinetic energy if T is rotating about
the x–axis at a rate of 2 rotations/sec.

6. Find the kinetic energy if T is rotating about
the y–axis at a rate of 2 rotations/sec.

7. Find the kinetic energy if T is rotating about
the z–axis at a rate of 2 rotations/sec.

In Exercises 8–12, sketch the region in xy–space
bounded by the curve with the given polar equation,
and find its area.

8. r = 3 sin θ. 9. r = sin(2θ).

10. r = 3− sin θ. 11. r = 1 + cos(2θ).

12. r = 4 + sin θ.
In Exercises 13–17, R is the region in rθ–space
bounded by the given curves. Sketch R (as it appears
in rθ–space) and ~P (R), the image of R in xy–space.
Find the area of the region in xy–space.

13. r = θ, θ = π, and r = 0.

14. r = eθ, θ = 2π, and r = 0.

15. r = sin θ, 0 ≤ θ ≤ π, and r = 0.

16. r = 1 + sin θ, 0 ≤ θ ≤ 2π, and r = 0.

17. r = sin(3θ), 0 ≤ θ ≤ π
3 , and r = 0.

In Exerecises 18–22, S is the region in xy–space
bounded by the curve with the given polar equation.
Find the volume of the solid that contains all points
(x, y, z) that satisfy the conditions that (x, y) is in S
and g(x, y) ≤ z ≤ f(x, y).

18. r = 1 + sin θ, g(x, y) = 0, f(x, y) =
√
x2 + y2.

Figure 5
The solid

in Exercise 18.

x

y

z

19. r = sin θ, g(x, y) = 0, f(x, y) = y.

Figure 6
The solid in

Exercise 19.

x

y

z

20. r = sin θ, g(x, y) = −y, f(x, y) = x2 + y2.

Figure 7
The solid in Exercise 20.

x

y

z
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21. r = cos θ, g(x, y) = 1 − (x2 + y2), f(x, y) =
1 + x2 + y2.

Figure 8
The solid in Exercise 21.

x

y

z

22. r = 1−sin θ, g(x, y) = −4, f(x, y) = y
√
x2 + y2.

Figure 9
The solid in Exercise 22. x

y

z

In Exercises 23–26, find the area of the set of points
(x, y, z) such that (x, y) is in S and z = f(x, y).

23. S is the square in xy–space bounded by the lines
x = 0, x = 1, y = 0, y = 1, and f(x, y) = x+ y.

Figure 10
The surface in Exercise 23.

x

y

z

24. S is the square of Exercise 23, and
f(x, y) = y + x2

2 .

Figure 11
The surface in Exercise 24.

x

y

z

25. S is the triangle with vertices (0, 0), (0, 4), (4, 4),
and f(x, y) = y2.

Figure 12
The surface

in Exercise 25.

x

y

z

26. S is the disc of radius 4 centered at the origin,
and f(x, y) = xy.

Figure 13
The surface in
Exercise 26.

x

y
z

27. Let S be the part of the graph of z = x2 + y2

lying above the disk x2 + y2 ≤ 1. Find the area
of S.
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28. Let S be the part of the graph of z = x2 + y2

lying above the disk x2 +y2 ≤ 1. Express
∫∫
S
x+

y2 + z dS as a double integral.

29. Let S be the part of the graph of z = x2 + y2

lying above the disk (x − 1)2 + (y + 2)2 ≤ 3.
Express

∫∫
S
x+ y2 + z dS as a double integral.

30. Let S be the part of the graph of z =
x2 + y2 lying above the triangle with verticies
(−1, 0),(1,−2), and (3, 3). Express the area of S
as a double integral.

31. Let S be the part of the cylinder x2+z2 = 1, z ≥
0 lying above the disc x2 + y2 ≤ 1. Express the
area of S as a double integral.

32. Let S be the total surface area of the intersection
of x2 +y2 ≤ 1 and x2 +z2 ≤ 1. Express the area
of S as the sum of four double integrals.

5.6 Simple Solids

The concept of parametrization has been a constant theme through-
out this text. We have parametrized curves and surfaces in both
2–space and 3–space. For the purpose of integration, we put re-
strictions on the type of parametrization that we could use. These
restrictions gave us the concepts of fundamental curve and simple
surfaces. We now complete this discussion by defining simple solids.

Definition: Simple Solids

The set S in 3–space is a simple solid if there is a box B bounded
by planes parallel to the coordinate planes and a differentiable
function ~h from B onto S such that

(a) ~h is one-to-one in the interior of B;

(b) ~h and all of the first partial derivatives of ~h are continuous;
and

(c) J(~h(u, v, w)) is not 0 in the interior of B.

The idea of a simple solid is the three dimensional version of
the idea of a simple surface in 2– or 3–space, and the idea of a
fundamental curve in 1–, 2–, or 3–space. One might think of a piece
of malleable plastic or clay in the shape of the box B and use ~h to
distort the box into S. Condition (a) means that no two points in
the interior of the box B are pinched together in S. The condition
that J(~h(u, v, w)) 6= 0 essentially means that no piece of volume is
somehow shrunk to a point, a line, or a plane. That ~h is continuous
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means that the box is not broken when it is distorted by ~h. We build
solids from boxes just as we build surfaces from rectangles.

First, we extend the idea of parametrizing the surface of a sphere
to that of parametrizing the solid ball.

x y

z

Figure 1.a The solid
obtained by rotating the region
bounded between the graph of a
function and the x–axis about
the x–axis.

ht(rt(s, θ))=
          h(r, s, θ)

→

→

x

y

z

Rt

Figure 1.b The cross
section Rt.

x
y

z

Figure 1.c The “slice”
obtained by holding θ constant.

x y

z

Figure 1.d The image of
~h(t, s, θ), π

3
≤ θ ≤ 2π.

EXAMPLE 1: Let ~h(r, φ, θ) be the restriction of the spherical
transformation to the box B bounded by the planes r = 0, r = R,φ =
0, φ = π, θ = 0, and θ = 2π. Then ~h is one-to-one on the interior of
B, and its first partial derivatives are continuous. J(~h(r, φ, θ)) =
r2 sinφ 6= 0 on the interior of B, since r > 0 and 0 < φ < π there.
Thus ~h is a parametrization of the ball of radius R.

The next example is an extension of the idea of a surface of
rotation.

EXAMPLE 2: Suppose that f is a function that is continuous
and differentiable on the interval [a, b] such that f(x) 6= 0 for every
x in [a, b]. Let R be the region in the plane bounded by the graph
of f , the x–axis, and the lines x = a and x = b. Let S be the solid
obtained by rotating R about the x–axis. (See Figure 1.) Find a
parametrization for the solid S.

Solution: For each point t in the interval [a, b], let Rt be the
surface obtained by intersecting the plane x = t with the solid S.
Then Rt is a disc of radius f(t). A parametrization for Rt is given
by ~rt(s, θ) = (t, sf(t) cos θ, sf(t) sin θ). (See Figure 1.b.)

Let ~h be defined by

~h(t, s, θ) = (t, ~rt(s, θ)) = (t, sf(t) cos θ, sf(t) sin θ)

for
a ≤ t ≤ b, 0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π.

Figure 1.c displays the “slice” of the solid obtained by holding
θ fixed at θ = π

3 radians. In Figure 1.d, the wedge 0 ≤ θ ≤ π
3 is

removed to reveal the cross sections of the solid.

The partial derivatives of ~h are:

∂h(t, s, θ)
∂t

= (1, sf ′(t) cos θ, sf ′(t) sin θ);

∂h(t, s, θ)
∂s

= (0, f(t) cos θ, f(t) sin θ);

and
∂h(t, s, θ)

∂θ
= (0,−sf(t) sin θ, sf(t) cos θ).
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Thus all of the first partial derivatives of ~h are continuous.

J(~h(t, s, θ)) = s[f(t)]2, which is not 0 if s > 0 and a ≤ t ≤ b.

To see that ~h is one-to-one, suppose that ~h(t1, s1, θ1) = ~h(t2, s2, θ2).
This implies that

(t1, s1f(t1) cos θ1, s1f(t1) sin θ1) = (t2, s2f(t2) cos θ2, s2f(t2) sin θ2).
(1)

By comparing the first coordinates of each side of Equation (1), we
see that t1 = t2. Since the sum of the squares of the second and third
coordinates of each side of Equation (1) should be equal, we see that

(s1f(t1))2 = (s2f(t2))2 .

However, t1 = t2 implies that s21 = s22. Since 0 < si < 1 for i = 1, 2,
we see that s1 = s2. By comparing the second and third coordinates
of each side of Equation (1) we see that

cos θ1 = cos θ2 and sin θ1 = sin θ2.

This is only possible if θ1 = θ2. Thus ~h is one-to-one in the interior
of the domain of ~h.

x=t

Figure 2.a The plane x = t
intersecting the solid

St

Figure 2.b St is the
common part of the solid and
the plane x = t.

The solid of revolution in Example 2 is obtained by first param-
etrizing the cross sections of the solid in a “continuous”manner so
that the parametrizing functions can be put together to parametrize
the solid. This is an example of a general approach described in the
following theorem.

Theorem 1 (Solids with Continuous Cross Sections)
Suppose that S is a solid and [a, b] is an interval such that:

(a) If a < t < b, then the cross section of S obtained by intersect-
ing the plane x = t with S is a surface St (as in Figure 2);

(b) St is parametrized by the function ~ht(u, v) =
(t, yt(u, v), zt(u, v)) with domain the rectangle in uv–
space bounded by the lines u = c, u = d, v = e, and v = f ,
where c < d, and e < f ;

(c) All of S lies between the planes x = a and x = b;
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(d) The function ~h, defined by ~h(t, u, v) = (t,~ht(u, v)) =
(t, yt(u, v), zt(u, v)), with domain the box B bounded by the
planes t = a, t = b, u = c, u = d, v = e, and v = f, is
continuous; and

(e)
∂~h(t, u, v)

∂t
is continuous;

then ~h parametrizes S, and J(~h(t, u, v)) = J(~ht(u, v)).

Proof: We will show that ~h is one-to-one, that the partial derivatives
of ~h are continuous, and that the Jacobian of ~h is not zero on the
interior of B.

First we prove that ~h is one-to-one. Consider (t1, u1, v1) and
(t2, u2, v2) in the interior of B such that ~h(t1, u1, v1) = ~h(t2, u2, v2).
If t1 6= t2, then ~h(t1, u1, v1) and ~h(t2, u2, v2) differ in the first coor-
dinate. Thus t1 = t2. This implies that ht1(u1, v1) = ht1(u2, v2).
However, ht1 is a parametrization for St1 and is, by definition, one-
to-one. Thus (u1, v1) = (u2, v2), and ~h is one-to-one.

Second, we show that the partial derivatives of ~h are continu-
ous. It is given in the hypothesis that ∂~h

∂t is continuous. The partial
derivative of ~h with respect to u is given by

∂~h(t, u, v)
∂u

=
(

0,
∂yt(u, v)
∂u

,
∂zt(u, v)
∂u

)
.

Since ~ht is a parametrization for St (t is held constant for ~ht), we

know that ∂yt(u,v)
∂u and ∂zt(u,v)

∂u are continuous. Thus ∂~h(t,u,v)
∂u is con-

tinuous. A similar argument shows that ∂~h
∂v is continuous.

Finally, we compute J(~h(t, u, v)). With the information given, it

is not possible to compute ∂~h(t,u,v)
∂t , but we do know that the first

coordinate of ∂~h(t,u,v)
∂t is 1 so that ∂~h(t,u,v)

∂t =
(

1, ∂y(t,u,v)∂t , ∂z(t,u,v)∂t

)
.

Thus

D~h|(t,u,v) =


1 0 0

∂y(t,u,v)
∂t

∂yt(u,v)
∂u

∂yt(u,v)
∂v

∂z(t,u,v)
∂t

∂zt(u,v)
∂u

∂zt(u,v)
∂v

 .

Expanding by cofactors we obtain:

J(~h(t, u, v)) =
∣∣∣det

(
D~h|(t,u,v)

)∣∣∣
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=

∣∣∣∣∣∣det

 ∂yt(u,v)
∂u

∂yt(u,v)
∂v

∂zt(u,v)
∂u

∂zt(u,v)
∂v

∣∣∣∣∣∣ = J(~ht(u, v)).

Since J(~ht(u, v)) 6= 0, we see that J(~h(t, u, v)) 6= 0 in the interior
of B.

In Example 2, the cross section of the solid in the plane x = t is
a circle of radius f(t). We now look at an example where the cross
sections are squares.

EXAMPLE 3: Let f(t) = t2, 0 ≤ t ≤ 1. Let S be the solid in xyz–
space such that the cross section of S lying in the plane x = t is a
square with vertices (t, 0, 0), (t, f(t), 0), (t, 0, f(t)), and (t, f(t), f(t)).
Parametrize S. See Figure 3. Let Tt denote the cross section obtained

(x, 0, x2)

(x, x2, x2)

(x, x2, 0)

Figure 3.
The cross section Tt.

by intersecting the plane x = t with S. Let R be the rectangle in
uv–space bounded by the lines u = 0, u = 1, v = 0 and v = 1. A
parametrization for Tt is given by

~ht(u, v) = (uf(t), vf(t)) = (ut2, vt2), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Thus a parametrization for S is given by

~h(t, u, v) = (t, uf(t), vf(t)) = (t, ut2, vt2),

where
0 ≤ t ≤ 1, 0 ≤ u ≤ 1 0 ≤ v ≤ 1.

The partial derivatives of ~h are given by

∂h(t, u, v)
∂t

= (1, 2ut, 2vt);

∂h(t, u, v)
∂u

= (0, t2, 0);

and
∂h(t, u, v)

∂v
= (0, 0, t2).

Thus

J(~h(t, u, v)) =

∣∣∣∣∣∣det

 1 0 0
2ut t2 0
2vt 0 t2

∣∣∣∣∣∣ = t4.

EXAMPLE 4: Let S be the solid in xyz–space bounded by the
graphs of y = x2 and z = x2, the xy and xz–coordinate planes, and
the plane x = 1. Find a parametrization for S.
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Solution: The problem here is to visualize what S looks like. A
tactic that proves useful is to sketch the bounding surfaces. Fig-
ure 4.a illustrates the graph of y = x2, and Figure 4.b is a sketch of
the graph of z = x2. Figure 4.c displays the intersecting bounding
surfaces, and the solid S is shown in Figure 4.d. This is the same
solid as the one in Example 3!

x y

z

Figure 4.a
The bounding graph
y = x2.

x

z

y

Figure 4.b
The bounding graph
z = x2.

x

z

y

Figure 4.c
The intersection of the
bounding graphs.

x

z

y

Figure 4.d
The solid S.

EXAMPLE 5: Let S be the solid in xyz–space bounded by the
graph of z = x2 (Figure 5.a), the plane z−y = 0 (Figure 5.b), the xy–
coordinate plane, the xz–coordinate plane, and the plane z = 1 (Fig-
ure 5.c). Figure 5.d displays the intersecting planes, and Figure 5.e
shows the solid S. Use continuous cross sections to parametrize S.

x
y

z

Figure 5.a The bounding
graph z = x2.

x

y

z

Figure 5.b The plane z − y = 0.

x

y

z

Figure 5.c The plane z = 1.
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x

y

z

Figure 5.d The intersecting
bounding planes.

x y

z

Figure 5.e The solid S.

x
y

z
(√w, 0, w)

(√w, w, w)

(–√w, w, w)

(–√w, 0, w)

Figure 5.f A cross section parallel
to the xy–coordinate plane.

Solution: From the diagrams above, we see that the best cross
sections are those parallel to the xy–coordinate plane, which are
rectangles. (See Figure 5.f.)

Let w be a number between 0 and 1 and let Rw be the rectangular
cross section obtained by intersecting the plane z = w with the
solid S. If (x, y, z) is a point in Rw, then z = w, 0 ≤ y ≤ w and
−
√
w ≤ x ≤

√
w. The function

~hw(u, v) =

 u
√
w

wv
w

 , −1 ≤ u ≤ 1 and 0 ≤ v ≤ 1,

is a parametrization for Rw, and

~h(u, v, w) =

 u
√
w

wv
w

 , −1 ≤ u ≤ 1, 0 ≤ v ≤ 1, and 0 ≤ w ≤ 1,

parametrizes S.

Rotating Surfaces About an Axis

Suppose that ~r(s, t) = (x(s, t), y(s, t)), a ≤ s ≤ b, c ≤ t ≤ d
parameterizes a surface R in the plane and that R does not intersect
the x–axis. Then

~h(θ, s, t) =

 x(s, t)
y(s, t) cos(θ)
y(s, t) sin(θ)

 , a ≤ s ≤ b, c ≤ t ≤ d,

parametrizes the solid obtained by rotating the surface R about the
x–axis. You are asked in the exercises to show that

J~h(θ, s, t) = |y(s, t)|J~r(s, t) = |ydetDh| = |y(s, t)|
∣∣∣∣∂x∂s ∂y∂t − ∂x

∂t

∂y

∂s

∣∣∣∣ .
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Similarly, if the surface R does not intersect the y–axis, then the
solid obtained by rotating R about the y–axis can be parametrized
by

~h(θ, s, t) =

 x(s, t) cos(θ)
y(s, t)

x(s, t) sin(θ)

 , a ≤ s ≤ b, c ≤ t ≤ d.

φ

θ

x

y

z

y

z

x

z

Figure 6.
The solid in Example 6.

J~h(θ, s, t) = |x(s, t)|J~r(s, t) = |xdetDh| = |x(s, t)|
∣∣∣∣∂x∂s ∂y∂t − ∂x

∂t

∂y

∂s

∣∣∣∣ .
EXAMPLE 6: LetR be the unit disc centered at (0, 2). Parametrize
the solid obtained by rotating R about the x–axis, and find the Ja-
cobian of the parametrization.

Solution: ~r(ρ, θ) = (ρ cos(θ), ρ sin(θ)+2), 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤ 1,
parametrizes the disc. It follows that

~h(ρ, θ, φ) =

 ρ cos(θ)
(ρ sin(θ) + 2) cos(φ)
(ρ sin(θ) + 2) sin(φ)

 ,
0 ≤ ρ ≤ 1,
0 ≤ θ ≤ 2π,
0 ≤ φ ≤ 2π

is a parametrization for the solid of rotation. The Jacobian is

J~h(ρ, θ, φ) = (ρ sin(θ) + 2)ρ = ρ2 sin(θ) + 2ρ.

EXERCISES 5.6

In Exercises 1–3, the vectors ~A, ~B, and ~C are drawn
emanating from the position ~D to form adjacent edges
of a solid parallelepiped P . Parametrize P and find
the Jacobian of your parametrization.

1. ~A = (0, 1, 1), ~B = (−1, 2, 1), ~C = (1, 1, 1), and
~D = (0, 0, 0).

2. ~A = (0, 2, 1), ~B = (−1, 2, 1), ~C = (1,−1, 3), and
~D = (1, 1, 1).

3. ~A = (0, 1, 1), ~B = (−1,−1, 1), ~C = (1, 0, 4), and
~D = (−1, 2, 0).

In Exercises 4–8, parametrize the solid S obtained by
rotating the region R (lying in the xy–plane) about the
x–axis. Determine the rate that your parametrization
changes volume (as a function of position.)

4. R is the region bounded by the graph of y = x,
the x–axis, and the line x = 1.

5. R is the region bounded by the graphs of y = x
and y = x2.

6. R is the rectangle bounded by the lines x =
1, x = 3, y = 2, and y = 52.

7. R is the disc of radius 3 centered at the origin.

8. R is the disc of radius 2 centered at the point
(3, 4).

In Exercises 9–13, the region R lies in the xy–
coordinate plane. Parametrize the solid obtained by
rotating R about the y–axis, and find the Jacobian of
your parametrization.

9. R is the region bounded by the graph of y = x2,
the x–axis, and the line x = 1.
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10. R is the region bounded by the graphs of y = x2

and y = x3.

11. R is the rectangle bounded by the lines x =
1, x = 3, y = 2, and y = 52.

12. R is the disc of radius 3 centered at the origin.

13. R is the disc of radius 2 centered at the point
(3, 4).

In Exercises 14–21, parametrize the solid S obtained
by rotating the region R (lying in the xy–plane) about
the line L.

14. R is the region bounded by the graph of y = x,
the x–axis, and the line x = 1. L is the line
x = −1.

15. R is the region bounded by the graph of y = x,
the x–axis, and the line x = 1. L is the line
x = 3.

16. R is the region bounded by the graph of y = x,
the x–axis, and the line x = 1. L is the line
y = −1.

17. R is the region bounded by the graph of y = x,
the x–axis, and the line x = 1. L is the line
y = 6.

18. R is the region bounded by the graphs of y = x
and y = x2. L is the line x = 4.

19. R is the rectangle bounded by the lines x =
1, x = 3, y = 2, and y = 52. L is the line y = −2.

20. R is the disc of radius 3 centered at the origin.
L is the line y = −3.

21. R is the disc of radius 2 centered at the point
(3, 4). L is the line x = −1.

In Exercises 22–27, S is a solid lying in the upper half
of xyz–space, z ≥ 0, and between the planes x = 0 and
x = 1. The base of S lies in the xy–coordinate plane
and is the region bounded by the x–axis, the graph of
y = x2, and the line x = 1. Let At denote the cross sec-
tion of S lying in the plane x = t. Find a parametriza-
tion for S for the given shape of At.

22. At is a rectangle with height t.

Figure 7
The solid in Exercise 22.

x
y

z

23. At is a rectangle with its base in the xy–plane
and with height 2.

24. At is an isosceles right triangle with one leg in
the xy–plane and the other in the xz–plane.

Figure 8
The solid in Exercise 24.

x
y

z

25. At is an equilateral triangle.

Figure 9
The solid in Exercise 25.

x
y

z

26. At is an isosceles triangle with height t3.

27. At is the upper half of a disk.

Figure 10
The solid in Exercise 27.

x

y

z
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In Exercises 28–32, S is a solid lying in the upper half
of xyz–space, z ≥ 0, and between the planes x = 0 and
x = 1. The base of S lies in the xy–coordinate plane
and is the region bounded by the graphs of y = x2 and
y = x3. Let At denote the cross section of S lying in
the plane x = t. Find a parametrization for S for the
given shape of At.

28. At is a square.

Figure 11
The solid in Exercise 28. x

y

z

29. At is a rectangle with its base in the xy–plane
and with height 2.

30. At is an isosceles right triangle with one leg in
the xy–plane and the other in the xz–plane.

31. At is an equilateral triangle.

32. At is the upper half of a disk with diameter t2−
t3.

33. Parametrize the intersection of the cylinders
x2 + y2 ≤ 1 and x2 + z2 ≤ 1.

In Exercises 34 and 35, ~r(s, t) = (x(s, t), y(s, t)), a ≤
s ≤ b, c ≤ t ≤ d, parameterizes a surface R in the
xy–plane .

34. Given that R does not intersect the x–axis, then

~h(θ, s, t) =

 x(x, t)
y(s, t) cos(θ)
y(s, t) sin(θ)

 ,

a ≤ s ≤ b, c ≤ t ≤ d

parametrizes the solid obtained by rotating
the surface R about the x–axis. Show that
J~h(θ, s, t) = |y(s, t)|J~r(s, t). Why are we con-
cerned about the surface intersecting the x–
axis?

35. If R does not intersect the y–axis, then the solid
obtained by rotating R about the y–axis can be
parametrized by

~h(θ, s, t) =

 x(x, t) cos(θ)
y(s, t)

x(s, t) sin(θ)

 ,

a ≤ s ≤ b, c ≤ t ≤ d.

Show that J~h(θ, s, t) = |x(s, t)|J~r(s, t). Why are
we concerned about the surface intersecting the
y–axis?

5.7 Triple Integrals

The development in this section is similar to the development of
surface integrals. We start with an example which is a 3–dimensional
version of Example 1 of Section 5.1.

EXAMPLE 1: Let B be the solid in xyz–space bounded by
the planes x = 0, x = 1, y = 0, y = 2, z = 0, and z = 1. Sup-
pose that the mass density of B at (x, y, z) is given by ρ(x, y, z) =
x2 + y2 + z2. Let {x0, x1, . . . , xn} be a partition of the segment
[0, 1], let {y0, y1, . . . , ym} be a partition of the segment [0, 2], and let
{z0, z1, . . . , zs} be a partition of the segment [0, 1]. Then the planes
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x = x0, x = x1, . . . , x = xn;
y = y0, y = y1, . . . , y = ym;
z = z0, z = z1, . . . , z = zs

partition B into small nonoverlapping boxes. For each i ≤ n, j ≤ m
and k ≤ s, let Bi,j,k be the box bounded by the planes x = xi−1, x =
xi, y = yj−1, y = yj , z = zk−1, and z = zk. See Figures 1 and 2.

x=x0

x=x1

x=x2

x=x3

x=x5x=x4
x=x6

Figure 1.a Partitioning
planes perpendicular to the
x–axis.

y=y0
y=y1

y=y2
y=y3

y=y4
y=y5

y=y6

Figure 1.b Partitioning
planes perpendicular to the
y–axis.

z=z0
z=z1
z=z2
z=z6
z=z6
z=z6
z=z6

Figure 1.c Partitioning
planes perpendicular to the
z–axis.

Bi,j,k

y=yj–1 y=yjx=xi–1
x=xi

z=zk

z=zk–1

Figure 2. The box Bi,j,k.

ρ(xi, yj , zk)Volume(Bi,j,k)
= ρ(xi, yj , zk)(xi − xi−1)(yj − yj−1)(zk − zk−1)

is an approximation of the mass of Bi,j,k. Thus the sum
s∑

k=1

m∑
j=1

n∑
i=1

ρ(xi, yj , zk)(xi − xi−1)(yj − yj−1)(zk − zk−1) (2)

is an approximation of the mass of B. However,

n∑
i=1

(x2
i + y2

j + z2
k)(xi − xi−1)

is an approximation of ∫ 1

0
(x2 + y2

j + z2
k) dx,

and so Equation (2) is an approximation of s∑
k=1

 m∑
j=1

[∫ 1

0
(x2 + y2

j + z2
k) dx

]
(yj − yj−1)

 (zk − zk−1)

 .
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This in turn is an approximation of[
s∑

k=1

[∫ 2

0

[∫ 1

0
(x2 + y2 + z2

k) dx
]
dy

]
(zk − zk−1)

]
,

which approximates[∫ 1

0

[∫ 2

0

[∫ 1

0
(x2 + y2 + z2) dx

]
dy

]
dz

]
.

Thus Equation (2) approximates[∫ 1

0

[∫ 2

0

[∫ 1

0
(x2 + y2 + z2) dx

]
dy

]
dz

]
,

or

∫ 1

0

∫ 2

0

∫ 1

0
(x2 + y2 + z2) dx dy dz =

∫ 1

0

∫ 2

0

(
1
3

+ y2 + z2

)
dy dz

=
∫ 1

0

(
2
3

+
8
3

+ 2z2

)
dz

=
2
3

+
8
3

+
2
3

= 4.

So the mass of B is 4.
As in Section 14.1, Example 1 leads us to terminology similar to

that for integrals over rectangular boxes. We used points to partition
an interval when we were defining an integral on a segment on the
line in Chapter 6. We used lines to partiton a rectangle in the plane
in Section 1 of this chapter. In the following definition, we use planes
to partition a rectangular box in 3–space. As you read this definition,
keep in mind that we are just extending to three dimensions what we
have already done on the line and in the plane. It might be helpful
to refer to Figures 1 and 2.

Definition:
∫∫∫

Bρ dV

Let B be the solid box in xyz–space bounded by the planes x =
a, x = b, y = c, y = d, z = e, and z = f. Suppose that ρ(x, y, z)
is a continuous function defined on B. Let {x0, x1, . . . , xn} be a
partition of the segment [a, b], let {y0, y1, . . . , ym} be a partition
of the segment [c, d], and let {z0, z1, . . . , zs} be a partition of the
segment [e, f ] so that the planes
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x = x0, x = x1, . . . , x = xn;
y = y0, y = y1, . . . , y = ym;
z = z0, z = z1, . . . , z = zs

partition B into small nonoverlapping boxes. This set of planes is
called a partition of B. For each i ≤ n, j ≤ m and k ≤ s, let Bi,j,k
be the box bounded by the planes x = xi−1, x = xi, y = yj−1, y =
yj , z = zk−1, and z = zk, and let ~si,j,k be a point in Bi,j,k. The set
{~si,j,k} is called a selection for the partition of B. If L is a number
that can be approximated within any specified tolorance by sums
of the type s∑

k=1

 m∑
j=1

[
n∑
i=1

ρ(~si,j,k)(xi − xi−1)

]
(yj − yj−1)

 (zk − zk−1)


simply by insuring the partition divides the box B into “small
enough” pieces, then the number L is called the integral of ρ over
the solid box B. We write

L =
∫∫∫

B
ρ dV.

Computationally,

∫∫∫
B
ρ dV =

∫ f

e

∫ d

c

∫ b

a
ρ(x, y, z) dx dy dz

=
[∫ f

e

[∫ d

c

[∫ s

a
ρ(x, y, z) dx

]
dy

]
dz

]
.

EXAMPLE 2: Returning to Example 1, B is the solid in xyz–
space bounded by the planes x = 0, x = 1, y = 0, y = 2, z = 0, and
z = 1 and the mass density of B at (x, y, z) is given by ρ(x, y, z) =
x2 + y2 + z2. The mass of B is

∫∫∫
B(x2 + y2 + z2) dV.

As with double integrals, the notation∫∫∫
B
ρ dV =

∫ f

e

∫ d

c

∫ b

a
ρ(x, y, z) dx dy dz

means that we first integrate with respect to x, then with respect
to y, and finally with respect to z. It can be shown that if ρ is
continuous, then the order of integration does not affect the value
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obtained. Thus∫ f

e

∫ d

c

∫ b

a
ρ(x, y, z) dx dy dz =

∫ f

e

∫ b

a

∫ d

c
ρ(x, y, z) dy dx dz

=
∫ b

a

∫ d

c

∫ f

e
ρ(x, y, z) dz dy dx, etc.

Using triple integrals is quite similar to using double integrals,
only now we are dividing a box into small nonoverlapping boxes,
while with double integrals we divided a rectangle into small nonover-
lapping rectangles. We have∑∑∑

︸ ︷︷ ︸
Sum of
many
pieces of
the box

ρ(~si,j,k)︸ ︷︷ ︸
ρ evaluated
at a point
in a piece of
the box

(xi − xi−1)(yj − yj−1)(zk − zk−1)︸ ︷︷ ︸
Volume of a small
piece of the box

≈
∫∫∫

B︸ ︷︷ ︸
Sum of
many
pieces of
the box

ρ︸︷︷︸
ρ evaluated
at a point
in a piece of
the box

dV︸︷︷︸
Volume of a
small piece
of the box

Now that we have the notion of the integral over a box, we can
extend the notion to integrals over simple solids.

Definition:
∫∫∫

Sf dV

Suppose that f is a continuous function with domain the simple
solid S, and L is a number. If, whenever ~h is a parametrization
for the solid S with domain B,

L =
∫∫∫

B
f~h((x, y, z)) J(~h(x, y, z)) dV,

then the number L is called the integral of f over S, and it is
denoted by

∫∫∫
Sf dV .

Notice that implicit in the above definition is the idea of breaking
the solid S into nonoverlapping pieces. Let

P =
x = x0, x = x1, . . . , x = xn
y = y0, y = y1, . . . , y = ym
z = z0, z = z1, . . . , z = zs
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be a partition of B. Then

~h(P) =

~h(x = x0), ~h(x = x1), . . . , ~h(x = xn)
~h(y = y0), ~h(y = y1), . . . , ~h(y = ym)
~h(z = z0), ~h(z = z1), . . . , ~h(z = zs)

“partitions” the solid S as illustrated below.

z=z0
z=z1
z=z2
z=z6
z=z6
z=z6
z=z6

h(z=z0)
h(z=z1)
h(z=z2)
h(z=z6)
h(z=z6)
h(z=z6)
h(z=z6)

→

→

→

→

→

→

→

h
→

Figure 3. The planes partitioning the box B are “distorted” by ~h to partition the
solid S.

The ijkth box Bi,j,k is distorted by ~h to the piece of the solid S,
~h(Bi,j,k) as illustrated in Figure 4.

inin

inininin

Bi,j,k h(Bi,j,k)
→

h
→

inin
Figure 4. The piece of B, Bi,j,k, is distorted by ~h to the

piece of the solid S, Si,j,k = ~h(Bi,j,k).

If si,j,k is a point in Bi,j,k, then the volume of Si,j,k = ~h(Bi,j,k)
is approximated by vol(Bi,j,k)J(~h(~si,j,k)), and ~h(si,j,k) is a point in
~h(Bi,j,k). The sum

s∑
k=1

m∑
j=1

n∑
i=1︸ ︷︷ ︸

Sum over
all the
pieces of
the box

ρ(~h(~si,j,k))︸ ︷︷ ︸
ρ evaluated
at a point
in a piece of
the solid

vol(Bi,j,k)︸ ︷︷ ︸
The volume
of the box
Bi,j,k.

J(~h(~si,j,k))︸ ︷︷ ︸
The rate
that ~h
changes
volume.
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approximates both
∫∫∫

Sρ dV and
∫∫∫

Bρ(~h(~s))J(~h(~s)) dV. The follow-
ing captures the geometry of the integral over a solid.

∫∫∫
S︸ ︷︷ ︸

Sum over
all the
pieces of
the solid

ρ︸︷︷︸
ρ evaluated
at a point
in a piece of
the solid

dV︸︷︷︸
Volume of
a small
piece of
the solid

=
∫∫∫

B︸ ︷︷ ︸
Sum over
all the
pieces of
the box

ρ(~h(~s))︸ ︷︷ ︸
ρ ◦ ~h
evaluated at
a point in a
piece of the
box

J(~h(~s))︸ ︷︷ ︸
Rate that
~h changes
volume

dV︸︷︷︸
Volume of
a small
piece of
the box

.

If ρ(x, y, z) is a mass density function for a solid S, then the mass
of S is

M =
∫∫∫

S
ρ dS.

We calculate the center of mass of a volume S with density func-
tion ρ(x, y, z) by the now familiar formulas

X =

∫∫∫
S xρ dV∫∫∫
S ρ dV

, Y =

∫∫∫
S yρ dV∫∫∫
S ρ dV

, and Z =

∫∫∫
S zρ dV∫∫∫
S ρ dV

.

Similarly, if a solid is rotating about an axis, then we can define
the moments of inertia.

Ix =
∫∫∫

S(y2 + z2)ρ(x, y, z) dV = moment of intertia about the
x–axis.

Iy =
∫∫∫

S(x2 + z2)ρ(x, y, z) dV = moment of intertia about the
y–axis.

Iz =
∫∫∫

S(x2 + y2)ρ(x, y, z) dV = moment of intertia about the
z–axis.

The kinetic energy of a solid rotating about an axis with angular
speed ω is given by 1

2ω
2Ia, where a = x, y, or z indicates the axis of

rotation.

EXAMPLE 3: A ball of radius 2 m is rotating about a line passing
through its center at a rate of 2 rotations/sec. The mass density at
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a point of the ball is the square of the distance from the point to the
center of the ball. Find the kinetic energy of the rotating ball.

Solution: Assume that the ball is situated in xyz–space so that
its center is at the origin and so that it is rotating about the z–axis.

Recall that the rotational kinetic energy is given by the formula
ke = 1

2Izω
2, where ω is the angular speed, which is (2π)2 = 4π

radians/sec (2π times the frequency). Let S denote the ball. The
kinetic energy of S is

1
2

(4π)2
∫∫∫

S
(x2 + y2)ρ(x, y, z) dV

= 8π2

∫∫∫
S

(
x2 + y2

) (
x2 + y2 + z2

)
dV.

A convenient parametrization for the ball is obtained by using spheri-
cal coordinates. Let ~S(r, φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ), 0 ≤
r ≤ 2, 0 ≤ φ ≤ π, and 0 ≤ θ ≤ 2π. Let B be the box in rφθ–space
bounded by the planes r = 0, r = 2, θ = 0, θ = 2π, φ = 0, and
φ = π.

8π2

∫∫∫
S

(
x2 + y2

) (
x2 + y2 + z2

)
dV

= 8π2

∫∫∫
B

(
(r cos(θ) sin(φ))2 + (r sin(θ) sin(φ))2

)
·(

(r cos(θ) sin(φ))2 + (r sin(θ) sin(φ))2 + r2 cos2(φ)
)
·

J(~S(r, φ, θ) dV

= 8π2

∫∫∫
B
r6 sin3 φ dV

= 8π2

∫ π

0

∫ 2π

0

∫ 2

0
r6 sin3 φ dr dθ dφ

= 8π2 27

7

∫ π

0

∫ 2π

0
sin3 φ dθ dφ

=
211π3

7

∫ π

0
sin3 φ dφ =

213π3

21
.

EXAMPLE 4: Let S be the solid of Example 3 of Section 5.6.
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(a) Find the volume of S; and

(b) Calculate
∫∫∫

S(x+ y + z) dV.

Solution: In the solution of Example 3 of Section 5.6, we obtained
the parametrization of S and the Jacobian.

~h(t, u, v) = (t, ut2, vt2), 0 ≤ t ≤ 1, 0 ≤ u ≤ 1, and 0 ≤ v ≤ 1

J(~h(t, u, v)) = t4.

Letting B be the box in tuv–space bounded by the planes t =
0, t = 1, u = 0, u = 1, v = 0, and v = 1, we have

(a) The volume of S is given by∫∫∫
S
dV =

∫∫∫
B
J(~h(t, u, v)) dV =

∫ 1

0

∫ 1

0

∫ 1

0
t4 dt du dv =

1
5

;

and

(b) ∫∫∫
S

(x+ y + z) dV =
∫∫∫

B

(
t+ ut2 + vt2

)
J(~h(t, u, v)) dV

=
∫ 1

0

∫ 1

0

∫ 1

0

(
t+ ut2 + vt2

)
t4 dt du dv

=
∫ 1

0

∫ 1

0

∫ 1

0

(
t5 + ut6 + vt6

)
dt du dv

=
∫ 1

0

∫ 1

0

(
1
6

+
u

7
+
v

7

)
dt du dv

=
13
42
.

EXAMPLE 5: Let S be the solid of Example 5 of the previous
section. Find

(a) The volume of S; and

(b)
∫∫∫

S(xyz) dV.
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Solution: From Example 5 of Section 5.6,

~h(u, v, w) =

 u
√
w

wv
w

 ; −1 ≤ u ≤ 1, 0 ≤ v ≤ 1, and 0 ≤ w ≤ 1.

Let B be the box in uvw–space defined by −1 ≤ u ≤ 1, 0 ≤ v ≤ 1
and 0 ≤ w ≤ 1. Direct computation shows that J(~h(u, v, w)) = w3/2.
Thus

(a) The volume of S is∫∫∫
S
dV =

∫∫∫
B
J(~h(u, v, w)) dV

=
∫ 1

0

∫ 1

0

∫ 1

−1
w3/2 du dv dw =

4
5

;

and

(b) ∫∫∫
S

(xyz) dV =
∫ 1

0

∫ 1

0

∫ 1

−1
uvw4 du dv dw = 0.

EXERCISES 5.7

In Exercises 1–6, evaluate
∫∫∫
B
f(x, y, z) dV .

1. B is the box bounded by the planes x = −1, x =
1, y = 0, y = 1, z = 2, z = 3, and f(x, y, z) =
xyz.

2. B is the box bounded by the planes x = 1, x =
2, y = 0, y = 1, z = −1, z = 3, and f(x, y, z) =
x+ xy + xyz.

3. B is the box bounded by the planes x = −1, x =
2, y = −1, y = 1, z = −1, z = 3, and
f(x, y, z) = x+ xz cos(πxy).

4. B is the box bounded by the planes x = 0, x =
2, y = −2, y = 1, z = −1, z = 0, and
f(x, y, z) = ex+y+z.

5. B is the box bounded by the planes x = 0, x =
2, y = 1, y = 2, z = π, z = 2π, and f(x, y, z) =
ex ln y sin(z)

y
.

6. B is the box bounded by the planes x = 0, x =
2, y = 1, y = 2, z = 0, z = 3, and f(x, y, z) =
ex ln y sin(z)

y
.

In Exercises 7 and 8, the vectors ~A, ~B, and ~C are
drawn emanating from the position ~D to form adjacent
edges of a solid parallelepiped P (See Exercise 1 of the
previous section). Calculate

∫∫∫
P
f(x, y, z) dV .

7. ~A = (0, 1, 1), ~B = (−1, 2, 1), ~C = (1, 1, 1), ~D =
(0, 0, 0), and f(x, y, z) = x+ y + z

8. ~A = (0, 2, 1), ~B = (−1, 2, 1), ~C = (1,−1, 3),
~D = (1, 1, 1), and f(x, y, z) = xy

9. The box B bounded by the planes x = −1 m,
x = 1 m, y = 0 m, y = 1 m, z = 2 m, and
z = 3 m, has constant mass density ρ kg/m3

and it is rotating about the x–axis at a rate of
f rotations/sec. Find its kinetic energy.
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In Exercises 10–12, the mass density of a sphere of ra-
dius 1 m centered at the origin is given by ρ(x, y, z) =√
x2 + y2 kg/m3.

10. Find the mass of the sphere.

11. Find the center of mass of the sphere.

12. Find the kinetic energy of the sphere if it is
rotating about the z–axis at a rate of f rota-
tions/sec.

13. Find the volume of the solid of Exercise 4 of
Section 14.6.

14. Find the volume of the solid of Exercise 5 of
Section 14.6.

15. Find the volume of the solid of Exercise 6 of
Section 14.6.

16. Find the volume of the solid of Exercise 7 of
Section 14.6.

17. Find the volume of the solid of Exercise 8 of
Section 14.6.

18. Find the volume of the solid of Exercise 22 of
Section 14.6.

19. Find the volume of the solid of Exercise 23 of
Section 14.6.

20. Calculate
∫∫∫

S
(xyz) dV, where S is the solid of

Exercise 28 of Section 14.6.

21. Calculate
∫∫∫

S
(x+y+z) dV, where S is the solid

of Exercise 23 of Section 14.6.

22. Calculate
∫∫∫

S
x dV, where S is the solid of Ex-

ercise 28 of Section 14.6.

23. Calculate
∫∫∫

S
(x+y+z) dV, where S is the solid

of Exercise 29 of Section 14.6.

24. Let S be the solid consisting of the points that
satisfy both of the inequalities x2 + y2 ≤ 1 and
x2 + z2 ≤ 1. Find the volume of S.


