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4.4 Arc Length for Curves in Other Coordinate Systems 39

4.4 Arc Length for Curves in Other Coordi-
nate Systems

Arc Length for Polar Coordinates

Suppose that @(t) = (r(t),0(t)), a <t < b, is a parametrization
of a path in the plane given by polar coordinates. Then (z(t),y(t)) =

§(t) = P(ii(t)) is a parametrization for the path in rectangular coor-
dinates. The derivative is given by

d ds(t) cos(0(t)) —r(t)sin(6(t)) r'(t)
—(z(t),y(t)) = = :
dt Y dt ( sin(0(t))  r(t)cos(8(t)) ) ( )

We now have

15" ()1 = /(2" (1) + (' (1))?
= (((r'(t) cos(0(t)) — 0" (1)r (1) sin(6(t)))* + (¢ (t) sin(8(¢)) + 0/ (t)r(t) cos(6(1)))?)

Suppressing t and expanding, we obtain

1/2

157 = (1" cos® @ + 6"*r* sin® 6 — 2r’9’rcos€sin<9+r’251n20+0’2r200829+2r’9'rsin9(:osc9)1/2

= (7“’2(0052 6 + sin® ) + 61 (sin” 0 + cos” 0)) 2

= V'®)2+ (0'(t)r(t)>

Thus the length of the curve, where @(a) = A, @(b) = B, and the
image of 4 is C is given by

B b
L:/ﬂ d3:/ V(@) + (0 (t)r(t))? dt. (1)

Ac

EXAMPLE 1: Let C be the graph with polar equation r = k, for . .
0 <6 <. Thus C is a vertical line in rf—space. The graph P(C) is Figure 1. The graph P(C)

s the top hal the circle with
the top half of the circle with radius k. (See Figure 1.) :”fzdiues ;;p f of the circle wi
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Figure 2. The graph of the
curve in Example 2.

A parametrization for C' in polar coordinates is @(t) = (k,t),0 <
t < m. The arc length is given by ffc ds, where A = P(@(0)) = (k,0)

and B = P(i(r)) = (—k,0). 7/(t) = 0 and ¢'(¢) = 1. Using Equation
(1), we obtain

(—k,0) T
L = /(k;,o)c ds = /0 V(' ()2 + (0/()r(t))2 dt

= /»ﬂ@ﬁ:wh -
0

EXAMPLE 2: Let C be the graph with polar equation r = €,

for 0 < 6 < In2. A parametrization for C in polar coordinates is
i(t) = (e',t),0 < t < In2. Thus r'(t) = ¢’ and ¢'(t) = 1. The arc
length is given by ffc ds, where A = P(u(0)) = (1,0) and B =

—

P(u(In2)) = (2cos(In2),2sin(In2)). Using Equation (1), we obtain

(2cos(In2),2sin(In 2)) In2
L:/ s — VEOR + @ Or@)E di
(1,0) 0
In 2
= Vet 4 et dt
0
In2
= \@/ el dt
0
= 2V2-v2=12 n

Arc Length for Cylindrical Coordinates

In a similar fashion, we can compute arc length in cylindrical co-
ordinates in R3. If i(t) = (r(t),0(t), 2(t)) is a parametrization of a
path in R3, then (z(t), y(t), 2(t)) = 3(t) = C(@(t)) is a parametriza-
tion of the path in rectangular coordinates. The derivative is given
by

3 @p,20) = 2
cos(B(t)) —r(t)sin(8(t)) 0\ [ (1)
= sin(6(t)) r(t)cos(6(t)) O 0'(t)
0 0 1 2/ (t)
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Thus
2 (t) ' (t) cos(0(t)) — 0'(t)r(¢t) sin(6(t))
y'(t) | =5'(t) = '(t)sin(6(t)) + 6'(t)r(t) cos(0(t))
2 (t) 2'(t)

Suppressing the variable t,

15l = 2 +y? 2

= \/(r’ cos@ — 0'rsin )2 + (' sin 6 + 0'r cos 0)2 + 2/

= \/7"22 cos2 6 + 6212 8in2 0§ — 20r'0'r cos 6 sin O+

= r2sin 6 + 0”212 cos? 0 + 2r'0'r sin 6 cos 0 + 22

= \/r’2(cos2 6 4 sin? 0) + 62r2(cos? 0 + sin? 0) + /2

= V2 4202 4 2,

< —
Thus the length of the curve is given by
B b =
L= / dr = / \/r’Q(t) +72(t)0" + 27%(t) dt. (2)

Ac

T~

EXAMPLE 3: Let u(t) = (1,2nt,t), for 0 < t < 3, be a parametriza- C)z

tion of a helix in cylindrical coordinates. Find the length of the helix.
See Figure 3.

SOLUTION: 3(t) = C(i(t)). By Equation (2),
Figure 3. The heliz from Ez-

ample 3.

11 = /2 + 20820 + )

= V@2 +1=4n2+1

Thus the arc length is given by

3
L_/\/47r2+1dt—3 472 4+ 1. -
0

Arc Length for Spherical Coordinates

For spherical coordinates we follow a similar procedure. Let
i(t) = (p(t),o(t), 6(t)) be a parametrization of a path in R? in
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spherical coordinates. Then (z(t),y(t), 2(t)) = 3(t) = S(a(t)) will
be a parametrization of the path in rectangular coordinates. The
derivative is given by

d ds(t
4 a(t).p(e). 2(1) = 2
cos@(t)sinp(t) p(t)cosB(t) cosp(t) —p(t)sinf(t)sin P(t) p'(t)
= sinf(t)sin p(t) p(t)sinf(t) cosp(t)  p(t)cosO(t)sin ¢(t) &' (t)
cos ¢(t) —p(t) sin ¢(t) 0 o'(t)
Suppressing the variable t,
x’ p cosfsing + ¢'pcosfcosd — 0 psinfsin ¢
y | =5 = | p'sinfsing + ¢'psinfcosd + ' pcosfsin g
2! p cosp — ¢/ psin ¢

We now have

15" = 2 +y® + 22

= ((p' cos @sin ¢ + ¢’ pcos B cos ¢ — 0’ psin O sin ¢)>
+(p' sin@sin ¢ + ¢’ psin @ cos ¢ + 6’ p cos P sin ¢)>

+(p' cos ¢ — ' psin ¢)2)

— \/p/2 4 PQ¢/2 4 p29/2 gin2 ¢

By expanding and simplifying, we obtain

—

L- /AB = ")+ RO 1 P80 s 0(1) .

EXERCISES 4.4
4. r=cos?(0/2), 0<6<2r.

— Qin2
In Exercises 1-5, find the length, in xy—space, of the 5. r=sin"(6/2), 0<6<2m
graphs with the given polar equation. 6. Let i(t) = (p(t), ¢(t), 0(t)) describe, in spherical
Lr=e2 0<0<In3. coordinates, the location of a particle at time ¢.

Show that the magnitude of the particle’s veloc-

2. r=2cos(f), 0<6<2m ity in xyz—space is given by

3. r=3sec(f), 0<0<7T.

Vo) + 2 (06 (1) + 0 (D0 (1) sin? o).
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7. Find the arc length of the helix given (in zyz— 9. Let #(t) = (1,2wt,t),0 < t < 4, represent
coordinates) by the helix of Exercise 7 in cylindrical coordi-
nates.

7(t) = (cos(2nt), sin(27t), ), 0 < ¢ < 4,
a. Show that the helix can be represented as

using both the zyz—coordinate version of the
arc length integral and the cylindrical coordi-

nate version. a(t) = (m, Arcsin (

8. The path parametrized by

1
NG 1) ’2”>

(2rt) si (m) 0 <t <4, in spherical ppf—coordinates.
cos(27t) sin (&£

. ) ) ti b. Compute the arc length in spherical coor-
7(t) = | sin(2nt)sin (F) [, 0=t<4. dinates, and compare it to Exercise 7.

cos (1)

in zyz—coordinates describes a “spiral” along
the unit sphere centered at the origin, starting
at the north pole and descending to the south
pole. Compute the arc length of this path using
both xyz—coordinates and spherical coordinates.

4.5 Change of Area with Linear Transforma-
tions

In this section, we introduce the idea of the rate that a linear trans-
formation changes area or volume. First, it is helpful to recall some
facts about areas of parallelograms and volumes of parallelepipeds.

e Suppose that the vectors A and B are drawn emanating from a
common point in R3 forming adjacent edges of a parallelogram
P. Then ||A x B]| is the area of P.

e If the vectors A = (a1,b1) and B = (b, by) are drawn emanat-
ing from the origin in R? forming adjacent edges of a parallel-

ogram P, then ||(a1,az2,0) X (b1,be,0)|| = |aiba — agby]| is the
area of P.

det < Zl 22 > ‘ = |a1be — agby| (which is the area of P).
1 b2

e If the vectors A = (a1,a2,a3), B = (b1,be,b3) and C = (c1,c2,
c3) are drawn emanating from the origin and they do not lie
in a common plane (they are not co-planer), then they form
the adjacent edges of a parallelepiped, P. The magnitude of
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) u

- - —
T(u,v)= uA + vB

|

ﬁ
B

X

Figure 1. The image of the
unit square 0 < u < 1,
0<wv<1isthe pamllelogmm
with adjacent edges A and B
drawn emanating from the
origin.

their triple product is the volume of P. Computationally, the
volume of P is

a; ag as
|A(BXC)|: det b1 b2 bg
c1 C2 C3

The following theorem is be useful in this and subsequent sec-
tions.

Theorem 1

1oaz \ ar by
det(b1 b2>—det<a2 b2>

and
ar a2 as a1 b1
det| b1 by b3 =det| ay by co
cp c2 3 az bz c3

While this theorem is easily proven with direct computation,
it seems rather remarkable that the parallelepiped determined by
the vectors (a1, a9, as), (b1, ba,bs3), and (c1,ca,c3) has the same vol-
ume as the parallelepiped determined by (a1, b1, c1), (az,ba,c2), and
(as, b3, c3).

Let T be defined by
T(u,v) = uA + vB,

where A and B are vectors in R3. If A and B are drawn emanating
from the origin, they are adjacent sides of a parallelogram P with
area |A x B|. Let R be the unit square in uv-space with adjacent
sides the vectors (1,0) and (0,1). The area of R is one square unit,
and T(R) = P, which has an area of | A x B||. (See Figure 1.) Thus
T will take one square unit of area onto a parallelogram having area
|A x B|. It turns out that || A x B| can properly be thought of as
the rate that T changes area. If C is a set in uv—space, then the area
of T(C) is Area(C)||A x B||.
If A= (a1,az) and B = (b1, bs) are in R2, then

I(a1,a2.0) x (b1, b2, )| = larbs — ash| = |detDT|

gives the area of the parallelogram determined by A and B. Thus, if
Tis a linear transformation from R? into R, then |detD(T)| is the
rate that 7' changes area.
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In the same fashion, if T is a linear transformation from R? into
R3, then )det(Df)‘ is the rate that T changes volume.

To recapitulate:

o If f(r) = rA is a linear transformation from R into R™, then
|| A is the rate that T changes length.

e If T() = A7 is a linear transformation from R? into R2, then
|detAp| is the rate that T' changes area.

o If T(7) = Apis a linear transformation from R? into R3, then

Hf(l, 0) x T(0,1)|| is the rate that T changes area.

e If T(7) = ApFis a linear transformation from R3 into R3, then
|det Ap| is the rate that T' changes volume.

EXAMPLE 1: Let A = (a,0) and B = (0,b), where a and b are
positive numbers. Let T' be defined by

T(u,v) = uA +vB = (au, bv).

Let C be the unit circle u2 + v2 = 1. Then T(C) is the ellipse with
equation (%)2 + (%)2 = 1. See Figure 2. The area bounded by C is
7 and the area bounded by T'(C) is ||A x B||w = abr. Thus the arca

bounded by the ellipse (%)2 + (%)2 = 1 is abw. This agrees with the
value obtained by integration. u

EXAMPLE 2: Let € be the unit circle in uv-space.

2u + 3v
(a) Let T'(u,v) = u .Then T'(1,0) = (2,1,1) and 7(0, 1)
u+v
= (3,0,1). The rate that T' changes area s ||(2,1,1)x(3,0,1)| =
V/11. The area of f(@) is m/11.

(b) Let T'(u,v) = ( 2u : 30 ) . The rate that T changes arca is

2 3
e

Since the area of the unit circle is , the area of T'(C) is 37. ®

| det (Df) | =

45

- - —
T(u, v)= uA + vB

0, D) (a.0)

Figure 2. The image of the
unit disc u; +v? §2 1 is the
ellipse (£)"+ (¥)" <1
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Figure 3.
T(u,v,w) = (u,2v,3w) takes
the unit sphere onto the ellipse

ﬁ+%+§:L

EXAMPLE 3: Let 8 denote the surface bounded between the
graphs of v = u? and v = u. Let T(u,v) = (2u + v,v — u). Find the
area of the image of S.

SOLUTION: The area of § is fol u—uldu = %. The rate that T

det( 21 )‘ = 3. Thus the area of T(8) =

changes area is 1 1

CHOR

EXAMPLE 4: Let T be the transformation defined by

—

T(u,v,w) = (au, bv, cw).

Then T takes the unit sphere u? + v? + w? < 1 onto the ellipsoid E
with equation (g)2 + (%)2 + (%)2 < 1. See Figure 3 for the case that
a=1,b=2 and c = 3.

. 0
DT = b
0

S O 2
o O O

Thus T changes volume at a rate of abc, since the unit cube goes
onto a box with sides of length a, b, and c. Since the volume bounded
by a unit sphere is (%) 7, the volume bounded by the ellipsoid F is
%abcw. u

If T is a linear transformation from R? into R, then T takes an
object with area onto an object with no area. Therefore, the rate that
T changes area is zero. This is consistent with the fact that f(l, 0)
and T (0,1) must point in the same or opposite directions (they are
either a positive number, a negative number, or zero.) Indeed, if the
domain of T is R2, then:

e If the range of T is R!, then the rate that T changes area is
Z€ero.

e If the range of T is R? or R?, then 7/(0,1) x T(1,0) = 0 if and
only if the image of T is a line or the origin.

Similarly, if the domain of T is R3, then:

e If the range of T is either R or R?, then the rate that T changes
volume is zero.

e If the range is R? then detAz = 0 if and only if the image of T
is a plane, a line, or the origin.
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Summary

47

If T is a linear transformation from R? into R?, then the rate

that 7' changes area is |det(Az)| = |det(DT)|.

If T is a linear transformation from R3 into R3, then the rate
that 7' changes volume is |det(Az)| = |det(DT)|.

If T(u,v) = uA + vB is a linear transformation from R? into
R3, then the rate that T changes area is |4 x B]|.

If T is a linear transformation from R3 into R? or R, then the

rate that T changes volume is 0.

If T is a linear transformation from R? into R, then the rate

that 7' changes volume is 0.

EXERCISES 4.5

In Exercises 1-5, determine the rate that each trans-
formation changes area.

1.
2.
3.
4.
5.

—

T(u,v) = (3u, —2v).
T(u,v) = (u+ 3v,v — u).

T(u,v) = (u—v,20,u+v).
T(s,t) = (s —t,3t + 5, — 5).

—

T(u,v) =u+wv.

In Ezercises 6-10, determine the rate that each trans-
formation changes volume.

6.
7.
8.
9.
10.

T(u,v,w) = (2u — v,u+w,u+v+w).

N

r,s,t)=2r+s—t,r—s—3t,r+s+t).

S,

u,v,w) = (2u — w + v, u + v — 22w).

N,

(
(
(u,v,w) = (u+v+w,u+v+w).
(

N

u,v,w) =u—+ v+ w.

11.

12.

13.

14.

15.

Find a linear transformation from the uv—plane
into the zy—plane that takes the circle u% 4+ v? =
1 onto the ellipse E with equation 4x2 + 9y? =
36. Find the area bounded by E using the tech-
niques of this section.

Find the area bounded by the ellipse 222 +3y? =
5.

Find a linear transformation from wuvw-space
onto xyz—space that takes the unit sphere cen-
tered at the origin onto the ellipsoid E with
equation 3z2 4 4y? + 222 = 1. Find the volume
bounded by FE.

Let R be the rectangle bounded between the
lines u =2, u = —2, v =0, and v = 4 and let

T(u,v) = (—u+v,u—2v,2u+ 4v). Find the
area of T'(R).

Let R be the rectangle bounded between the
lines u = 2, u = =2, v = 2, and v = 6 and
let T(u,v) = (—u +v,2u — 2v). Find the area
of T(R).
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16.

17.

18.

Figure 1. | f(t+h)— f(t)]|

approximates the arc length

Let R be the rectangle bounded between the
lines u = 2, u = —2, v = 2, and v = 6 and
let T'(u,v) = (—u+v,u — 2v). Find the area of
T(R).

Let R be the region bounded between the graphs
of v = u? and v = u® and let T(u,v) =
(u+v,u — 2v,2u + v). Find the area of T(R).
Let R be the region bounded between the graphs
of u = v2 and u = v® and let T(u,v) =
(3u + v,u — 2v). Find the area of T(R).

4.6 The Jacobian

19.

20.

21.

Let C be the box bounded between the planes
u=2 u=-2v=3v=4 w=0, and
w = 10. Let T(u,v,w) = (—u + v + 2w, u — 2v,
2u + 4v + w). Find the volume of T(€).

Let € be the ellipsoid “72 + % + 22 =1, and
let T(u,v) = (u+ v+ 2w,u—2v,2u+ v+ w).
Find the volume of T'(&).

Let V be the solid obtained by rotating the re-
gion bounded between the u—axis and the graph
of v =u?+1, —1 < u < 1 about the u-axis. Let
f(u,v,w) = (u+v+2w,u—2v,2u+v+w).

Find the volume of T'(&).

When a function from R™ into R™ is not linear, then the rate that
the function changes area or volume becomes a local property. In
this section, we learn how a function changes area or volume at a

— —

from f(t) to f(t+ h).

L@l

point. This idea is not really new. Let f be a function from R into
R™. Recall the geometric interpretation of the derivative, in which
f”(t)|| represents the rate that f changes arc length at t. To see
that this is a reasonable interpretation, let [t,t + h| be an interval in
the domain of f. (See Figure 1.) If A is small, then || f(t + k) — f(t)]|

—

is an approximation of the length of f([t,¢ 4 h]), and

—

length of f([t,t+ h])

h—0 length of [t,t + h]
) = Fol
h—0 h

The rate that f changes length at t is called the Jacobian of f
at t. We denote the Jacobian of f at t by Jf(t). Notice that if ¢ is
a function from a subset of R™ into R and if 7 is a parametrization
for a curve C' with endpoints A and B and domain [a, b], then

b
g dif = / G(F(0)JFE) dt.

The Jacobian can also be defined for functions with domain in R™
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for any positive integer n. However, we define it only for functions
with domain in R? or R3.

Let D be a subset of R (uv-space), and let f be a function from
D into R? or R3. We want the Jacobian of f at (u,v) to be the rate
that f changes area at (u,v). Let Sj be the square having sides
of length h with vertices (u,v), (v + h,v), (u,v+ h) and (u + h,v +
h). Assume that S is a subset of D. We approximate the surface

f (Sp) with the parallelogram P, with the adjacent sides the vectors
flu+h,v)— f(u,v) and f(u,v+h)— f(u,v), drawn emanating from
f(u,v). See Figure 2.
;()u+h,v)
/ geges
f,——‘
feeeee
s
(u,v) (u+h,v) ) N \
ﬂu’v)

‘}?u,v+h)

Figure 2. The area of f(Sh) 1is approrimated by the area of P,.

— — —

The area of Py is ||(f(u+h,v)— _,()u.,v)) X (f(u,v+h)— f(u,v))].

The rate that f changes area at (u given by
o ArCR of By lim |(f(u+ h,v) — f(u,v)) X (f(u,v+h) — f(u,v))||
h—0 area of S}, h—0 h?

Definition: The Jacobian for Functions from R? to R? or R?

If f is a differentiable function from R? into R? or R3, we define
the Jacobian of f, denoted by f(u,v), to be

49



50

Of (u,v) " Of (u,v)
ou ov

‘ ‘ — —

It represents the rate that f changes area at (u,v).

Of course, if f is a function from a subset of R? into R, then

—

J f(u,v) = 0.

EXAMPLE 1: Let P be the polar transformation from ré-space
defined by
P(r,0) = (rcosf,rsinf).
The partial derivatives of P are
P P
887 = (cosf,sinf) and 2—9 = (—rsinf,rcos?h).

(r, 0+h) Thus the Jacobian of P is given by

oP oP

Jﬁ(’r,@): EX%

- ‘T”,

) 1h, 6) and is the rate that P changes area at (r,6). This fits the geometry
of the function very well. Recall that the area of a sector of a circle of
radius R is & (QAH), where A is the angle of the sector. If we consider
the square S in rf—space with sides of length h and one vertex (r, 6)

as in Figure 3, then 15(5) is the portion of a sector as in Figure 3.
The area of S is k2, and the area of P(S) is W - 7"27h =
w. Thus, [area of P(S)]/[ area of S] = W =r+8 Tt
follows that as h gets close to 0, then [area of P(S)]/[area of S] gets
close to 7. u

!l

P(r, 0+h) P(r+h, 0)

}?(r, 0)

) ‘ EXAMPLE 2: Find the Jacobian of A(u, v) = (u, u? cos(v), u® sin(v)).
Figure 3. The square S in

rO-space. The sector P(S) in

TY—space. SOLUTION:
gh(u, v) = (1,2ucos(v),2usin(v)).
u
gh(u, v) = (0,—u’sin(v),u”cos(v)).
v
on o 2u? cos?(v) + 2u3 sin?(v) 2u?
on. on _ 2 _ | _2
50 < By u2 cos(v) u2cos(v)

—u®sin(v) —u®sin(v)
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@x@ = V4ub + ut. -
ou  Ov

Let D be a subset of R?, and let f be a function from D into R3.
We are interested in how f changes volume at a point. We proceed
exactly as we did with areas and functions from R? into R2.

Let By be a square box with three adjacent edges the vectors
[(uw + h,v,w) — (u,v,w)], [(u,v + h,w) — (u,v,w)], and [(u,v,w +
h) — (u,v,w)]. Let Py, be the parallelepiped with three adjacent edges

o — — - —

[futh,v,w)— f(u,v,w)], [f(u, v+h, w)— fu,v,w)], and [f(u, v, w+

—

h) — f(u,v,w)]. We now approximate the volume of f(By,) with the
volume of Py, (see Figure 4).

Jh(u,v) =

N
(u, v, w+h) - fu+h, v, w)
> Sflu, v, w)
' flu, v+h, w)
|
| S 7/ 2R
O AN

KL

o« T

=

N
/,\

,,,,,,,,,,

—

Figure 4. The volume of f(By) is approzimated by the volume of a
parallelepiped.

The rate that f changes volume is given by

volume of Py
h—0 volume of Bj,

o1

o < _’(u + h,v,w) — f(u,v,w)) [( _'(u,v + h,w) — _’(u,v,w)) X < _’(u,v,w +h) — ﬁ(u,v,w))]
) h3

o < _'(u + h,v,w) — q(u,v,w)) ( q(u,v + h,w) — _‘(u,v,w)) . ( _‘(u, v,w+ h) — _'(u,v,w)
) h ' h h

ou \Ov Owl|’
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Definition: The Jacobian for Functions from R3 to R3

If f: R3 — R? is a éiﬂerentiable function, we define the Jacobian
of f, denoted by J f(u,v,w), to be

of (of  of
Ou \Ov oOw]/|’

It represents the rate that f changes volume at (u, v, w).

EXAMPLE 3: Let C. be the cylindrical transformation from
rfz—space into xyz—space defined by

—

C.(r,0,z) = (rcosf,rsinb, z).

Thus
86;(7“,9,2) _ 1
— T = (cosf,sinb,0),
aéz(r,H,z) _ ]
— 5 = (—rsind,rcosb,0),
and .
oC,(r,0,z)
— 5~ (0o,
so

Jéz(r, 0,z) =

oc. (oC. oe ]
or ‘\a6 “oz)| """
EXAMPLE 4: Let S be the spherical transformation defined by
- pcos(0) sin(¢)
S0 6,0) = | psin(8)sin(9)
pcos(d)

It is left as an exercise to show that JS(p, ¢, 0) = p? sin(¢)).
The following theorem follows from direct computation, and its
proof is left as an exercise (Exercises 27 and 28).

Theorem 1 Ifﬁ is a differentiable function from a subset of R?
into R? or from a subset of R? into R3, and 7 is a point in R? or
R3, then

JE(7) = |det D(F)|.

If F is a differentiable function and G(F) = F(7) 4+ 7, then JF =
JG.




4.6 The Jacobian

The second part of Theorem 1 is not terribly surprising. A rigid
motion such as a translation does not change area or volume. The
next example leads to Theorem 2.

EXAMPLE 5: Let T)(u,v) = ( 5“_7) > , and let Th(z,y) =
(2”“3@‘1 ) Then
rT+y+3
S = B 2(bu +v) = 3(—v) —1
TroTi(uv) = < (bu+v)+ (—v)+3

_ 10u+5v—1
o 5u+ 3 ‘

J(fg o fl)(u, v) = ‘dethz oTh (u, v)‘

10 5
= ‘det( 5 O>‘—25.

Also,
= 5 1
JT1(u,v) = |det < 0 —1 >’ =5
and
- 2 -3
JTs(z,y) = det( 11 )‘—5.
Observe that
J(,-Z:Q o z_-:1)(u’ U) = JTQ(SU’ y)‘]TQ(u’ U)' u

The observation in Example 5 is no coincidence. In general, the
following theorem tells us that if f o g is defined, then the rate that
f o g changes area (or volume) at 7 is the rate that § changes area
(or volume) times the rate that f changes area (or volume) at §(7).

Theorem 2
Suppose that F and H are functions from R3 into R3. Then
J(FoH)()=JF(H(F)JH(r).

Suppose that Fisa function from R? into R? and H s a func-
tion from R? into either R? or R®. Then J(F o H)(7) =
JF(H(T)JH(r).
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EXAMPLE 6: The polar function P changes area at a rate of r at
the point (r,0). The linear transformation f(w, y) = 2z + 3y, —z +
y, ) changes area at the rate of v/35. Then J(T o P)(r,0) = v/35|r].
If we compute J(T o P)(r,8) directly, we have

2r cos(6) + 3rsin(0)
(ToP)(r,0)=| —r cos(0) 4+ rsin(6) |
rcos(6)

and

0,z = 0 ,= =
= ||5,(Te P)(r,0) x =5(T o P)(r, 0)H
2 cos(f) + 3sin(h) —2rsin(6) + 3r cos(0)
= —cos(f) + sin(0) X rsin(f) + r cos(0)
cos(0) —rsin(6)

= ||(=r,3r,=5r)|| = V35r2 = V/35|r|.

EXERCISES 4.6

5.(2,0,2). 6. (2,2m,2).

In Exercises 1-4, find the Jacobian of the polar trans- 7. (2,-2m,2). 8. (—2,m —1).
formation P at the given point. (The angles are mea-

sured in radians. ) In Exercises 9-12, find the Jacobian of the spherical

transformation S(p, ®,0) at the given point. (The an-

1. (2,0). 2. (2,2m). gles are measured in radians.)
3. (27 —271') 4. (—2,7’1’). 9. (270’ %) ) 10. (_2771_’ %) )
In Exercises 5-8, find the Jacobian of the cylindrical 11, (-2,7, ). 12. (2,7, ).

transformation C. at the given point. (The angles are
measured in radians.)



4.6 The Jacobian

In Exercises 13-14, use Theorem 1 to find the Jacobian
for the given function

13. S(r,$,0) + (2,3,4).
14. P(r,0) + (—1,4).

In FExercises 15-17, you are given Jf and Jg, find

—

J(fog) at .
15. Jg(u,v) = |[3u—20| and J f(z,y) = |22 (y +2) —
:C| FO = (172) and g(FO) = (_1a4)
16. Jg(u,v) = VuZ + 0% and Jf(z,y) = |22 — xy).
7o = (—1,2) and §(7p) = (2, -1).

17. Jgu,v,w) = |w|Vu? +v% and Jf(z,y,2) =
|22 — 2y + 2|. 7o = (1,—1,2) and §(7y) =
(2,—-1,1).

Use Theorem 2 in FExercises 18-22 to find the Jacobian
for fo g P is the polar function and S is the spherical
transformation.

18. f =P and g(u,v) = (2u + 6v + 2, —u).
19. f=P and g(u,v) = (=2u+ 60+ 2,u +v —1).

20. fzgand glu,v,w) = (—2u+6v+2w—+1,u+
v+2w—1,u+v—2w).

21.
22.

23.
24.

25.
26.
27.

28.

29.

95

Flu,v) = (—2u+6v+2,u+v—1) and F= P.

—

flu,v,w) = (—2u+6v+2w+ Lu+v+2w—
1,u+ v —2w) and f:§

Show that J(S(p, $,0)) = p? sin(e).

—

Calculate J(f(u,v)) for f(u,v) =
(2 cos(u) sin(v), 2 sin(u) sin(v), 2 cos(v)).

What is the image of f of Exercise 247

Show that JE = J(F + 7).

Let F be a differentiable function from a subset
of R? into R2. Show that

J(ﬁ@hv)):ﬂdetLKPUkumy

Let F be a differentiable function from a subset
of R3 into R3. Show that

J(F(u,v,w)) = |det D(F)|, , .-

Suppose that f is a function from R? into R?
and § is a function from R? into R*. What can

—

be said about the relationship between J(f o §)

—

and the product J(f)J(g)?



