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4.4 Arc Length for Curves in Other Coordi-
nate Systems

Arc Length for Polar Coordinates

Suppose that ~u(t) = (r(t), θ(t)), a ≤ t ≤ b, is a parametrization
of a path in the plane given by polar coordinates. Then (x(t), y(t)) =
~s(t) = ~P (~u(t)) is a parametrization for the path in rectangular coor-
dinates. The derivative is given by

d

dt
(x(t), y(t)) =

d~s(t)
dt

=

 cos(θ(t)) −r(t) sin(θ(t))

sin(θ(t)) r(t) cos(θ(t))

 r′(t)

θ′(t)

 .

Thus x′(t)

y′(t)

 = ~s ′(t) =

 r′(t) cos(θ(t))− θ′(t)r(t) sin(θ(t))

r′(t) sin(θ(t)) + θ′(t)r(t) cos(θ(t))

 .

We now have

‖~s ′(t)‖ =
√

(x′(t))2 + (y′(t))2

=
(
((r′(t) cos(θ(t))− θ′(t)r(t) sin(θ(t)))2 + (r′(t) sin(θ(t)) + θ′(t)r(t) cos(θ(t)))2

)1/2
.

Suppressing t and expanding, we obtain

‖~s ′‖ =
(
r′2 cos2 θ + θ′2r2 sin2 θ − 2r′θ′r cos θ sin θ + r′2 sin2 θ + θ′2r2 cos2 θ + 2r′θ′r sin θ cos θ

)1/2

=
(
r′2(cos2 θ + sin2 θ) + θ′2r2(sin2 θ + cos2 θ)

)1/2
=

√
(r′(t))2 + (θ′(t)r(t))2.

Thus the length of the curve, where ~u(a) = ~A, ~u(b) = ~B, and the
image of ~u is C, is given by

L =
∫ ~B

~AC

ds =
∫ b

a

√
(r′(t))2 + (θ′(t)r(t))2 dt. (1)

Figure 1. The graph ~P (C)
is the top half of the circle with
radius k.

EXAMPLE 1: Let C be the graph with polar equation r = k, for
0 ≤ θ ≤ π. Thus C is a vertical line in rθ–space. The graph ~P (C) is
the top half of the circle with radius k. (See Figure 1.)
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A parametrization for C in polar coordinates is ~u(t) = (k, t), 0 ≤
t ≤ π. The arc length is given by

∫ ~B
~AC
ds, where ~A = ~P (~u(0)) = (k, 0)

and ~B = ~P (~u(π)) = (−k, 0). r′(t) = 0 and θ′(t) = 1. Using Equation
(1), we obtain

L =
∫ (−k,0)

(k,0)C

ds =
∫ π

0

√
(r′(t))2 + (θ′(t)r(t))2 dt

=
∫ π

0

√
k2 dt = πk.

EXAMPLE 2: Let C be the graph with polar equation r = eθ,

1.2 1.4

0.4

0.8

1.2

Figure 2. The graph of the
curve in Example 2.

for 0 ≤ θ ≤ ln 2. A parametrization for C in polar coordinates is
~u(t) = (et, t), 0 ≤ t ≤ ln 2. Thus r′(t) = et and θ′(t) = 1. The arc

length is given by
∫ ~B
~AC
ds, where ~A = ~P (u(0)) = (1, 0) and ~B =

~P (u(ln 2)) = (2 cos(ln 2), 2 sin(ln 2)). Using Equation (1), we obtain

L =
∫ (2 cos(ln 2),2 sin(ln 2))

(1,0)
d~s =

∫ ln 2

0

√
(r′(t))2 + (θ′(t)r(t))2 dt

=
∫ ln 2

0

√
e2t + e2t dt

=
√

2
∫ ln 2

0
et dt

= 2
√

2−
√

2 =
√

2.

Arc Length for Cylindrical Coordinates

In a similar fashion, we can compute arc length in cylindrical co-
ordinates in R3. If ~u(t) = (r(t), θ(t), z(t)) is a parametrization of a
path in R3, then (x(t), y(t), z(t)) = ~s(t) = ~C(~u(t)) is a parametriza-
tion of the path in rectangular coordinates. The derivative is given
by

d

dt
(x(t), y(t), z(t)) =

d~s(t)
dt

=

 cos(θ(t)) −r(t) sin(θ(t)) 0
sin(θ(t)) r(t) cos(θ(t)) 0

0 0 1

 r′(t)
θ′(t)
z′(t)

 .
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Thus x′(t)
y′(t)
z′(t)

 = ~s ′(t) =

 r′(t) cos(θ(t))− θ′(t)r(t) sin(θ(t))
r′(t) sin(θ(t)) + θ′(t)r(t) cos(θ(t))

z′(t)

 .

Suppressing the variable t,

‖~s ′‖ =
√
x′2 + y′2 + z′2

=
√

(r′ cos θ − θ′r sin θ)2 + (r′ sin θ + θ′r cos θ)2 + z′2

=
√
r′22 cos2 θ + θ′2r2 sin2 θ − 2r′θ′r cos θ sin θ+

= r′2 sin2 θ + θ′2r2 cos2 θ + 2r′θ′r sin θ cos θ + z′2

=
√
r′2(cos2 θ + sin2 θ) + θ′2r2(cos2 θ + sin2 θ) + z′2

=
√
r′2 + r2θ′2 + z′2.

Thus the length of the curve is given by

L =
∫ ~B

~AC

dr =
∫ b

a

√
r′2(t) + r2(t)θ′2 + z′2(t) dt. (2)

Figure 3. The helix from Ex-

ample 3.

EXAMPLE 3: Let ~u(t) = (1, 2πt, t), for 0 ≤ t ≤ 3, be a parametriza-
tion of a helix in cylindrical coordinates. Find the length of the helix.
See Figure 3.

Solution: ~s(t) = ~C(~u(t)). By Equation (2),

‖~s ′(t)‖ =
√
r′2(t) + r2(t)θ′2(t) + z′2(t)

=
√

(2π)2 + 1 =
√

4π2 + 1

Thus the arc length is given by

L =
∫ 3

0

√
4π2 + 1 dt = 3

√
4π2 + 1.

Arc Length for Spherical Coordinates

For spherical coordinates we follow a similar procedure. Let
~u(t) = (ρ(t), φ(t), θ(t)) be a parametrization of a path in R3 in
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spherical coordinates. Then (x(t), y(t), z(t)) = ~s(t) = ~S(~u(t)) will
be a parametrization of the path in rectangular coordinates. The
derivative is given by

d

dt
(x(t), y(t), z(t)) =

d~s(t)
dt

=

 cos θ(t) sinφ(t) ρ(t) cos θ(t) cosφ(t) −ρ(t) sin θ(t) sinφ(t)
sin θ(t) sinφ(t) ρ(t) sin θ(t) cosφ(t) ρ(t) cos θ(t) sinφ(t)

cosφ(t) −ρ(t) sinφ(t) 0

 ρ′(t)
φ′(t)
θ′(t)

 .

Suppressing the variable t, x′

y′

z′

 = ~s ′ =

 ρ′ cos θ sinφ+ φ′ρ cos θ cosφ− θ′ρ sin θ sinφ
ρ′ sin θ sinφ+ φ′ρ sin θ cosφ+ θ′ρ cos θ sinφ

ρ′ cosφ− φ′ρ sinφ

 .

We now have

‖~s ′‖ =
√
x′2 + y′2 + z′2

=
(
(ρ′ cos θ sinφ+ φ′ρ cos θ cosφ− θ′ρ sin θ sinφ)2

+(ρ′ sin θ sinφ+ φ′ρ sin θ cosφ+ θ′ρ cosφ sinφ)2

+(ρ′ cosφ− θ′ρ sinφ)2
)

=
√
ρ′2 + ρ2φ′2 + ρ2θ′2 sin2 φ.

By expanding and simplifying, we obtain

L =
∫ ~B

~AC

dr =
∫ b

a

√
ρ′2(t) + ρ2(t)φ′2(t) + ρ2(t)θ′2(t) sin2 φ(t) dt.

EXERCISES 4.4

In Exercises 1–5, find the length, in xy–space, of the
graphs with the given polar equation.

1. r = e2θ, 0 ≤ θ ≤ ln 3.

2. r = 2 cos(θ), 0 ≤ θ ≤ 2π.

3. r = 3 sec(θ), 0 ≤ θ ≤ π
4 .

4. r = cos2(θ/2), 0 ≤ θ ≤ 2π.

5. r = sin2(θ/2), 0 ≤ θ ≤ 2π.

6. Let ~h(t) = (ρ(t), φ(t), θ(t)) describe, in spherical
coordinates, the location of a particle at time t.
Show that the magnitude of the particle’s veloc-
ity in xyz–space is given by√

ρ′2(t) + ρ2(t)φ′2(t) + ρ2(t)θ′2(t) sin2 φ(t).
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7. Find the arc length of the helix given (in xyz–
coordinates) by

~r(t) = (cos(2πt), sin(2πt), t), 0 ≤ t ≤ 4,

using both the xyz–coordinate version of the
arc length integral and the cylindrical coordi-
nate version.

8. The path parametrized by

~r(t) =


cos(2πt) sin

(
tπ
4

)
sin(2πt) sin

(
tπ
4

)
cos
(
tπ
4

)
 , 0 ≤ t ≤ 4.

in xyz–coordinates describes a “spiral” along
the unit sphere centered at the origin, starting
at the north pole and descending to the south
pole. Compute the arc length of this path using
both xyz–coordinates and spherical coordinates.

9. Let ~r(t) = (1, 2πt, t), 0 ≤ t ≤ 4, represent
the helix of Exercise 7 in cylindrical coordi-
nates.

a. Show that the helix can be represented as

~u(t) =
(√

t2 + 1,Arcsin
(

1√
t2 + 1

)
, 2πt

)
,

0 ≤ t ≤ 4, in spherical ρφθ–coordinates.

b. Compute the arc length in spherical coor-
dinates, and compare it to Exercise 7.

4.5 Change of Area with Linear Transforma-
tions

In this section, we introduce the idea of the rate that a linear trans-
formation changes area or volume. First, it is helpful to recall some
facts about areas of parallelograms and volumes of parallelepipeds.

• Suppose that the vectors ~A and ~B are drawn emanating from a
common point in R3 forming adjacent edges of a parallelogram
P. Then ‖ ~A× ~B‖ is the area of P.

• If the vectors ~A = (a1, b1) and ~B = (b1, b2) are drawn emanat-
ing from the origin in R2 forming adjacent edges of a parallel-
ogram P, then ‖~(a1, a2, 0) ×~(b1, b2, 0)‖ = |a1b2 − a2b1| is the
area of P.

•
∣∣∣∣det

(
a1 a2

b1 b2

)∣∣∣∣ = |a1b2 − a2b1| (which is the area of P).

• If the vectors ~A = (a1, a2, a3), ~B = (b1, b2, b3) and ~C = (c1, c2,
c3) are drawn emanating from the origin and they do not lie
in a common plane (they are not co-planer), then they form
the adjacent edges of a parallelepiped, P. The magnitude of
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their triple product is the volume of P. Computationally, the
volume of P is

| ~A · ( ~B × ~C)| =

∣∣∣∣∣∣det

 a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
The following theorem is be useful in this and subsequent sec-

tions.

Theorem 1

det
(
a1 a2

b1 b2

)
= det

(
a1 b1
a2 b2

)
and

det

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 = det

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 .

While this theorem is easily proven with direct computation,
it seems rather remarkable that the parallelepiped determined by
the vectors (a1, a2, a3), (b1, b2, b3), and (c1, c2, c3) has the same vol-
ume as the parallelepiped determined by (a1, b1, c1), (a2, b2, c2), and
(a3, b3, c3).

T(u, v)= uA + vB
→                   →        →

A

B

→ 

u

v

y

x

→ 

Figure 1. The image of the
unit square 0 ≤ u ≤ 1,
0 ≤ v ≤ 1 is the parallelogram
with adjacent edges ~A and ~B
drawn emanating from the
origin.

Let ~T be defined by

~T (u, v) = u ~A+ v ~B,

where ~A and ~B are vectors in R3. If ~A and ~B are drawn emanating
from the origin, they are adjacent sides of a parallelogram P with
area ‖ ~A × ~B‖. Let R be the unit square in uv–space with adjacent
sides the vectors (1, 0) and (0, 1). The area of R is one square unit,
and ~T (R) = P, which has an area of ‖ ~A× ~B‖. (See Figure 1.) Thus
~T will take one square unit of area onto a parallelogram having area
‖ ~A × ~B‖. It turns out that ‖ ~A × ~B‖ can properly be thought of as
the rate that T changes area. If C is a set in uv–space, then the area
of ~T (C) is Area(C)‖ ~A× ~B‖.

If ~A = (a1, a2) and ~B = (b1, b2) are in R2, then

‖(a1, a2, 0)× (b1, b2, 0)‖ = |a1b2 − a2b1| =
∣∣∣detD~T

∣∣∣
gives the area of the parallelogram determined by ~A and ~B. Thus, if
~T is a linear transformation from R2 into R2, then |detD(~T )| is the
rate that ~T changes area.
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In the same fashion, if ~T is a linear transformation from R3 into
R3, then

∣∣∣det(D~T )
∣∣∣ is the rate that ~T changes volume.

To recapitulate:

• If ~T (r) = r ~A is a linear transformation from R into Rn, then
‖ ~A‖ is the rate that ~T changes length.

• If ~T (~r) = AT~r is a linear transformation from R2 into R2, then
|detAT | is the rate that ~T changes area.

• If ~T (~r) = AT~r is a linear transformation from R2 into R3, then∥∥∥~T (1, 0)× ~T (0, 1)
∥∥∥ is the rate that ~T changes area.

• If ~T (~r) = AT~r is a linear transformation from R3 into R3, then
|detAT | is the rate that ~T changes volume. T(u, v)= uA + vB

→                   →        →

u

v

y

x

(a, 0)(0, b)

Figure 2. The image of the
unit disc u2 + v2 ≤ 1 is the
ellipse

`
x
a

´2
+

`
y
b

´2 ≤ 1

EXAMPLE 1: Let ~A = (a, 0) and ~B = (0, b), where a and b are
positive numbers. Let ~T be defined by

~T (u, v) = u ~A+ v ~B = (au, bv).

Let C be the unit circle u2 + v2 = 1. Then ~T (C) is the ellipse with
equation

(
x
a

)2 +
(y
b

)2 = 1. See Figure 2. The area bounded by C is
π and the area bounded by ~T (C) is ‖ ~A× ~B‖π = abπ. Thus the area
bounded by the ellipse

(
x
a

)2 +
(y
b

)2 = 1 is abπ. This agrees with the
value obtained by integration.

EXAMPLE 2: Let C be the unit circle in uv–space.

(a) Let ~T (u, v) =

 2u+ 3v
u

u+ v

 . Then ~T (1, 0) = (2, 1, 1) and ~T (0, 1)

= (3, 0, 1). The rate that ~T changes area is ‖(2, 1, 1)×(3, 0, 1)‖ =√
11. The area of ~T (C) is π

√
11.

(b) Let ~T (u, v) =
(

2u+ 3v
u

)
. The rate that ~T changes area is

| det
(
D~T
)
| =

∣∣∣∣det
(

2 3
1 0

)∣∣∣∣ = 3.

Since the area of the unit circle is π, the area of ~T (C) is 3π.
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EXAMPLE 3: Let S denote the surface bounded between the
graphs of v = u2 and v = u. Let ~T (u, v) = (2u+ v, v − u). Find the
area of the image of S.

Solution: The area of S is
∫ 1

0 u − u2 du = 1
6 . The rate that ~T

changes area is
∣∣∣∣det

(
2 1
1 −1

)∣∣∣∣ = 3. Thus the area of ~T (S) =

(3) ∗
(

1
6

)
= 1

2 .

EXAMPLE 4: Let ~T be the transformation defined by
u 

v

w

x

y

z

T(u,v,w)=(u, 2v,3w)
→  

Figure 3.
~T (u, v, w) = (u, 2v, 3w) takes
the unit sphere onto the ellipse

x2 + y2

4
+ z2

9
= 1.

~T (u, v, w) = (au, bv, cw).

Then ~T takes the unit sphere u2 + v2 + w2 ≤ 1 onto the ellipsoid E
with equation

(
x
a

)2 +
(y
b

)2 +
(
z
c

)2 ≤ 1. See Figure 3 for the case that
a = 1, b = 2, and c = 3.

D~T =

 a 0 0
0 b 0
0 0 c

 .

Thus ~T changes volume at a rate of abc, since the unit cube goes
onto a box with sides of length a, b, and c. Since the volume bounded
by a unit sphere is

(
4
3

)
π, the volume bounded by the ellipsoid E is

4
3abcπ.

If ~T is a linear transformation from R2 into R, then ~T takes an
object with area onto an object with no area. Therefore, the rate that
~T changes area is zero. This is consistent with the fact that ~T (1, 0)
and ~T (0, 1) must point in the same or opposite directions (they are
either a positive number, a negative number, or zero.) Indeed, if the
domain of ~T is R2, then:

• If the range of ~T is R1, then the rate that ~T changes area is
zero.

• If the range of ~T is R2 or R3, then ~T (0, 1)× ~T (1, 0) = ~0 if and
only if the image of ~T is a line or the origin.

Similarly, if the domain of ~T is R3, then:

• If the range of ~T is either R or R2, then the rate that ~T changes
volume is zero.

• If the range is R3 then detA~T = 0 if and only if the image of ~T
is a plane, a line, or the origin.
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Summary

If ~T is a linear transformation from R2 into R2, then the rate
that ~T changes area is |det(A~T )| = |det(DT )|.

If ~T is a linear transformation from R3 into R3, then the rate
that ~T changes volume is |det(A~T )| = |det(DT )|.

If ~T (u, v) = u ~A + v ~B is a linear transformation from R2 into
R3, then the rate that ~T changes area is ‖ ~A× ~B‖.

If ~T is a linear transformation from R3 into R2 or R, then the
rate that ~T changes volume is 0.

If ~T is a linear transformation from R2 into R, then the rate
that ~T changes volume is 0.

EXERCISES 4.5
In Exercises 1–5, determine the rate that each trans-
formation changes area.

1. ~T (u, v) = (3u,−2v).

2. ~T (u, v) = (u+ 3v, v − u).

3. ~T (u, v) = (u− v, 2v, u+ v).

4. ~T (s, t) = (s− t, 3t+ s, t− s).

5. ~T (u, v) = u+ v.

In Exercises 6–10, determine the rate that each trans-
formation changes volume.

6. ~T (u, v, w) = (2u− v, u+ w, u+ v + w).

7. ~T (r, s, t) = (2r + s− t, r − s− 3t, r + s+ t).

8. ~T (u, v, w) = (2u− w + v, u+ v − 22w).

9. ~T (u, v, w) = (u+ v + w, u+ v + w).

10. ~T (u, v, w) = u+ v + w.

11. Find a linear transformation from the uv–plane
into the xy–plane that takes the circle u2 +v2 =
1 onto the ellipse E with equation 4x2 + 9y2 =
36. Find the area bounded by E using the tech-
niques of this section.

12. Find the area bounded by the ellipse 2x2+3y2 =
5.

13. Find a linear transformation from uvw–space
onto xyz–space that takes the unit sphere cen-
tered at the origin onto the ellipsoid E with
equation 3x2 + 4y2 + 2z2 = 1. Find the volume
bounded by E.

14. Let R be the rectangle bounded between the
lines u = 2, u = −2, v = 0, and v = 4 and let
~T (u, v) = (−u+ v, u− 2v, 2u+ 4v). Find the
area of ~T (R).

15. Let R be the rectangle bounded between the
lines u = 2, u = −2, v = 2, and v = 6 and
let ~T (u, v) = (−u+ v, 2u− 2v). Find the area
of ~T (R).
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16. Let R be the rectangle bounded between the
lines u = 2, u = −2, v = 2, and v = 6 and
let ~T (u, v) = (−u+ v, u− 2v). Find the area of
~T (R).

17. Let R be the region bounded between the graphs
of v = u2 and v = u3 and let ~T (u, v) =
(u+ v, u− 2v, 2u+ v). Find the area of ~T (R).

18. Let R be the region bounded between the graphs
of u = v2 and u = v3 and let ~T (u, v) =
(3u+ v, u− 2v). Find the area of ~T (R).

19. Let C be the box bounded between the planes
u = 2, u = −2, v = 3, v = 4, w = 0, and
w = 10. Let ~T (u, v, w) = (−u+ v + 2w, u− 2v,
2u+ 4v + w). Find the volume of ~T (C).

20. Let E be the ellipsoid u2

4 + y2

9 + z2 = 1, and
let ~T (u, v) = (u+ v + 2w, u− 2v, 2u+ v + w).
Find the volume of ~T (E).

21. Let V be the solid obtained by rotating the re-
gion bounded between the u–axis and the graph
of v = u2+1, −1 ≤ u ≤ 1 about the u–axis. Let
~T (u, v, w) = (u+ v + 2w, u− 2v, 2u+ v + w).
Find the volume of ~T (E).

4.6 The Jacobian

When a function from Rn into Rm is not linear, then the rate that
the function changes area or volume becomes a local property. In
this section, we learn how a function changes area or volume at a
point. This idea is not really new. Let ~f be a function from R into
Rn. Recall the geometric interpretation of the derivative, in which
‖~f ′(t)‖ represents the rate that ~f changes arc length at t. To see
that this is a reasonable interpretation, let [t, t+ h] be an interval in
the domain of ~f . (See Figure 1.) If h is small, then ‖~f(t+h)− ~f(t)‖
is an approximation of the length of ~f([t, t+ h]), and

f(t)
f(t+h)

f(t+h)-f(t)
→          →

→
→

Figure 1. ‖~f(t+ h)− ~f(t)‖
approximates the arc length
from ~f(t) to ~f(t+ h).

‖~f ′(t)‖ = lim
h→0

length of ~f([t, t+ h])
length of [t, t+ h]

= lim
h→0

‖~f(t+ h)− ~f(t)‖
h

.

The rate that ~f changes length at t is called the Jacobian of ~f
at t. We denote the Jacobian of ~f at t by J ~f(t). Notice that if g is
a function from a subset of Rn into R and if ~r is a parametrization
for a curve C with endpoints ~A and ~B and domain [a, b], then∫ ~B

~AC

g d~r =
∫ b

a
g(~r(t))J~r(t) dt.

The Jacobian can also be defined for functions with domain in Rn
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for any positive integer n. However, we define it only for functions
with domain in R2 or R3.

Let D be a subset of R2 (uv–space), and let ~f be a function from
D into R2 or R3. We want the Jacobian of ~f at (u, v) to be the rate
that ~f changes area at (u, v). Let Sh be the square having sides
of length h with vertices (u, v), (u + h, v), (u, v + h) and (u + h, v +
h). Assume that Sh is a subset of D. We approximate the surface
~f(Sh) with the parallelogram Ph with the adjacent sides the vectors
~f(u+h, v)− ~f(u, v) and ~f(u, v+h)− ~f(u, v), drawn emanating from
~f(u, v). See Figure 2.

f(u,v)

f(u+h,v)

f(u,v+h)

→

→

→(u,v)                     (u+h,v)

(u, v+h)
f
→

Figure 2. The area of ~f(Sh) is approximated by the area of Ph.

The area of Ph is ‖(~f(u+h, v)− ~f(u, v))×(~f(u, v+h)− ~f(u, v))‖.
The rate that ~f changes area at (u, v) is given by

lim
h→0

area of Ph
area of Sh

= lim
h→0

‖(~f(u+ h, v)− ~f(u, v))× (~f(u, v + h)− ~f(u, v))‖
h2

= lim
h→0

∥∥∥∥∥ ~f(u+ h, v)− ~f(u, v)
h

×
~f(u, v + h)− ~f(u, v)

h

∥∥∥∥∥
=

∥∥∥∥∥∂ ~f(u, v)
∂u

× ∂ ~f(u, v)
∂v

∥∥∥∥∥ .
Definition: The Jacobian for Functions from R2 to R2 or R3

If f is a differentiable function from R2 into R2 or R3, we define
the Jacobian of ~f , denoted by ~f(u, v), to be
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∥∥∥∥∥∂ ~f(u, v)
∂u

× ∂ ~f(u, v)
∂v

∥∥∥∥∥ .
It represents the rate that ~f changes area at (u, v).

Of course, if ~f is a function from a subset of R2 into R, then
J ~f(u, v) = 0.

EXAMPLE 1: Let ~P be the polar transformation from rθ–space
defined by

~P (r, θ) = (r cos θ, r sin θ).

The partial derivatives of ~P are

∂ ~P

∂r
= (cos θ, sin θ) and

∂ ~P

∂θ
= (−r sin θ, r cos θ).

Thus the Jacobian of ~P is given by

J ~P (r, θ) =

∥∥∥∥∥∂ ~P∂r × ∂ ~P

∂θ

∥∥∥∥∥ = |r|,

and is the rate that ~P changes area at (r, θ). This fits the geometry
of the function very well. Recall that the area of a sector of a circle of
radius R is R2(∆θ)

2 , where ∆θ is the angle of the sector. If we consider
the square S in rθ–space with sides of length h and one vertex (r, θ)
as in Figure 3, then ~P (S) is the portion of a sector as in Figure 3.

(r, θ)          (r+h, θ)

(r, θ+h)

P
→

P(r, θ)
→

P(r, θ+h)
→

P(r+h, θ)
→

Figure 3. The square S in
rθ–space. The sector ~P (S) in
xy–space.

The area of S is h2, and the area of ~P (S) is (r+h)2h
2 − r2h

2 =
(2rh+h2)h

2 . Thus, [area of ~P (S)]/[ area of S] = (2rh+h2)h/2
h2 = r+ h

2 . It
follows that as h gets close to 0, then [area of ~P (S)]/[area of S] gets
close to r.

EXAMPLE 2: Find the Jacobian of ~h(u, v) = (u, u2 cos(v), u2 sin(v)).

Solution:

∂~h

∂u
(u, v) = (1, 2u cos(v), 2u sin(v)) .

∂~h

∂v
(u, v) =

(
0,−u2 sin(v), u2 cos(v)

)
.

∂~h

∂u
× ∂~h

∂v
=

 2u3 cos2(v) + 2u3 sin2(v)
−u2 cos(v)
−u2 sin(v)

 =

 2u3

−u2 cos(v)
−u2 sin(v)


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J~h(u, v) =

∥∥∥∥∥∂~h∂u × ∂~h

∂v

∥∥∥∥∥ =
√

4u6 + u4.

Let D be a subset of R3, and let ~f be a function from D into R3.
We are interested in how ~f changes volume at a point. We proceed
exactly as we did with areas and functions from R2 into R2.

Let Bh be a square box with three adjacent edges the vectors
[(u + h, v, w) − (u, v, w)], [(u, v + h,w) − (u, v, w)], and [(u, v, w +
h)−(u, v, w)]. Let Ph be the parallelepiped with three adjacent edges
[~f(u+h, v, w)− ~f(u, v, w)], [~f(u, v+h,w)− ~f(u, v, w)], and [~f(u, v, w+
h)− ~f(u, v, w)]. We now approximate the volume of ~f(Bh) with the
volume of Ph (see Figure 4).

f(u, v, w)
→ f(u+h, v, w)

→

f(u, v+h, w)
→

f(u, v, w+h)
→

(u, v, w)

(u+h, v, w) (u, v+h, w)

(u, v, w+h)

f
→

Figure 4. The volume of ~f(Bh) is approximated by the volume of a
parallelepiped.

The rate that ~f changes volume is given by

lim
h→0

volume of Ph
volume of Bh

= lim
h→0

∣∣∣∣∣∣
(
~f(u+ h, v, w)− ~f(u, v, w)

) [(
~f(u, v + h,w)− ~f(u, v, w)

)
×
(
~f(u, v, w + h)− ~f(u, v, w)

)]
h3

∣∣∣∣∣∣
= lim

h→0

∣∣∣∣∣∣
(
~f(u+ h, v, w)− ~f(u, v, w)

)
h

·


(
~f(u, v + h,w)− ~f(u, v, w)

)
h

×

(
~f(u, v, w + h)− ~f(u, v, w)

)
h

∣∣∣∣∣∣

=

∣∣∣∣∣∂ ~f∂u ·
(
∂ ~f

∂v
× ∂ ~f

∂w

)∣∣∣∣∣ .
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Definition: The Jacobian for Functions from R3 to R3

If ~f : R3 → R3 is a differentiable function, we define the Jacobian
of ~f , denoted by J ~f(u, v, w), to be∣∣∣∣∣∂ ~f∂u ·

(
∂ ~f

∂v
× ∂ ~f

∂w

)∣∣∣∣∣ .
It represents the rate that ~f changes volume at (u, v, w).

EXAMPLE 3: Let ~Cz be the cylindrical transformation from
rθz–space into xyz–space defined by

~Cz(r, θ, z) = (r cos θ, r sin θ, z).

Thus

∂ ~Cz(r, θ, z)
∂r

= (cos θ, sin θ, 0),

∂ ~Cz(r, θ, z)
∂θ

= (−r sin θ, r cos θ, 0),

and
∂ ~Cz(r, θ, z)

∂z
= (0, 0, 1),

so

J ~Cz(r, θ, z) =

∣∣∣∣∣∂ ~Cz∂r
·

(
∂ ~Cz
∂θ
× ∂~c

∂z

)∣∣∣∣∣ = |r|.

EXAMPLE 4: Let S be the spherical transformation defined by

~S(ρ, φ, θ) =

 ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)
ρ cos(φ)

 .

It is left as an exercise to show that J ~S(ρ, φ, θ) = ρ2 sin(φ).
The following theorem follows from direct computation, and its

proof is left as an exercise (Exercises 27 and 28).

Theorem 1 If ~F is a differentiable function from a subset of R2

into R2 or from a subset of R3 into R3, and ~r is a point in R2 or
R3, then

J ~F (~r) =
∣∣∣det D(~F )|~r

∣∣∣ .
If ~F is a differentiable function and ~G(~r) = ~F (~r) + ~r0, then J ~F =
J ~G.
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The second part of Theorem 1 is not terribly surprising. A rigid
motion such as a translation does not change area or volume. The
next example leads to Theorem 2.

EXAMPLE 5: Let ~T1(u, v) =
(

5u+ v
−v

)
, and let ~T2(x, y) =(

2x− 3y − 1
x+ y + 3

)
. Then

~T2 ◦ ~T1(u, v) =
(

2(5u+ v)− 3(−v)− 1
(5u+ v) + (−v) + 3

)

=
(

10u+ 5v − 1
5u+ 3

)
.

J(~T2 ◦ ~T1)(u, v) =
∣∣∣detD~T2 ◦ ~T1(u, v)

∣∣∣
=

∣∣∣∣det
(

10 5
5 0

)∣∣∣∣ = 25.

Also,

J ~T1(u, v) =
∣∣∣∣det

(
5 1
0 −1

)∣∣∣∣ = 5

and

J ~T2(x, y) =
∣∣∣∣det

(
2 −3
1 1

)∣∣∣∣ = 5.

Observe that

J(~T2 ◦ ~T1)(u, v) = JT2(x, y)JT2(u, v).

The observation in Example 5 is no coincidence. In general, the
following theorem tells us that if ~f ◦ ~g is defined, then the rate that
~f ◦ ~g changes area (or volume) at ~r is the rate that ~g changes area
(or volume) times the rate that ~f changes area (or volume) at ~g(~r).

Theorem 2
Suppose that ~F and ~H are functions from R3 into R3. Then
J(~F ◦ ~H)(~r) = J ~F ( ~H(~r))J ~H(r).

Suppose that ~F is a function from R2 into R2 and ~H is a func-
tion from R2 into either R2 or R3. Then J(~F ◦ ~H)(~r) =
J ~F ( ~H(~r))J ~H(r).
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EXAMPLE 6: The polar function ~P changes area at a rate of r at
the point (r, θ). The linear transformation ~T (x, y) = (2x+ 3y,−x+
y, x) changes area at the rate of

√
35. Then J(~T ◦ ~P )(r, θ) =

√
35|r|.

If we compute J(~T ◦ ~P )(r, θ) directly, we have

(~T ◦ ~P )(r, θ) =


2r cos(θ) + 3r sin(θ)

−r cos(θ) + r sin(θ)

r cos(θ)

 ,

and

J(~T ◦ ~P )(r, θ)

=
∥∥∥∥ ∂∂r (~T ◦ ~P )(r, θ)× ∂

∂θ
(~T ◦ ~P )(r, θ)

∥∥∥∥
=

∥∥∥∥∥∥∥∥∥


2 cos(θ) + 3 sin(θ)

− cos(θ) + sin(θ)

cos(θ)

 ×

−2r sin(θ) + 3r cos(θ)

r sin(θ) + r cos(θ)

−r sin(θ)


∥∥∥∥∥∥∥∥∥

= ‖(−r, 3r,−5r)‖ =
√

35r2 =
√

35|r|.

EXERCISES 4.6

In Exercises 1–4, find the Jacobian of the polar trans-
formation ~P at the given point. (The angles are mea-
sured in radians.)

1. (2, 0). 2. (2, 2π).

3. (2,−2π). 4. (−2, π).

In Exercises 5–8, find the Jacobian of the cylindrical
transformation ~Cz at the given point. (The angles are
measured in radians.)

5. (2, 0, 2). 6. (2, 2π, 2).

7. (2,−2π, 2). 8. (−2, π,−1).

In Exercises 9–12, find the Jacobian of the spherical
transformation S(ρ, φ, θ) at the given point. (The an-
gles are measured in radians.)

9.
(
2, 0, π4

)
. 10.

(
−2, π, π4

)
.

11.
(
−2, π4 ,

7π
4

)
. 12.

(
2, π3 ,

7π
4

)
.
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In Exercises 13–14, use Theorem 1 to find the Jacobian
for the given function

13. ~S(r, φ, θ) + (2, 3, 4).

14. ~P (r, θ) + (−1, 4).

In Exercises 15–17, you are given J ~f and J~g, find
J(~f ◦ ~g) at ~r0.

15. J~g(u, v) = |3u−2v| and J ~f(x, y) = |x2(y+ 2)−
x|. ~r0 = (1, 2) and ~g(~r0) = (−1, 4).

16. J~g(u, v) =
√
u2 + v2 and J ~f(x, y) = |x2 − xy|.

~r0 = (−1, 2) and ~g(~r0) = (2,−1).

17. J~g(u, v, w) = |w|
√
u2 + v2 and J ~f(x, y, z) =

|x2 − xy + z|. ~r0 = (1,−1, 2) and ~g(~r0) =
(2,−1, 1).

Use Theorem 2 in Exercises 18–22 to find the Jacobian
for ~f ◦~g. ~P is the polar function and ~S is the spherical
transformation.

18. ~f = ~P and ~g(u, v) = (2u+ 6v + 2,−u).

19. ~f = ~P and ~g(u, v) = (−2u+ 6v + 2, u+ v − 1).

20. ~f = ~S and ~g(u, v, w) = (−2u+ 6v + 2w+ 1, u+
v + 2w − 1, u+ v − 2w).

21. ~f(u, v) = (−2u+ 6v + 2, u+ v − 1) and ~g = ~P .

22. ~f(u, v, w) = (−2u + 6v + 2w + 1, u + v + 2w −
1, u+ v − 2w) and ~f = ~S.

23. Show that J(~S(ρ, φ, θ)) = ρ2 sin(φ).

24. Calculate J(~f(u, v)) for ~f(u, v) =
(2 cos(u) sin(v), 2 sin(u) sin(v), 2 cos(v)).

25. What is the image of ~f of Exercise 24?

26. Show that J ~F = J(~F + ~r0).

27. Let ~F be a differentiable function from a subset
of R2 into R2. Show that

J(~F (u, v)) = |det D(F )
∣∣
(u,v)

.

28. Let ~F be a differentiable function from a subset
of R3 into R3. Show that

J(~F (u, v, w)) = |det D(F )
∣∣
(u,v,w)

.

29. Suppose that ~f is a function from R3 into R3

and ~g is a function from R2 into R3. What can
be said about the relationship between J(~f ◦ ~g)
and the product J(~f)J(~g)?


