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Chapter 4

Change of Coordinate
Systems

In Section 3.6 we viewed a function from Rn into Rn as a vector
field. We can also use functions from Rn into Rn to transform one
coordinate system into another. This is not unlike changing a lens on
a camera in order to get a clearer picture. We can sometimes get a
better description of a set in Rn by changing the way we describe the
points in Rn. We can also use functions from subsets of Rn into Rm

to describe interesting geometric objects in Rm, much in the same
way as we used functions from intervals into Rm to describe simple
curves. In this chapter we introduce some special functions from Rn

into Rm, and explore some of their properties.

4.1 Translations and Linear Transformations
W(t)

r0

W(t)+r0

Figure 1. The unit circle
translated by ~r0.

A translation is a function from Rn onto Rn defined by adding a
constant to every point in Rn. Translations are used to shift objects
in Rn in a rigid fashion without any rotations. The formal definition
is

Definition: Translations

The statement that the function ~T is a translation by ~r0 means
that ~r0 is a vector and ~T (~r) = ~r + ~r0.

EXAMPLE 1: The image of the wrapping function ~W (t) is the
unit circle centered at the origin. The composition of ~W followed by
a translation by ~r0 yields the function ~f(t) = ~W (t) + r0, the image
of which is the unit circle centered at ~r0. See Figure 1.
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4 Chapter 4. Change of Coordinate Systems

EXAMPLE 2: The image of the function ~r(t) = t~v is the line
with direction ~v that contains the origin. If we follow ~r(t) with a
translation by ~r0, we have ~h(t) = ~r(t) + ~r0 = ~vt + ~r0, the image of
which is the line with direction ~v that contains the point ~r0. See
Figure 2.

vt

r0

vt+r0

→

→

→

Figure 2. The line t~v
translated by ~r0.

sA+tB
sA

tB 
A

B

→     →

→→
→

→

Figure 3. The plane
determined by vectors ~A
and ~B.

EXAMPLE 3: Consider two vectors ~A and ~B drawn emanating
from the origin that do not have the same direction. That is, ~A× ~B 6=
~0. Then these vectors determine a plane containing the origin. In
fact, if ~r is any point on that plane, then we can find a pair of
numbers (s, t) so that ~r = s ~A + t ~B, as illustrated in Figure 3. This
defines a function ~h(s, t) = s ~A+t ~B from the st−plane onto the plane
determined by the vectors ~A and ~B.

This is one example of a type of function called a linear function
or linear transformation that is used extensively in mathematical
modeling.

Definition: Linear Functions

A function ~T from Rn into Rm is said to be a linear function or a
linear transformation if for each u in R and each ~r1 and ~r2 in Rn,

• ~T (~r1) + ~T (r2) = ~T (~r1 + ~r2) (Superposition Property)

• ~T (u~r1)) = u~T (~r1). (Scalability Property)

EXAMPLE 4: Show that the function f(x) = 3x from R to R is
linear.

Solution: First, we check for the superposition property.

f(x1 + x2) = 3(x1 + x2) = 3x1 + 3x2 = f(x1) + f(x2).

Next, for scalability.

f(ux) = 3ux = u(3x) = uf(x).

EXAMPLE 5: Even though the graph of the function f(x) =
3x+ 1 is a line, f is not linear. To show this, let x1 = 1 and x2 = 1.
Then f(1) + f(1) = (3 + 1) + (3 + 1) = 8. However, f(2) = 7. Thus
f(1+1) 6= f(1)+f(1), and f fails to have the superposition property.

We could easily dedicate the rest of this book to the study of
linear transformations and still not exhaust the material that is im-
portant to the engineer or scientist. However, in this text we only
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introduce techniques for constructing linear transformations and con-
centrate on some special properties of these functions. The following
theorem is our working characterization of linear transformations.

Theorem 1 The function ~T : Rn → Rm is a linear transforma-
tion if and only if there are vectors ~A1, ~A2, . . . , ~An in Rm such
that

~T (x1, x2, . . . , xn) = x1
~A1 + x2

~A2 + . . .+ xn ~An.

Proof: We argue only the case that Rn = Rm = R3. The general
case is similar. First, suppose that ~T is a linear transformation from
R3 into R3. Let ~A1 = ~T (1, 0, 0), ~A2 = ~T (0, 1, 0), and ~A3 = ~T (0, 0, 1).
Then from the definition,

~T (x1, x2, x3) = ~T (x1, 0, 0) + ~T (0, x2, x3)

= ~T (x1, 0, 0) + (~T (0, x2, 0) + ~T (0, 0, x3))

= x1
~T (1, 0, 0) + x2

~T (0, 1, 0) + x3
~T (0, 0, 1)

= x1
~A1 + x2

~A2 + x3
~A3.

Suppose that ~A = (ax, ay, az), ~B = (bx, by, bz), and ~C = (cx, cy, cz)
are vectors and ~T is defined by ~T (x, y, z) = x ~A + y ~B + z ~C. Let u
and v be numbers, and let ~r1 = (x1, y1, z1) and ~r2 = (x2, y2, z2) be
vectors.

T
→

T(1, 0) 
     = (1, 2)

T(0, 1)= (0, 1)

T(1, 1) = (2, 3)
→

→

→

(1, 1)

Figure 4.

~T (u, v) = u(1, 2) + v(0, 1)

= (u, 2u+ v).

~T (u~r1 + v~r2) = ~T (u(x1, y1, z1) + v(x2, y2, z2))

= ~T (ux1 + vx2, uy1 + vy2, uz1 + vz2)

= (ux1 + vx2) ~A+ (uy1 + vy2) ~B + (uz1 + vz2)~C

= (ux1
~A+ uy1

~B + uz1 ~C) + (vx2
~A+ vy2

~B + vz2 ~C)

= u(x1
~A+ y1

~B + z1 ~C) + v(x2
~A+ y2

~B + z2 ~C)

= u~T (~r1) + v ~T (~r2).

This shows that ~T is linear.

EXAMPLE 6: Let ~T be defined by ~T (u, v) = u(1, 2) + v(0, 1) =
(u, 2u + v). In this example, ~A = (1, 2) and ~B = (0, 1). It helps to
visualize the function by realizing that ~T is that linear transformation
that takes (1, 0) onto (1, 2) and (0, 1) onto (0, 1), and it takes the unit
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square with adjacent edges the vectors ı̂ and ̂ onto the parallelogram
with adjacent edges ~A and ~B. See Figure 4.

EXAMPLE 7:

(a) Let ~T be defined by ~T (u, v) = u(1, 0) + v(0,−1) = (u,−v). We
could equivalently define ~T with the pair of equations x = u
and y = −v. The linear transformation ~T reflects the plane
across the x–axis. See Figure 5.a.

(b) Let ~T be defined by T (u, v) = u(0, 1) + v(1, 0) = (v, u). The
linear transformation ~T reflects the plane across the line y = x.
See Figure 5.b.

T
→

(u, v)

T(u, v) = (u, -v)
→

Figure 5.a The transformation ~T (u, v) = (u,−v).

T
→

(u, v)

T(u, v)
→

Figure 5.b The transformation ~T (u, v) = (v, u).

EXAMPLE 8:

(a) ~T (u, v, w) = u(1, 1, 1)+v(1, 0, 0)+w(1, 0, 1) = (u+v+w, u, u+
w) defines a linear transformation from R3 into R3.

(b) ~T (u, v, w) = u(1, 2) + v(0, 1) + w(1,−1) = (u+ w, 2u+ v − w)
defines a linear transformation from R3 into R2.

(c) ~T (u, v) = u(1, 0,−1) + v(1, 2, 1) = (u+ v, 2v,−u+ v) defines a
linear transformation from R2 into R3.

Important Facts about Linear Transformations

(a) If ~T is a linear transformation from R into Rn and ~T (1) = ~A,
then ~T (u) = u ~A.

(b) If ~T is a linear transformation from R2 into Rn and ~T (1, 0) =
~A and ~T (0, 1) = ~B, then ~T (u, v) = u ~A+ v ~B.

(c) If ~T is a linear transformation from R3 into Rn and
~T (1, 0, 0) = ~A, ~T (0, 1, 0) = ~B and ~T (0, 0, 1) = ~C, then
~T (u, v, w) = u ~A+ v ~B + w~C.
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EXAMPLE 9:

(a) Let ~T be defined by

~T (u, v, w) =

 3u+ 5v + 2w
u− 2v − w
u− v + w



= u

 3
1
1

+ v

 5
−2
−1

+ w

 2
−1

1

 .

The domain of ~T is R3 and the range is R3. Let ~A = ~T (1, 0, 0) =
(3, 1, 1), ~B = ~T (0, 1, 0) = (5,−2,−1), and ~C = ~T (0, 0, 1) =
(2,−1, 1). Then

~T (u, v, w) = u ~A+ v ~B + w~C.

(b) Let ~T be defined by

~T (u, v) =

 −2u+ v
3u

5u− v

 = u

 −2
3
5

+ v

 1
0
−1

 .

The domain of ~T is R2 and the range is R3. Let ~A = ~T (1, 0) =
(−2, 3, 5) and ~B = ~T (0, 1) = (1, 0,−1). Then

~T (u, v) = u ~A+ v ~B.

(c) Let ~T be defined by

~T (u, v, w) = (3u+ 2v − w).

The domain of ~T is R3 and the range is R. Let ~A = ~T (1, 0, 0) =
(3), ~B = ~T (0, 1, 0) = (2) and ~C = ~T (0, 0, 1) = (−1) (notice
that we are thinking of members of R as vectors). Then

~T (u, v, w) = u ~A+ v ~B + w~C.

Example 9 points to a compact way to describe any given linear
transformation. A matrix is a rectangular array of numbers. A n×m–
matrix is a matrix with n rows and m columns.

EXAMPLE 10:
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(a) A =
(

3 2 −1
2 0 −6

)
is a 2× 3–matrix.

(b) A =
(

0 −1
2 0

)
is a 2× 2–matrix.

(c) A =
(

3 2 −1
)

is a 1× 3–matrix.

(d) A =

 3
2
−1

 is a 3× 1–matrix.

A 1 × n–matrix as in Example 10.c is a row matrix while a n ×
1–matrix is a column matrix. If ~A is a vector, then we write [A]
to denote the column matrix corresponding to ~A. Thus, if ~A =

(−1, 2, 3), then [A] =

 −1
2
3

 .

If ~T is a linear transformation from R2 into Rn, and ~T (1, 0) = ~A
and ~T (0, 1) = ~B, then ~T (u, v) = u ~A+ v ~B. We let A~T be the matrix
with n rows and 2 columns, the first column of which is [A] and the
second column of which is [B].

A~T =
(

[A] [B]
)
.

In Example 9(b), ~T was defined by ~T (u, v) = u ~A + v ~B, where
~A = ~T (1, 0) = (−2, 3, 5) and ~B = ~T (0, 1) = (1, 0,−1). Then A~T is
the matrix

A~T =
(

[A] [B]
)

=

 −2 1
3 0
5 −1

 .

Notice that the matrix A~T contains all of the information neces-
sary to work with the linear transformation ~T .

We define multiplication of A~T with the column vector
(
u
v

)
by

A~T

(
u
v

)
= ~T (u, v) = u ~A+ v ~B.

In Example 9(a), ~T was defined by ~T (u, v, w) = u ~A+ v ~B + w~C,
where ~A = ~T (1, 0, 0) = (3, 1, 1), ~B = ~T (0, 1, 0) = (5,−2,−1), and
~C = ~T (0, 0, 1) = (2,−1, 1). The matrix A~T is

A~T =
(

[A] [B] [C]
)

=

 3 5 2
1 −2 −1
1 −1 1

 .
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In this case, we define multiplication of A~T with the column vec-

tor

 u
v
w

 by

A~T

 u
v
w

 = ~T (u, v, w) = u ~A+ v ~B + w~C.

EXAMPLE 11: Let ~T be the linear transformation with matrix

A~T =

 2 0
3 −1
0 3

 .

Then ~T (u, v) = A~T

(
u
v

)
= u(2, 3, 0) + v(0,−1, 3).

Suppose that ~T (u, v, w) = u ~A + v ~B + w~C is a linear transfor-
mation from R3 into Rn, where ~T (1, 0, 0) = ~A, ~T (0, 1, 0) = ~B and
~T (0, 0, 1) = ~C. As in the case of functions from R2 into Rn, we can
completely describe a linear transformation from R3 into Rn with a
matrix A~T with n rows and 3 columns, the columns of which are the
vectors ~A, ~B, and ~C.

A~T =
(

[A] [B] [C]
)
.

Exactly as before, we define multiplication of A~T with the column

vector

 u
v
w

 by

A~T

 u
v
w

 = ~T (u, v, w) = u ~A+ v ~B + w~C.

EXAMPLE 12: The matrix for the transformation in Exam-
ple 9(a) is

A~T =

 3 5 2
1 −2 −1
1 −1 1

 .

Thus

~T (u, v, w) = A~T

 u
v
w

 = u

 3
1
1

+ v

 5
−2
−1

+ w

 2
−1

1

 .
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EXAMPLE 13: Let ~T be the linear transformation with matrix

A~T =

 1 −1 2
1 0 −1
2 −3 2

 .

Then

~T (u, v, w) = A~T

 u
v
w

 = u

 1
1
2

+ v

 −1
0
−3

+ w

 2
−1

2

 .

EXAMPLE 14: Let ~T be the linear transformation with matrix

A~T =
(

1 0 −1
2 −3 2

)
.

Then

~T (u, v, w) = A~T

 u
v
w

 = u

(
1
2

)
+ v

(
0
−3

)
+ w

(
−1

2

)
.

Observation: Notice that the number of columns in A~T is the di-
mension of the domain of ~T , and the number of rows in A~T is the
dimension of the range. Thus, if A~T has 2 rows and 3 columns, then
~T is a function from R3 into R2. If A~T has 3 rows and 2 columns,
then ~T is a function from R2 into R3. If A~T has 2 rows and 2 columns,
then ~T is a function from R2 into R2.

In Example 3, we used a linear transformation to parametrize
a plane determined by two vectors emanating from the origin. If
~T (u, v) = u ~A+v ~B is any linear transformation from R2 into R3 such
that ~A× ~B 6= 0, then ~T parametrizes the plane determined by ~A and
~B, when drawn emanating from the origin. (The test ~A× ~B 6= ~0 is a
check to be sure that the two vectors do not have the same direction.)
It is also true that any plane containing the origin is the image of a
linear transformation.

EXAMPLE 15: Find a linear transformation that takes the
u, v−plane onto the plane with equation 2x + 3y − 4z = 0. We
proceed by solving for x of the variables in terms of y and z to ob-
tain x = 2z − 3y

2 . We let y(u, v) = u and z(u, v) = v, which gives
x(u, v) = 2v − 3u

2 , and we have the coordinate functions for

~T (u, v) =

 2v − 3/2u
u
v

 .
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Theorem 2 If P is the plane with equation ax+ by+ cz = 0, then
P is the image of a linear transformation with domain R2.

Proof: At least one of the coordinates of (a, b, c) is not zero. Assume
a 6= 0. Then we solve ax + by + cz = 0 for x in terms of y and z to
obtain x = −

(
b
a

)
y −

(
c
a

)
z. As in Example 13, we let y(u, v) = u

and z(u, v) = v and define

~T (u, v) =

 − ( ba)u− ( ca) vu
v

 .

P is parametrized by ~T .
If a = 0, then we can solve for either y in terms of x and z or z

in terms of x and y.
We have described planes in R3 that contain the origin as the

images of linear transformations with domain R2. Now, suppose
that ~A and ~B are vectors in R3, drawn emanating from ~r0, such that
~A× ~B 6= 0. The vector ~A× ~B is normal to the plane and ~r0 is a point
in the plane. ~T (u, v) = u ~A+v ~B parametrizes a plane containing the
origin, which is parallel to P. We can translate the image of ~T (u, v)
to P by composing ~T with the translation by ~r0 to obtain

~h(u, v) = ~T (u, v) + ~r0.

EXAMPLE 16: The vectors ~A = (1, 2,−1) and ~B = (0, 1, 1) are
drawn emanating from ~C = (1, 1, 2) to define a plane P. Find a
linear transformation ~T with domain R2 and a vector ~r0 such that
~h(u, v) = ~T (u, v) + ~r0 parametrizes P.

P1

P

A

B

C
→

→

→

Figure 6. The plane P is a
translation of P1 by the vector
~C = (1, 1, 2).

Solution: First, we parametrize the plane determined by the vec-
tors ~A and ~B drawn emanating from the origin. Then we translate
this plane by the vector ~C. See Figure 6. Let

A~T =

 1 0
2 1
−1 1

 .

Then

~T (u, v) = A~T

(
u
v

)
=

 1 0
2 1
−1 1

( u
v

)
=

 u
2u+ v
−u+ v


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is a parametrization of the plane P1 containing the origin that is
parallel to P. Now we compose ~T with a translation by ~r0 = ~C to
obtain

~h(~r) = A~T~r + ~C =

 1 0
2 1
−1 1

( u
v

)
+

 1
1
2



=

 u+ 1
2u+ v + 1
−u+ v + 2

 .

EXAMPLE 17: Find a linear transformation composed with a
translation that parametrizes the plane x− y + z = 2.

Solution: First, we parametrize the plane x − y + z = 0 as in
Example 15 with ~T (u, v) = (u− v, u, v) and then translate the result
with any point in the plane, say (0, 0, 2), to obtain ~h(u, v) = (u −
v, u, v + 2).

Summary

~T is a linear transformation from Rn into Rm if and only if A~T is a
m× n–matrix (n columns and m rows.)

If ~T (u1, . . . , un) = u1
~A1+· · ·+un ~An, then A~T =

(
[A1] . . . [An]

)
.

Any plane in R3 can be parametrized with a function of the form
~h(~r) = A~r + ~r0, where A is a matrix with two columns and three
rows and ~r0 is an arbitrary point in the plane.



4.1 Translations and Linear Transformations 13

EXERCISES 4.1

In Exercises 1–6, determine the domain and range of
the linear transformation associated with the matrix.

1.
(

1 1
2 −1

)
. 2.

 1 −1 0
0 2 −1
1 0 1

 .

3.
(

1 −1 0
)
. 4.

 1 0
2 −1
1 0

 .

5.
(

1 −1 0
0 2 −1

)
. 6.

(
1 −1

)
.

In Exercises 7–14, find vectors ~A and ~B, such that
~T (u, v) = u ~A+v ~B, and find the associated n×2 matrix
A~T .

7. ~T (u, v) = (2u, 3v).

8. ~T (u, v) = (u+ v, u− v).

9. ~T (u, v) =
(
3u− 6v, v2 −

u
3

)
.

10. ~T (u, v) =
(
−v, u− v

2

)
.

11. ~T (u, v) = (−v, u− v).

12. ~T (u, v) = (u− v, 2u+ 6v).

13. ~T (u, v) =
(
v − 6u,−u− v, u+ v

3

)
.

14. ~T (u, v) = (6u+ 3v).

In Exercises 15–22, find vectors ~A, ~B, and ~C such that
~T (u, v, w) = u ~A + v ~B + w~C, and find the associated
n× 3 matrix A~T .

15. ~T (u, v, w) = (u+ v + w, u− v + w, v − w).

16. ~T (u, v, w) = (u− 3v, 3u+ v − πw).

17. ~T (u, v, w) = (6u+ 3v − w,−u− v − w, u− w).

18. ~T (u, v, w) = (5w, v + w, v).

19. ~T (u, v, w) = (u+ v + w, u− v).

20. ~T (u, v, w) = (u− v + w, u+ v − 6w).

21. ~T (u, v, w) = (u+ 6v − 10w).

22. ~T (u, v, w) = (15u− 6v + 2w).

In Exercises 23–30, find the matrix for the linear
transformation ~T .

23. ~T takes (0, 1) onto (1, 3), and (1, 0) onto (−1, 5).

24. ~T takes (1, 0, 0) onto (1, 3), (0, 1, 0) onto (−1, 5),
and (0, 0, 1) onto (−1, 0).

25. ~T takes (1, 0, 0) onto (1, 3, 2), (0, 1, 0) onto
(−1, 5, 1), and (0, 0, 1) onto (−1, 0, 3).

26. ~T takes (1, 0, 0) onto −1, (0, 1, 0) onto 1, and
(0, 0, 1) onto 3.

27. ~T takes (1, 0, 0) onto 1, (0, 1, 0) onto 2, and
(0, 0, 1) onto 3.

28. ~T takes ı̂ onto ̂, ̂ onto −ı̂ and k̂ onto −k̂.

29. ~T reflects the plane over the x–axis.

30. ~T reflects the plane over the line x = −y.

In Exercises 31–36, determine which of the planes is
the image of a linear transformation. Where appropri-
ate, find a linear transformation that parametrizes the
plane.

31. P is the graph of x+ y + z = 0.

32. P is the graph of x− 2y + 3z = 0.

33. P is the graph of x+ 2y + 3z = 3.

34. The vector (1, 2, 3) is normal to P, and P con-
tains the origin.

35. The vector (1, 2, 3) is normal to P, and P con-
tains (1, 1, 1).

36. The vector (1, 2, 3) is normal to P, and P con-
tains (−1,−1, 1).

In Exercises 37–42, find a function of the form
~h(s, t) = A

(
s
t

)
+ (x0, y0, z0) , such that the plane P

is the image of ~h.

37. P is the graph of x+ y + z = 3.

38. P is the graph of x+ 2y + 3z = −1.

39. P is the graph of x− 2y + 3z = 3.39)
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40. The vector (1, 2, 3) is normal to P, and P con-
tains (1, 1, 1).

41. The vector (1, 2, 3) is normal to P, and P con-
tains (1,−1, 2).

42. The vector (1, 2, 3) is normal to P, and P con-
tains (−1,−1, 1).

In Exercises 43–47, prove that ~T is not linear by show-
ing that ~T (~r + ~s) 6= ~T (~r) + ~T (~s) for some choice of
vectors ~r and ~s.

43. ~T (u, v) = (3u− v + 1, 2u+ v − 6).

44. ~T (u, v, w) = (u− 2v + 3, u+ w).

45. ~T (u, v) = (u2 + 2u, u− v).

46. ~T (u, v, w) = (u2 + v2, u+ v − 2, u+ v).

47. ~T (u, v) = (sinu, cos v).

In Exercises 48–52, ~Tθ is the transformation that ro-
tates the plane θ radians, as in Figure 7.

48. Find the unit vectors ê1 and ê2 in terms of θ.

49. Find the matrix for ~Tθ.

50. Find ~Tπ/4(1, 1).

51. Find ~Tπ/2(1, 1).

52. Find ~T−π/4(1, 1).

Tθ(x,y)
e2

e1

θ

→
^

^θ

Figure 7.

53. Let ~T (u, v) = (u,−v) be the linear transfor-
mation that reflects the plane over the x–axis.
Show that ~T ◦ ~Tπ/4 6= ~Tπ/4 ◦ ~T (that is, a ro-
tation followed by a reflection gives a different
result than does a reflection followed by a rota-
tion.)

54. Let ~T be a function from R2 into R2. Show that
if each of its coordinate functions is linear, ~T is
linear.

55. Let ~T be a linear transformation from R2 into
R2. Show that each of its coordinate functions
is linear.

56. Show that if the function ~T from Rn into Rm is
linear, then ~T (~0) = ~0. (Hint: ~T (~0 +~0) = ~T (~0).)

4.2 Other Transformations

There are a number of functions or transformations that are not
linear but still quite important. Linear transformations have the
nice property that they take planes onto single points, lines, or other
planes. However, it may be helpful to change our point of view more
drastically.

Suppose ~F is a function from uvw–space into xyz–space, given
by

~F (u, v, w) =

 x(u, v, w)
y(u, v, w)
z(u, v, w)

 .
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We define

∂ ~F

∂u

∣∣∣
(u,v,w)

=


∂x
∂u

∂y
∂u

∂z
∂u


∣∣∣∣
(u,v,w)

,
∂ ~F

∂v

∣∣∣
(u,v,w)

=


∂x
∂v

∂y
∂v

∂z
∂v


∣∣∣∣
(u,v,w)

,

and

∂ ~F

∂w

∣∣∣
(u,v,w)

=


∂x
∂w

∂y
∂w

∂z
∂w


∣∣∣∣
(u,v,w)

.

The Polar Transformation

EXAMPLE 1: Let ~P be the function from rθ–space defined by

~P (r, θ) = (r cos θ, r sin θ).

Figure 1
~P (r, θ) is the point r

units from the origin on the line
with inclination θ.

P(r ,θ)

θ

→

P
→

(r ,θ)

r x

yθ

r

The function ~P is called the polar transformation. If ~P (r, θ) =
(x, y), then (r, θ) are called polar coordinates for (x, y), and (x, y) are
the rectangular coordinates for (r, θ).

The transformation P takes a horizontal line of the form θ = θ0
in rθ–space onto a line passing through the origin in xy–space, as
illustrated in Figure 2.a. Similarly, P takes a vertical line of the
form r = r0 in rθ–space onto a circle of radius r0 in xy–space, as in
Figure 2.b.

θ0

P
→

θ=θ0

r x

yθ

Figure 2.a The line θ = θ0 in rθ–space goes
onto the line containing the origin with
inclination θ0 in xy–space.

P
→

r x

yθ

r=r0

Figure 2.b The line r = r0 in rθ–space goes
onto the circle centered at the origin with radius
r0 in xy–space.
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The partial derivatives of ~P are

∂ ~P

∂r
= (cos θ, sin θ) and

∂ ~P

∂θ
= (−r sin θ, r cos θ).

P
→

r x

yθ P(r0,θ0)
→

(r0,θ0)

Figure 3.a As the position in rθ–space moves
in the positive direction on the line r = r0, its
image in xy–space moves counterclockwise
around the circle of radius r0.

x

y

∂P
θ

→

(r0,θ0)

Figure 3.b
∂ ~P
∂θ

˛̨̨
(r0,θ0)

is a vector tangent to
the circle
x2 + y2 = r20
at the point
~P (r0, θ0).

Consider the geometry associated with the partial derivatives of
P . Figure 3.a illustrates that as the position in rθ–space moves in
the positive direction on the line r = r0, its image in xy–space moves
counterclockwise around the circle of radius r0. Thus, ∂ ~P

∂θ

∣∣∣
(r0,θ0)

is

a vector tangent to the circle x2 + y2 = r20 at the point ~P (r0, θ0) =
r0 (cos(θ0), r0 sin(θ0)) , as illustrated in Figure 3.b.

As illustrated in Figures 4.a and 4.b, we can discern the geometry
of ∂P

∂r by inspection.
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P
→

r x

yθ
P(r0,θ0)
→

(r0,θ0)

Figure 4.a As the position in rθ–space moves
in the positive direction on the line θ = θ0, its
image in xy–space moves out the line with
inclination θ0.

x

y

∂P
r

→

(r0,θ0)

Figure 4.b ∂ ~P
∂r

˛̨̨
(r0,θ0)

is a vector emanating from
the point (r0, θ0). The
vector points away from
the origin.

The Cylindrical Transformation

θ

Cz(r, θ, z)
→

Cz(r, θ, 0)
→

Figure 5.a The point
~Cz(r, θ, z).

r

z

x
y

z

Cz

Cz(r=3)

Cz(r=2)
Cz(r=1)

r=3
r=2

r=1

θ

→

→

→

→

Figure 5.b Images
(in xyz–space) of planes that
are parallel to the
θz–coordinate plane in
rθz–space.

EXAMPLE 2: Let ~Cz be the function from rθz–space into xyz–
space, defined by

~Cz(r, θ, z) = (r cos θ, r sin θ, z).

In Figure 5.a we plot the image of the point (r, θ, z).
The function ~Cz is called the cylindrical transformation (about

the z–axis) because it takes planes of the form r = r0 onto the
lateral surface of the cylinder x2 +y2 = r0. Figure 5.b illustrates how
planes parallel to the rθ–plane in rθz–space are carried into xyz–
space by ~Cz. If ~Cz(r, θ, z) = (x, y, z), then (r, θ, z) are the cylindrical
coordinates for (x, y, z), and (x, y, z) are the rectangular coordinates
for (r, θ, z).

Thus

∂ ~Cz(r, θ, z)
∂r

= (cos θ, sin θ, 0),

∂ ~Cz(r, θ, z)
∂θ

= (−r sin θ, r cos θ, 0), and

∂ ~Cz(r, θ, z)
∂z

= (0, 0, 1).
The geometry associated with the cylindrical transformation and

its partial derivatives is illustrated in Figures 6.a, 6.b, and 6.c.
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(r0, θ0, z0)

∂Cz
r

→

(r0, θ0, z0)

Cz
→

r

z

θ

Figure 6.a As the point moves away from
(r0, θ0, z0) in the r direction holding θ and z fixed,
~Cz(r, θ, z) moves directly away from the z-axis.

(r0, θ0, z0)

∂Cz
θ

→

(r0, θ0, z0)
Cz
→

r

z

θ

Figure 6.b As the point moves away from
(r0, θ0, z0) in the θ direction holding r and z fixed,
~Cz(r, θ, z) moves in direction tangent to the circle
parametrized by

~h(θ) =

0@ r0 cos(θ)
r0 sin(θ)

z0

1A = ~Cz(r0, θ, z0)

(r0, θ0, z0)

∂Cz
z

→

(r0, θ0, z0)
Cz
→

r

z

θ

Figure 6.c As the point moves away from
(r0, θ0, z0) in the z direction holding r and θ fixed,
~Cz(r, θ, z) moves in the z direction in xyz–space.

The Spherical Transformation

EXAMPLE 3: Let

~S(ρ, φ, θ) =

 ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)
ρ cos(φ)

 .

~S is called the spherical transformation since ~S takes the plane ρ = ρ0

in ρφθ–space onto a sphere of radius ρ0. See Figure 7.

Figure 7

The point ~S(ρ, φ, θ) =

0@ ρ cos(θ) sin(φ)
ρ sin(θ) sin(φ)
ρ cos(φ)

1A .
θ

ϕ

ρ

The spherical transformation appears formidable. However, as we
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illustrate in Figures 8.a and 8.b, the derivation of the function is a
straightforward application of elementary trigonometry and geome-
try. ρ is the length of the hypotenuse of the right triangle ~O ~A~B. The
z–coordinate of ~S(ρ, φ, θ) is ρ cos(φ) since ~O ~A is the side adjacent φ
in the right triangle ~O ~A~B. The line segment ~O ~C is the hypotenuse
of the right triangle ~O ~C ~D, and its length is ρ sin(φ). ~0 ~D is the side
adjacent the angle θ. Therefore, the x–coordinate of ~S(ρ, φ, θ) is
cos(θ)(ρ sin(φ)). In the same way, ~B ~C is the side opposite θ in the
triangle ~O ~C ~D, and the y–coordinate of ~S(ρ, φ, θ) is sin(θ)(ρ sin(φ)).

ϕ

ρ sin(ϕ) A

B

D                                   C

0

→ →

→

→

→

ρ cos(ϕ) 

Figure 8.a The z–coordinate of
~S(ρ, φ, θ) is cos(φ).

ϕ

A

B

D                                   C

0

→ →

→

→

→

θ

 sin(θ)(ρ sin(ϕ))

 cos(θ)(ρ sin(ϕ))

Figure 8.b The x–coordinate of ~S(ρ, φ, θ) is
cos(θ)(ρ sin(φ)), and the y–coordinate of
~S(ρ, φ, θ) is sin(θ)(ρ sin(φ)).

Figures 9.a–c. illustrate how ~S takes planes parallel to the coor-
dinate planes in uvw–space into xyz–space. If ~S(ρ, φ, θ) = (x, y, z),
then (ρ, φ, θ) are called spherical coordinates for (x, y, z), and (x, y, z)
are called the rectangular coordinates for (ρ, φ, θ).

r

φ

 x

y

z
θ

S
→

Figure 9.a ~S takes planes parallel to the
θφ–coordinate plane onto spheres.

r

φ

S→

x

y

z
θ

Figure 9.b ~S takes planes parallel to the
rθ–coordinate plane onto cones.
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θ1 θ2
θ3

θ=θ1

θ=θ2

θ=θ3

S
→

Figure 9.c ~S takes planes parallel to the
rφ–coordinate plane onto planes containing the
z–axis, like pages of a book.

The geometry associated with the partial derivatives of the spher-
ical transformation is illustrated in Figures 10.1, 10.b, and 10.c.

(r0, φ0, θ0)

∂S
  r

→

(r0, φ0, θ0)S
→

r

θ

φ
x

y

z
∂

Figure 10.a As the point moves away from
(r0, φ0, θ0) in the r direction holding φ and θ fixed,
~S(r, φ, θ) moves radially away from the origin.

(r0, φ0, θ0)

∂S
∂φ

→

(r0, φ0, θ0)S
→

r

θ

φ
x

y

z

Figure 10.b As the point moves away from
(r0, φ0, θ0) in the θ direction holding r and φ fixed,
~S(r, φ, θ) moves in direction tangent to the latitude

parametrized by ~h(θ) = (r0, φ0, θ).

(r0, φ0, θ0)

∂S
∂θ

→

(r0, φ0, θ0)S
→

r

θ

φ
x

y

z

Figure 10.c As the point moves away from
(r0, φ0, θ0) in the φ direction holding r and θ fixed,
~S(r, φ, θ) moves around the longitude parametrized by
~h(φ) = (r0, φ, θ0).
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EXERCISES 4.2

In Exercises 1–9, plot the points in xy–space that have
the given polar coordinates, and compute the partial
derivatives of the polar transformation ~P at the given
point. (The angles are measured in radians.)

1. (2, 0). 2. (2, 2π). 3. (2,−2π).

4. (−2, π). 5.
(
5, π4

)
. 6.

(
−5, 5π

4

)
.

7.
(
5,−π4

)
. 8.

(
1, π6

)
. 9.

(
−1, 7π

6

)
.

In Exercises 10–14, find all polar coordinates for the
given point in xy–space. (r2 = x2 + y2, and, if x 6= 0,
tan(θ) = y

x .)

10.
(
0, 1

2

)
. 11.

(
1
2 , 0
)
. 12. (1, 1).

13. (−1,
√

3). 14. (0, 0).

In Exercises 15–23, find the point in xyz–space that
has the given cylindrical coordinates, and compute par-
tial derivatives of the cylindrical transformation ~Cz at
the given point. (The angles are measured in radians.)

15. (2, 0, 2). 16. (2, 2π, 2). 17. (2,−2π, 2).

18. (−2, π,−1). 19.
(
5, π4 , 2

)
. 20.

(
−5, 5π

4 , 2
)
.

21.
(
5,−π4 , 3

)
. 22.

(
1, π6 ,−1

)
23.

(
−1, 7π

6 ,−1
)

In Exercises 24–28, find the cylindrical coordinates
for the given point in xyz–space. (r2 = x2 + y2, and,if
x 6= 0, tan(θ) = y

x .)

24.
(
0, 1

2 , 2
)
. 25.

(
1
2 , 0, 2

)
. 26. (1, 1, 1).

27. (−1,
√

3,−1). 28. (0, 0, 2).

In Exercises 29–36, the points are given in spherical
coordinates. Find the corresponding rectangular co-
ordinates, and the partial derivatives of the spherical
transformation ~S at the given point.

29.
(
2, 0, π4

)
. 30.

(
−2, π, π4

)
.

31.
(
−2, 0, 7π

4

)
. 32.

(
2, π, 7π

4

)
.

33.
(
2, π,−π4

)
. 34.

(
1, π4 ,

π
4

)
.

35.
(
−1, 5π

4 ,
π
4

)
. 36.

(
1, 5π

4 ,−
π
4

)
.

In Exercises 37–40, find values for (ρ, φ, θ) such that
(i) ρ ≥ 0, (ii) 0 ≤ θ < 2π, and (iii) 0 ≤ φ ≤ π and
such that ~S(ρ, φ, θ) is the given point. (ρ2 = x2 + y2 +
z2, z = ρ cos(φ), and tan(θ) = y

x .)

37. (1, 0, 1). 38. (1, 1, 1).

39. (1,
√

2, 1). 40. (
√

6, 2, 2
√

2)

41. Show that if ~p is a point on the plane ρ = ρ0

in ρφθ–space, then ~S takes ~p onto a point in
the sphere of radius ρ0 centered at the origin in
xyz–space.

42. Show that if ~q is on the sphere of radius ρ0,
centered at the origin, then there is a point ~p in
the plane ρ = ρ0 in ρφθ–space such that
~S(~p) = ~q.

43. Show that the partial derivatives of the polar
function are mutually perpendicular at (r, θ)
provided that r 6= 0.

44. Show that the partial derivatives of the cylider-
ical transformation are mutually perpendicular
at (r, θ, z) provided that r 6= 0.

45. Show that the partial derivatives of the spher-
ical transformation are mutually perpendicular
at (r, φ, θ) provided that r 6= 0.

In Exercises 46–57, sketch the set satisfying the given
conditions.

46. ~P (A), where A is the line r = 2 in rθ–space.

47. ~P (A), where A is the line r = −2 in rθ–space.

48. ~P (A), where A is the line θ = π
2 in rθ–space.

49. ~P (A), where A is the line θ = π
4 in rθ–space.

50. ~P (A), where A is the line θ = 3π
4 in rθ–space.

51. ~P (A) + (1, 1), where A is the line r = 2 in rθ–
space.

52. ~P (A) + (−1, 2), where A is the line r = 4 in
rθ–space.

53. ~P (A), where A is the rectangle in rθ–space
0 ≤ r ≤ 1, 0 ≤ θ,≤ 2π.

54. ~P (A), where A is the rectangle in rθ–space
0 ≤ r ≤ 1, 0 ≤ θ ≤ π

4 .

55. ~P (A), where A is the rectangle in rθ–space
1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.
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56. ~P (A), where A is the rectangle in rθ–space
1 ≤ r ≤ 2, 0 ≤ θ ≤ π

4 .

57. ~P (A), where A is the rectangle in rθ–space
1 ≤ r ≤ 2, −π4 ≤ θ ≤

π
4 .

In Exercises 58–81, describe the set satisfying the given
conditions.

58. ~Cz(A), where A is the plane r = 3 in rθz–space.

59. ~Cz(A), where A is the plane r = −2 in rθz–
space.

60. ~Cz(A), where A is the plane θ = π
2 in rθz–space.

61. ~Cz(A), where A is the plane θ = π
4 in rθz–space.

62. ~Cz(A), where A is the plane θ = 3π
4 in rθz–

space.

63. ~Cz(A) + (1, 2, 3), where A is the plane r = 2 in
rθz–space.

64. ~Cz(A), where A is the rectangle in rθz–space
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, z = 0.

65. ~Cz(A), where A is the rectangle in rθz–space
0 ≤ r ≤ 1, 0 ≤ θ ≤ π

4 , z = 2.

66. ~Cz(A), where A is the rectangle in rθz–space
1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, z = −3.

67. ~Cz(A), where A is the rectangular box in
rθz–space 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

68. ~Cz(A), where A is the rectangular box in
rθz–space 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 1 ≤ z ≤ 2.

69. ~Cz(A), where A is the rectangular box in
rθz–space 1 ≤ r ≤ 2, −π ≤ θ ≤ π, 1 ≤ z ≤ 2.

70. ~S(A), where A is the plane in rφθ–space r = 3.

71. ~S(A), where A is the plane in rφθ–space r = −2.

72. ~S(A), where A is the plane in rφθ–space
θ = π

2 .

73. ~S(A), where A is the plane in rφθ–space
θ = π

4 .

74. ~S(A), where A is the plane in rφθ–space
φ = 3π

4 .

75. ~S(A) + (1, 2, 3), where A is the plane in
rφθ–space r = 2.

76. ~S(A), where A is the rectangle in rφθ–space 0 ≤
r ≤ 1, 0 ≤ θ ≤ 2π, φ = 0.

77. ~S(A), where A is the rectangle in rφθ–space 0 ≤
r ≤ 1, 0 ≤ θ ≤ π

4 , φ = π
3 .

78. ~S(A), where A is the rectangle in rφθ–space 1 ≤
r ≤ 2, 0 ≤ θ ≤ 2π, φ = π

3 .

79. ~S(A), where A is the rectangular box in
rφθ–space 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4 .

80. ~S(A), where A is the rectangular box in
rφθ–space 1 ≤ r ≤ 2, 0 ≤ θ ≤ π, 0 ≤ φ ≤ π.

81. ~S(A), where A is the rectangular box in
rφθ–space 1 ≤ r ≤ 2, −π ≤ θ ≤ π, 0 ≤ φ ≤ π

2 .

In Exercises 82–85, we define ~Cx similarly to ~Cz ex-
cept that the x–axis is the axis of symmetry. That is
~Cx(x, r, θ) = (x, r cos θ, r sin θ).

82. Show that the partial derivatives of ~Cx are mu-
tually perpendicular, except at points where
r = 0.

83. Describe ~Cx(A), where A is the plane x = 2.

84. Describe ~Cx(A), where A is the plane r = 2.

85. Describe ~Cx(A), where A is the plane θ = π
2 .

In Exercises 86–89, we define ~Cy(r, y, θ) =
(r cos θ, y, r sin θ).

86. Show that the partial derivatives of ~Cy are mu-
tually perpendicular, except at points where
r = 0.

87. Describe ~Cy(A), where A is the plane y = 2.

88. Describe ~Cy(A), where A is the plane r = 2.

89. Describe ~Cy(A), where A is the plane θ = π
2 .

90. Show that if 0 < φ < π, then ~S satisfies the right
hand rule. That is, the partial derivative with
respect to r crossed with the partial derivative
with respect to φ has the same direction as the
partial derivative with respect to the θ.
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91. Calculate the partial derivatives of ~f(u, v) =
(2 cos(u) sin(v), 2 sin(u) sin(v), 2 cos(v)).

92. What is the image of ~f of Exercise 91?

4.3 The Derivative

Let ~F (u, v) be a function from R2 into R2. Let Fx denote the x–
coordinate function, and let Fy denote the y–coordinate function, so
that

~F (u, v) = (Fx(u, v), Fy(u, v)).

Let ~r(t) be a parametrization for a curve in R2, and let

~g(t) = (Fx(~r(t)), Fy(~r(t))).

Now,
d~g(t)
dt

=
(
dFx(~r(t))

dt
,
dFy(~r(t))

dt

)
.

By Theorem 1 of Section 11.8, we see that

dFx(~r(t))
dt

= ∇Fx(~r(t)) · ~r ′(t)

=
(
∂Fx
∂u

(~r(t))
)
u′(t) +

(
∂Fx
∂v

(~r(t))
)
v′(t)

=
∂Fx
∂u

du

dt
+
∂Fx
∂v

dv

dt
,

and

dFy(~r(t))
dt

= ∇Fy(~r(t)) · ~r ′(t)

=
(
∂Fy
∂u

(~r(t))
)
u′(t) +

(
∂Fy
∂v

(~r(t))
)
v′(t)

=
∂Fy
∂u

du

dt
+
∂Fy
∂v

dv

dt
.

We can express the above two equations in matrix notation in the
following way:

d~g(t)
dt

=

 dFx(~r(t))
dt

dFy(~r(t))
dt

 =

 ∂Fx
∂u

du
dt + ∂Fx

∂v
dv
dt

∂Fy
∂u

du
dt + ∂Fy

∂v
dv
dt



=

 ∂Fx
∂u

∂Fx
∂v

∂Fy
∂u

∂Fy
∂v

 du
dt

dv
dt

 .
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Definition: The Derivative of ~F at (u, v)

Let ~F : R2 → R2 be a function

~F (u, v) = (Fx(u, v), Fy(u, v)).

If ∂Fx
∂u ,

∂Fx
∂v ,

∂Fy
∂u , and ∂Fy

∂v exist, we define

D~F |(u,v) =

 ∂Fx
∂u

∂Fx
∂v

∂Fy
∂u

∂Fy
∂v


to be the derivative of ~F evaluated at (u, v).

Notice that the first row of D~F is simply ∇Fx, the second row
is ∇Fy, and the derivative of ~F is defined so that we have the chain
rule for functions from R2 into R2.

d

dt
~F (~r(t)) = D~F |~r(t)~r

′(t).

EXAMPLE 1: Consider the polar transformation ~P (r, θ) = (r cos θ,
r sin θ). Then

D~P |(r,θ) =
(

cos θ −r sin θ
sin θ r cos θ

)
.

If ~r(t) = (1, 2πt), then ~P (~r(t)) = (cos(2πt), sin(2πt)) describes a par-
ticle moving around a circle in xy–space at a rate of one rotation/sec.
We can either calculate the derivative directly as

d~P (~r(t))
dt

= 2π(− sin(2πt), cos(2πt)),

or use the above to obtain

D~P |(r,θ) =

 cos(2πt) − sin(2πt)

sin(2πt) cos(2πt)

 ,

and
~r ′(t) = (0, 2π).
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Thus

d~P (~r(t))
dt

= D~P |~r(t)~r
′(t)

=

 cos(2πt) − sin(2πt)

sin(2πt) cos(2πt)

 0

2π


= 2π(− sin(2πt), cos(2πt)).

In general, if ~s(t) = (r(t), θ(t)) is an expression for the polar coor-
dinates of a particle at time t, then ~P (~s(t)) will give the rectangular
or Cartesian coordinates of the particle. The derivative ~s ′(t) will
then denote the polar coordinates of the velocity vector and

d

dt
~P (~s(t)) = D~P |~s(t)~s

′(t)

=

 cos(θ(t)) −r(t) sin(θ(t))

sin(θ(t)) r(t) cos(θ(t))

 r′(t)

θ′(t)


will give the Cartesian coordinates of the velocity vector.
Note: It is not uncommon to encounter the notation d~s/dt, which
is meant to represent the rate of change of position in rectangular
coordinates even though ~s represents the polar coordinates of the
point.

EXAMPLE 2: Suppose that a particle is moving in the plane
so that when the polar coordinates are

(
2, π4

)
, its velocity, in polar

coordinates, is (1, π).What is the velocity in rectangular coordinates?

Solution: If t0 denotes the time at which the particle is at
(
2, π4

)
,

and if ~s is the parametrization giving the position of the particle at
time t in polar coordinates, then ~s(t0) =

(
2, π4

)
and ~s ′(t0) = (1, π).

D ~P |~s(t0)~s
′(t0) =

 cos(θ(t0)) −r(t0) sin(θ(t0))

sin(θ(t0)) r(t0) cos(θ(t0))

 r′(t0)

θ′(t0)



=

 cos
(
π
4

)
−2 sin

(
π
4

)
sin
(
π
4

)
2 cos

(
π
4

)
 1

π


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=

 √
2

2 −
√

2
√

2
2

√
2

 1

π



=

 √
2

2 − π
√

2
√

2
2 + π

√
2

 .

so the particle’s x–coordinate is decreasing at the rate of
(√

2
2

)
−π
√

2,

while the y–coordinate is increasing at the rate of
(√

2
2

)
+ π
√

2.

We have defined the derivative of a function ~F from uv–space
into xy–space (evaluated at (u, v)) to be the 2× 2 matrix whose first
row is ∇Fx|(u,v), and whose second row is ∇Fy|(u,v). Notice also that

the first column of D~F |(u,v) is ∂ ~F
∂u , and the second column is ∂ ~F

∂v .

∂ ~F
∂u

↓ ∂Fx
∂u

∂Fy
∂u

∂Fx
∂v

∂Fy
∂v


 ∂Fx

∂u
∂Fx
∂v

∂Fy
∂u

∂Fy
∂v

 ← ∇Fx

 ∂Fx
∂u

∂Fy
∂u

∂Fx
∂v

∂Fy
∂v


 ∂Fx

∂u
∂Fx
∂v

∂Fy
∂u

∂Fy
∂v


← ∇Fy

↑
∂ ~F
∂v

We define the derivative from Rn into Rm in a similar manner.
If ~F is a function from uv–space into xyz–space, then we define the
derivative of ~F to be the 3× 2 matrix whose first row is the gradient
of Fx, whose second row is the gradient of Fy, and whose third row
is the gradient of Fz.

D ~F |(u,v) =


∂Fx
∂u

∂Fx
∂v

∂Fy
∂u

∂Fy
∂v

∂Fz
∂u

∂Fz
∂v


evaluated at (u, v)
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If ~F is a function from uvw–space into xyz–space, then the deriva-
tive of ~F is a 3× 3 matrix, the rows again being the gradients of the
coordinate functions.

D~F |(u,v,w) =


∂Fx
∂u

∂Fx
∂v

∂Fx
∂w

∂Fy
∂u

∂Fy
∂v

∂Fy
∂w

∂Fz
∂u

∂Fz
∂v

∂Fz
∂w


evaluated at (u, v, w)

Finally, if ~F is a function from uvw–space into xy–space, then
the derivative of ~F is a 2× 3 matrix, again with the rows being the
gradients of the coordinate functions.

D~F |(u,v,w) =

 ∂Fx
∂u

∂Fx
∂v

∂Fx
∂w

∂Fy
∂u

∂Fy
∂v

∂Fy
∂w


evaluated at (u, v, w)

In general, if ~F is a function from Rn into Rm, then the derivative
of ~F is an m × n matrix, with the rows being the gradients of the
coordinate functions.

EXAMPLE 3: Let ~T be a linear transformation from R3 into R3

with the associated 3× 3 matrix A~T , so that ~T (~p) = A~T ~p. Thus, if

~p =

 u
v
w

 and A~T =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 ,

then

A~T ~p = u

 a1

a2

a3

+ v

 b1
b2
b3

+ w

 c1
c2
c3

 .

We see that

Tx(u, v, w) = (ua1 + vb1 + wc1), and ∇Tx(u, v, w) = (a1, b1, c1)

Ty(u, v, w) = (ua2 + vb2 + wc2), and ∇Tx(u, v, w) = (a2, b2, c2)

Tz(u, v, w) = (ua3 + vb3 + wc3), and ∇Tx(u, v, w) = (a3, b3, c3),

so D~T |~v = A~T .

Theorem 1 If ~T is a linear transformation from Rn into Rm and
A~T is the matrix associated with ~T , then the derivative of ~T eval-
uated at any point in Rn is A~T .
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EXAMPLE 4: Let ~T be defined by ~T (u, v) = (2u+ v, v). Then

D~T |(u,v) = A~T =
(

2 1
0 1

)
.

If a particle moves with velocity (1, 2) in uv–space, then its velocity
viewed in xy–space is

A~T

(
1
2

)
=
(

2 1
0 1

)(
1
2

)
=
(

4
2

)
.

The derivative of a function from a subset of Rn into Rm satisfies
the chain rule.

Theorem 2 (The Chain Rule: Functions from Rn into Rm)
Suppose that S1 is a subset of the reals, S2 is a subset of Rn,
~r : S1 → S2 and ~F : S2 → Rm are differentiable. Let

~g(t) = ~F ◦ ~r(t) = ~F (~r(t)).

Then
d~g

dt
= D~F |~r(t)~r

′(t).

EXAMPLE 5: If

~r(t) = (u(t), v(t), w(t))

is a differentiable function from a subset of the reals into uvw–space,
and

~F (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))

is a differentiable function from a subset of uvw–space into xyz–space
as in Figure 1, then

r

F

→

→

u

v

w

x

y

z

t

r(t)→

F(r(t))
→→

→

Figure 1. The composite of

~F following ~r.

d~g

dt
= D~F |~r(t)~r

′(t)

=


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w




u′(t)

v′(t)

w′(t)



=


∂x
∂u

du
dt + ∂x

∂v
dv
dt + ∂x

∂w
dw
dt

∂y
∂u

du
dt + ∂y

∂v
dv
dt + ∂y

∂w
dw
dt

∂z
∂u

du
dt + ∂z

∂v
dv
dt + ∂z

∂w
dw
dt


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It is critical to remember that all of the entries in

D~F =


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w


are evaluated at ~r(t). Often, you will see the coordinate functions
written out separately as follows.

dx

dt
=

∂x

∂u

du

dt
+
∂x

∂v

dv

dt
+
∂x

∂w

dw

dt

dy

dt
=

∂y

∂u

du

dt
+
∂y

∂v

dv

dt
+
∂y

∂w

dw

dt

dz

dt
=

∂z

∂u

du

dt
+
∂z

∂v

dv

dt
+
∂z

∂w

dw

dt
,

where all of the terms ∂x
∂u ,

∂x
∂v ,

∂x
∂w ,

∂y
∂u , etc. are evaluated at

~r(t) = (u(t), v(t), w(t)).

EXAMPLE 6: Suppose that

~r(t) = (u(t), v(t))

is a differentiable function from a subset of the reals into uv–space,
and

~F (u, v) = (x(u, v), y(u, v), z(u, v))

is a differentiable function from a subset of uv–space into xyz–space
(as in Figure 1, except that the intermediate space is a plane rather
than a three dimensional space.) Then

d~g

dt
= D~F |~r(t)~r

′(t) =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


 du

dt

dv
dt

 =


∂x
∂u

du
dt + ∂x

∂v
dv
dt

∂y
∂u

du
dt + ∂y

∂v
dv
dt

∂z
∂u

du
dt + ∂z

∂v
dv
dt

 .

The coordinate functions of d~g
dt written separately give

dx

dt
=

∂x

∂u

du

dt
+
∂x

∂v

dv

dt
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dy

dt
=

∂y

∂u

du

dt
+
∂y

∂v

dv

dt

dz

dt
=

∂z

∂u

du

dt
+
∂z

∂v

dv

dt
.

The Chain Rule for Partial Derivatives

Suppose that ~F is a differentiable function from uv–space into xy–
space, and that φ is a real-valued differentiable function defined on a
subset of xy–space that contains the range of ~F . Then φ◦ ~F = φ(~F ) is

a real-valued function defined on uv–space. We want to find ∂(φ◦~F )
∂u =

the rate that φ changes as u changes.
To set this up, assume that

~F (u, v) = (x(u, v), y(u, v))

and let ~r(t) = (u1 +t, v1), for some point (u1, v1), and ~g(t) = ~F (~r(t)).
By the definition of the partial derivative for real-valued differentiable
functions, we see that

∂φ ◦ ~F (u, v)
∂u

∣∣∣∣
(u1,v1)

=
dφ(~g(t))

dt

∣∣∣∣
t=0

= ∇φ|~g(0) ·
d~g(t)
dt

∣∣∣∣
t=0

.

We know that

∇φ|~g(0) =
(
∂φ

∂x
,
∂φ

∂y

) ∣∣∣∣
~g(0)

=
(
∂φ

∂x
,
∂φ

∂y

) ∣∣∣∣
~F (u1,v1)

.

We need to calculate d~g(t)
dt |t=0.

d~g(t)
dt

∣∣∣∣
t=0

= D~F |~r(0)~r
′(0)

=

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣
~r(0)

 1

0


=

(
∂x

∂u
,
∂y

∂u

) ∣∣∣∣
~r(0)

=
(
∂x

∂u
,
∂y

∂u

) ∣∣∣∣
(u1,v1)

.

Putting it together we obtain
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∂φ ◦ ~F (u, v)
∂u

∣∣∣∣
(u1,v1)

=
(
∂φ

∂x
,
∂φ

∂y

) ∣∣∣∣
~F (u1,v1)

·
(
∂x

∂u
,
∂y

∂u

) ∣∣∣∣
(u1,v1)

.

More simply, we write

∂φ ◦ ~F
∂u

=
(
∂φ

∂x
,
∂φ

∂y

)
·
(
∂x

∂u
,
∂y

∂u

)
=
∂φ

∂x

∂x

∂u
+
∂φ

∂y

∂y

∂u
.

Similarly we can use ~r(t) = (u1, v1 + t) and obtain

∂φ ◦ ~F
∂v

=
(
∂φ

∂x
,
∂φ

∂y

)
·
(
∂x

∂v
,
∂y

∂v

)
=
∂φ

∂x

∂x

∂v
+
∂φ

∂y

∂y

∂v
.

It is understood that ∂φ
∂x and ∂φ

∂y are evaluated at ~F (u, v) = (x(u, v),
y(u, v)).

In much the same way, we obtain the three dimensional case,
which we present as the following chain rule for partial derivatives
without proof.

Theorem 3 (The Chain Rule for Partial Derivatives)
Suppose

~F (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))

is a differentiable function from uvw–space into xyz–space, and φ
is a real valued differentiable function defined on a subset of xyz–
space that contains the image of ~F . Then

∂(φ ◦ ~F )
∂u

(u, v, w) = ∇φ · ∂
~F

∂u

=
∂φ

∂x

∂x

∂u
+
∂φ

∂y

∂y

∂u
+
∂φ

∂z

∂z

∂u
,

∂(φ ◦ ~F )
∂v

(u, v, w) = ∇φ · ∂
~F

∂v

=
∂φ

∂x

∂x

∂v
+
∂φ

∂y

∂y

∂v
+
∂φ

∂z

∂z

∂v
,
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and

∂(φ ◦ ~F )
∂w

(u, v, w) = ∇φ · ∂
~F

∂w

=
∂φ

∂x

∂x

∂w
+
∂φ

∂y

∂y

∂w
+
∂φ

∂z

∂z

∂w

∇φ, ∂φ
∂x ,

∂φ
∂x , and ∂φ

∂x are evaluated at ~F (u, v, w). The partial
derivatives of x, y, and z are evaluated at (u, v, w). It is com-

mon in the literature to write ∂φ
∂u to mean ∂(φ◦~F )

∂u .

There are, of course, similar results if, for example,

~F (u, v, w) =

 x(u, v, w)

y(u, v, w)


is a differentiable function from uvw–space into xy–space, and φ is
a real-valued differentiable function defined on a subset of xy–space
that contains the image of ~F , or if

~F (u, v) =


x(u, v)

y(u, v)

z(u, v)


is a differentiable function from uv–space into xyz–space, and φ is a
real-valued differentiable function defined on a subset of xyz–space
that contains the domain of ~F .1

1The general statement of the theorem is as follows.
If ~F (u1, . . . , un) = (x1(u1, . . . , un), · · · , xm(u1, . . . , un)) is a differentiable function
from a subset of Rn into Rm, and φ(x1, · · · , xm) is a real-valued differentiable
function defined on a subset of Rm that contains the image of ~F , then

∂(φ ◦ ~F )

∂ui
(u1, . . . , un) = ∇φ

˛̨̨
~F (u1,...,un)

· ∂
~F

∂ui
(u1, . . . , un)

=
∂φ

∂x1

∂x1

∂ui
+ · · ·+ ∂φ

∂xm

∂xm
∂ui
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EXAMPLE 7: Let ~P (r, θ) = (r cos θ, r sin θ) and let φ(x, y) =
x2 + y2. Then

∇φ(x, y) = (2x, 2y), so ∇φ(P (r, θ)) = (2r cos θ, 2r sin θ).

We also have

∂P

∂r
(r, θ) = (cos θ, sin θ) and

∂P

∂θ
(r, θ) = (−r sin θ, r cos θ).

Thus

∂φ

∂r
= ∇φ(P (r, θ)) · ∂P

∂r
(r, θ)

= (2r cos θ, 2r sin θ) · (cos θ, sin θ)

= 2r cos2 θ + 2r sin2 θ = 2r,

and

∂φ

∂θ
= ∇φ(P (r, θ)) · ∂P

∂θ
(r, θ)

= (2r cos θ, 2r sin θ) · (−r sin θ, r cos θ) .

= −2r2 cos θ sin θ + 2r2 cos θ sin θ = 0.

As we would expect, a direct computation produces the same
results. φ(P (r, θ)) = r2. Thus

∂

∂r
(r2) = 2r and

∂

∂θ
(r2) = 0.

Linear Approximations

Suppose that ~h(u, v) = (x(u, v), y(u, v), z(u, v)) is a function from
R2 into R3. Let ~r0 = (u0, v0) be a fixed point. Let ~r(t) be defined by
~r1(t) = ~h(t, v0) and ~r2(t) = ~h(u0, t). Then

∂h

∂u
(u0, r0) = ~r ′1(u0) and

∂h

∂v
(u0, r0) = ~r ′2(v0).

~r ′1(u0) is tangent to the curve parametrized by it, which in turn lines

in the image of ~h. It follows that ~U =
∂~h

∂u
(u0, v0) is tangent to the

image of ~h. Similarly, ~V =
∂~h

∂v
(u0, v0) is tangent to the image of ~h.
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Thus, as long as ~U × ~V 6= ~0, they determine the plane tangent to
the surface at ~h(u0, v0). See Figure 2. This plane is the image of

∂h
∂u(u0, v0) ∂h

∂u(u0, v0)

h(u0, v0)
→

→

→

Figure 2. The vectors

∂~h

∂u
(u0, v0) and

∂~h

∂v
(u0, u0)

determine the plane tangent to
the surface at ~h(u0, v0)

∂S
∂φ 

(π/4, π/4)
→

∂S
∂θ 

(π/4, π/4)
→

Figure 3.a The vectors ∂~S
∂θ

and ∂~S
∂φ

determine the plane to

the sphere at ~S
`
π
4
, π

4

´
.

Figure 3.b The
approximating tangent
plane to the sphere.

~T (s, t) = s~U + t~V + ~r0

= D(~h)|
(u0,v0)

 s

t

+ ~h(u0, v0)

=


∂x
∂u(u0, v0) ∂x

∂v (u0, v0)
∂y
∂u(u0, v0) ∂y

∂v (u0, v0)
∂z
∂u(u0, v0) ∂z

∂v (u0, v0)


 s

t

+


x(u0, v0)

y(u0, v0)

z(u0, v0)

 .

Note: ~T is a linear transformation translated to the point of
tangency.

EXAMPLE 8: Let ~S(φ, θ) = (sin(φ) cos(θ), sin(φ)(sin(θ), cos(φ)).
Then the image of ~S is the unit sphere centered at the origin. As

illustrated in Figures 3.a and 3.b,
∂~S

∂θ
(φ0, θ0) is tangent to a latitude

circle and
∂~S

∂φ
(φ0, θ0) is tangent to a longitudinal circle. We leave it

as an exercise to show that their cross product points away from the
origin (its radial), so the plane determined by these vectors drawn
emanating from the origin is tangent to the sphere. To find the plane
tangent to the sphere at ~S

(
π
4 ,

π
4

)
, we find the derivative of ~S at that

point.
x(φ, θ) = sin(φ) cos(θ),

∂x

∂φ
= cos(φ) cos(θ),

∂x

∂φ

(π
4
,
π

4

)
=

1
2
,

and
∂x

∂θ
= − sin(φ) sin(θ),

∂x

∂θ

(π
4
,
π

4

)
= −1

2
.

Similarly, we get

∂y

∂φ

(π
4
,
π

4

)
=

1
2
,

∂z

∂φ

(π
4
,
π

4

)
= − 1√

2
,

and
∂y

∂θ

(π
4
,
π

4

)
=

1
2
,

∂z

∂θ

(π
4
,
π

4

)
= 0.
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The tangent plane is the image of

~T (s, t) =


1
2 −1

2

1
2

1
2

− 1√
2

0


 s

t

+


1
2

1
2

1√
2

 =


s
2 −

t
2 + 1

2

s
2 + t

2 + 1
2

− s√
2

+ 1√
2

 .

We have been focusing on tangent planes because they are rela-
tively easy to visualize and, inspecting the basic formula, they closely
parallel the earlier work we have done with tangent lines. The parallel
does not stop there. Recall that the first order Taylor approximation
for a real valued function is given by

p1(x) = f ′(x0)(x− x0) + f(x0).

In exactly the same way, we can approximate functions from Rn into
Rm. Let ~h be a function from Rn into Rm. The function

~p(~r) = D(~h)|~r0 [~r − ~r0] + ~h(~r0)

is called the first order Taylor approximation for ~h at ~r0. Just as
in the first order Taylor polynomials for real valued functions, if
‖~r − ~r0‖ is small, then ‖~p(~r) − ~h(~r)‖ is small. In fact, if all of the
partial derivatives are continuous, then

lim
‖~r−~r0‖→0

1
‖~r − ~r0‖

‖~p(~r)− ~h(~r)‖ = 0.

EXAMPLE 9: The first order Taylor polynomial for the function
~S from Example 8 at

(
π
4 ,

π
4

)
is

~p(φ, θ) =


1
2 −1

2

1
2

1
2

− 1√
2

0


 φ− π

4

θ − π
4

+


1
2

1
2

1√
2

 .
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π

Figure 4. The error
function over the interval
π
4
− 0.1 ≤ φ ≤ π

4
+ 0.1 and

π
4
− 0.1 ≤ θ ≤ π

4
+ 0.1

The approximating plane is displayed in Figure 3.b. In Figure 4,
we sketch the error function ‖~p(φ, θ) − ~s(φ, θ)‖ over the rectangle
π
4 − 0.1 ≤ φ ≤ π

4 + 0.1 and π
4 − 0.5 ≤ θ ≤ π

4 + 0.5. Inspection of
the figure reveals that in this region, the error on the approximating
function is small, near

(
π
4 ,

π
4

)
.
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Summary

(a) If ~F is a function from Rn into Rm, then the derivative of ~F
evaluated at ~r is defined to be the m× n matrix such that for
each i, with 1 ≤ i ≤ m, the ith row of D(~F )|~r is the gradient
of the ith coordinate function of ~F evaluated at ~r.

(b) If ~r is a function from R into Rn and ~F is a function from Rn

into Rm, then

d

dt
~F (~r(t)) = D~F |~r(t)~r

′(t).

If

~F (u, v, w) =


x(u, v, w)

y(u, v, w)

z(u, v, w)

 and ~r(t) =


u(t)

v(t)

z(t)

 ,

then

dx

dt
= ∇x(u, v, w)|~r(t) · ~r

′(t) =
∂x

∂u

du

dt
+
∂x

∂v

dv

dt
+
∂x

∂w

dw

dt

dy

dt
= ∇y(u, v, w)|~r(t) · ~r

′(t) =
∂y

∂u

du

dt
+
∂y

∂v

dv

dt
+
∂y

∂w

dw

dt

dz

dt
= ∇z(u, v, w)|~r(t) · ~r

′(t) =
∂z

∂u

du

dt
+
∂z

∂v

dv

dt
+
∂z

∂w

dw

dt
.

(c) If ~T is a linear transformation from Rn into Rm, and if A~T is
the m × n matrix associated to ~T , then the derivative of ~T is
the constant matrix A~T .

(d) If ~F is a differentiable function from a subset of uvw–space into
xyz–space, and φ is a real-valued differentiable function from
a subset of xyz–space containing the image of ~F , then

∂(φ ◦ ~F )
∂u

(u, v, w) = ∇φ|~F (u,v,w) ·
∂ ~F

∂u
(u, v, w),

which is usually shortened to

∂φ

∂u
=
∂φ

∂x

∂x

∂u
+
∂φ

∂y

∂y

∂u
+
∂φ

∂z

∂z

∂u
.
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(e)

~p(~r) = D(~h)|~r0 · (~r − ~r0) + ~h(~r0)

is the first order Taylor approximation for ~h at ~r0.

EXERCISES 4.3

In Exercises 1–7, find the derivative of the linear trans-
formations.

1. ~T (u, v) = (3u,−2v).

2. ~T (u, v) = (u+ 3v, v − u).

3. ~T (u, v) = (u− v, 2v, u+ v).

4. ~T (s, t) = (s− t, 3t+ s, t− s).

5. ~T (u, v) = u+ v.

6. ~T (u, v, w) = (2u− v, u+ w, u+ v + w).

7. ~T (r, s, t) = (2r + s− t, r − s− 3t, r + s+ t).

8. ~T (u, v, w) = (2u− w + v, u+ v − 22w).

9. ~T (u, v, w) = (u+ v + w, u+ v + w).

10. ~T (u, v, w) = u+ v + w.

11. Find the derivative of the cylindrical transfor-
mation ~Cz.

12. Find the derivative of the cylindrical transfor-
mation ~Cx.

13. Find the derivative of the spherical transforma-
tion.

In Exercises 14–19, ~F is a function from Rn into
Rm. Given the derivative of ~F at ~r0, determine n and
m.

14. D~F
∣∣
~r0

=

 1 2

−1 0

 .

15. D~F
∣∣
~r0

=


0 2

−1 3

1 0

.

16. D~F
∣∣
~r0

=

 1 2 1

−1 0 −1

.

17. D~F
∣∣
~r0

=

 1

−1

.

18. D~F
∣∣
~r0

=
(

1 2 3
)
.

19. D~F
∣∣
~r0

=


a1 a2 a3

b1 b2 b3

c1 c2 c3

 .

In Exercises 20–23, a particle’s position ~s0 and velocity
~v0 are given in polar coordinates. Find the position
and velocity in rectangular coordinates.

20. ~s0 = (1, π), ~v0 = (2, 3).

21. ~s0 =
(
2, π2

)
, ~v0 = (−1, 2).

22. ~s0 =
(
1, π3

)
, ~v0 = (1,−2).

23. ~s0 =
(
1, 7π

4

)
, ~v0 = (2, 3).

In Exercises 24–27, a particle’s position ~s0 and ve-
locity ~v0 are given in cylindrical coordinates. Find the
position and velocity in rectangular coordinates.

24. ~s0 = (1, π, 1), ~v0 = (2, 3, 1).

25. ~s0 =
(
−1, π4 , 2

)
, ~v0 = (−1, 2, 0).

26. ~s0 =
(
1, π3 , 1

)
, ~v0 = (1,−2,−2).

27. ~s0 =
(
1, 7π

4 ,−2
)
, ~v0 = (2, 3, 1).

In Exercises 28–31, a particle’s position ~s0 and velocity
~v0 are given in spherical coordinates. Find the position
and velocity in rectangular coordinates.

28. ~s0 =
(
1, π, π4

)
, ~v0 = (2, 3, 1).

29. ~s0 =
(
−1, π4 ,

π
2

)
, ~v0 = (−1, 2, 0).
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30. ~s0 =
(
1, π3 ,

π
3

)
, ~v0 = (1,−2,−2).

31. ~s0 =
(
1, 7π

4 ,−
π
3

)
, ~v0 = (2, 3, 1).

32. Find the derivative of the function ~h(u, v) =
(u cos(v), u sin(v), u).

33. Find the derivative of the function ~h(u, v) =
(u2 cos(v), u2 sin(v), u).

In Exercises 34–36, φ(x, y, z) = exy+z. Use the chain
rule for partial derivatives to calculate ∂φ

∂u = ∂(φ◦~F )
∂u

and ∂φ
∂v = ∂(φ◦~F )

∂v for the given function ~F .

34. ~F (u, v) = (u+ v, v, uv).

35. ~F (u, v) = (u, u cos v, u sin v).

36. ~F (u, v) = (cos v sinu, sin v sinu, cosu).

In Exercises 37–39, ~P (r, θ) = (r cos θ, r sin θ) is the
polar transformation. Use the chain rule to calculate
∂(φ◦P )
∂θ = ∂(φ)

∂θ for the given function φ.

37. φ(x, y) = x+ y. 38. φ(x, y) = xy2.

39. φ(x, y) = lnx+ 3y.

In Exercises 40–42, ~S(ρ, φ, θ) = (ρ cos θ sinφ, ρ sin θ
sinφ, ρ cosφ) is the spherical transformation. Use the
chain rule to calculate ∂(φ◦~S)

∂θ = ∂(φ)
∂θ for the given

function φ.

40. φ(x, y) = x+ y + z. 41. φ(x, y) = x2 + y2 + z2.

42. φ(x, y) = xyz.

In Exercises 43–45, you are given the derivative of
~F , ~r0, ~F (~r0), and ∆~r. Use Taylor’s first order approx-
imation for ~F at ~r0 to approximate ~F (~r0 +∆~r).

43. D~F
∣∣
~r0

=

 1 2

−1 0

, ~r0 =

 1

−1

,

~F (~r0) =

 2

3

 and ∆~r =

 0.1

−0.05

.

44. D~F
∣∣
~r0

=

 1 0 1

−1 1 0

, ~r0 =


1

−1

2

,

~F (~r0) =

 −2

1

 and ∆~r =


0.1

−0.1

0.02

.

45. D~F
∣∣
~r0

=


1 2

−1 0

0 1

, ~r0 =

 0

1

,

~F (~r0) =


2

1

3

 and ∆~r =

 0.1

−0.1

.

In Exercises 46–49, find the first order Taylor polyno-
mial for the polar transformation ~P at ~r0.

46. ~r0 =
(
2, π2

)
47. ~r0 =

(
−2, π3

)
48. ~r0 =

(
1, 5π

3

)
49. ~r0 =

(
−1, π6

)
In Exercises 50–53, find the first order Taylor polyno-
mial for the cylindrical transformation ~Cz at ~r0.

50. ~r0 =
(
2, π2 , 3

)
51. ~r0 =

(
−2, 3π

2 ,−1
)

52. ~r0 =
(
1, 5π

3 , 0
)

53. ~r0 =
(
−1, π6 , 5

)
In Exercises 54–57, find the first order Taylor poly-
nomial for the spherical transformation ~S at ~r0.

54. ~r0 =
(
2, π2 ,

π
4

)
55. ~r0 =

(
−2, 3π

2 ,
π
4

)
56. ~r0 =

(
1, 5π

3 ,
π
3

)
57. ~r0 =

(
−1, π6 ,

5π
6

)
58. Use the Taylor polynomial from Exercise 46 to

approximate ~P (1.9, π2 + 0.2).

59. Use the Taylor polynomial from Exercise 53
to approximate ~Cz(~r0 + ∆~r), where ∆~r =
(−0.1, 0.2, 0.1).

60. Use the Taylor polynomial from Exercise 55
to approximate ~S(~r0 + ∆~r), where ∆~r =
(−0.1, 0.2, 0.1).


