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Chapter 4

Change of Coordinate
Systems

In Section 3.6 we viewed a function from R™ into R™ as a vector
field. We can also use functions from R"™ into R™ to transform one
coordinate system into another. This is not unlike changing a lens on
a camera in order to get a clearer picture. We can sometimes get a
better description of a set in R™ by changing the way we describe the
points in R™. We can also use functions from subsets of R™ into R™
to describe interesting geometric objects in R, much in the same
way as we used functions from intervals into R™ to describe simple
curves. In this chapter we introduce some special functions from R"™
into R™, and explore some of their properties.

4.1 Translations and Linear Transformations

A translation is a function from R"™ onto R™ defined by adding a
constant to every point in R™. Translations are used to shift objects
in R™ in a rigid fashion without any rotations. The formal definition
is

Definition: Translations

The statement that the function T is a translation by 7p means
that 7 is a vector and T'(7) = 7+ 7.

EXAMPLE 1: The image of the wrapping function W (¢) is the
unit circle centered at the origin. The composition of W followed by

a translation by 7 yields the function f(t) = W (t) + ro, the image
of which is the unit circle centered at 7p. See Figure 1. u
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Figure 1. The unit circle
translated by 7.
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translated by 7.
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Figure 3. The plane_
deterlnined by vectors A
and B.
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EXAMPLE 2: The image of the function 7#(t) = t¢ is the line
with direction ¢ that contains the origin. If we follow 7(¢) with a
translation by 7, we have h(t) = 7(t) + 7 = ¥t + 7, the image of
which is the line with direction ¥ that contains the point 7. See
Figure 2. =

EXAMPLE 3: Consider two vectors A and B drawn emanating
from the origin that do not have the same direction. That is, AxB #*
0. Then these vectors determine a plane containing the origin. In
fact, if ¥ is any point on that plane, then we can find a pair of
numbers (s,t) so that 7 = sA + tB, as illustrated in Figure 3. This
defines a function h(s,t) = sA+tB from the st—plane onto the plane
determined by the vectors A and B. u

This is one example of a type of function called a linear function
or linear transformation that is used extensively in mathematical
modeling.

Definition: Linear Functions

A function 7" from R into R™ is said to be a linear function or a
linear transformation if for each v in R and each 7 and 7 in R™,

[ ]
N~y
~
+
N~y

(ro) = T(71 + 7) (Superposition Property)

o T(ui)) = ul'(7). (Scalability Property)

EXAMPLE 4: Show that the function f(x) = 3z from R to R is

linear.
SOLUTION: First, we check for the superposition property.
f(x1 + x2) = 3(x1 + x2) = 321 + 322 = f(21) + f(22).
Next, for scalability.
fluz) = 3uz = u(3z) = uf(z). u

EXAMPLE 5: Even though the graph of the function f(z) =
3z 4 1 is a line, f is not linear. To show this, let 1 = 1 and x9 = 1.
Then f(1) + f(1) = (3+ 1)+ (3 + 1) = 8. However, f(2) = 7. Thus
f(1+1) # f(1)+ f(1), and f fails to have the superposition property.
]

We could easily dedicate the rest of this book to the study of
linear transformations and still not exhaust the material that is im-
portant to the engineer or scientist. However, in this text we only




4.1 Translations and Linear Transformations

introduce techniques for constructing linear transformations and con-
centrate on some special properties of these functions. The following
theorem is our working characterization of linear transformations.

Theorem 1 The function T :R" — R™ is a linear transforma-
tion if and only if there are wvectors Al,Ag, o Ay in R™ such
that

f(zl, X9y .oy Ty) = 2141 + 29As + ..+ 2p Ay

Proof: We argue only the case that R" = R™ = R3. The general
case is similar. First, suppose that 7T i is a linear transformatlon from
R3 into R3. Let A; = T(1,0,0), Ay = T(0,1,0), and A5 = 70,0, 1).
Then from the definition,

T(z1,w2,23) = T(21,0,0)+T(0,25,3)
= T(x1,0,0) + (T(0,25,0) + T(0,0,z3))
= 2,7(1,0,0) 4+ 27(0,1,0) 4 237(0,0,1)

= $1z‘T1 + HTQz‘TQ + $3z‘f3-

Suppose that A= (az,ay,a;), B B = (bg, by, b;), and C = (Cz,cy,C2)
are vectors and T is defined by T'(z,y,2) = A + yB + 2C. Let u
and v be numbers, and let 7} = (z1,y1,21) and 75 = (z2, Y2, 22) be
vectors.

T(uiy, + o) = T (u(z1,y1,21) + v(x2, Y2, 22))
= T (uzy + vxg, uy + vy, uz) + 022)
= (uxy + vwg)/f—i- (uyr + vyg)é + (uz1 + vzz)é
= (umﬁT—%— uylé + uzlc_”) + (v:cgff—l— vygé + ’UZQC_;)
= w(@ A+ 1y B+ 21C) + v(wed + y2B + 2C)

= uT(F) +vT(7).

This shows that 7T is linear. u

EXAMPLE 6: Let T be defined by T'(u,v) = u(1,2) +v(0,1) =
(u,2u + v). In this example, A = (1,2) and B = (0,1). It helps to
visualize the function by realizing that T is that linear transformation
that takes (1,0) onto (1,2) and (0, 1) onto (0, 1), and it takes the unit

7—">(O, D=(,1)

(1, 1) = 2,3)

T(1,0)
=(1,2)

=l

1,1

Figure 4.

T(u,v)

Y

u(1,2) 4+ v(0,1)
(u, 2u + v).



Chapter 4. Change of Coordinate Systems

square with adjacent edges the vectors 7 and j onto the parallelogram
with adjacent edges A and B. See Figure 4. u

EXAMPLE 7:
(a) Let T be defined by T'(u,v) = u(1,0) +v(0, —1) = (u, —v). We

could equivalently define T with the pair of equations x = u
and y = —v. The linear transformation 7T reflects the plane

across the x—axis. See Figure 5.a.

(b) Let T be defined by T'(u,v) = u(0,1) + v(1,0) = (v,u). The
linear transformation T reflects the plane across the line y = z.

See Figure 5.b. u
N
T(u, v)

o (u,v) e . i
]_‘) // — //
= // T //
T(u, v) = (u, -v) e o (, V) i
L) 7 7
Ve Ve

Figure 5.a The transformation T(u,v) = (u, —v). Figure 5.b The transformation T'(u,v) = (v.u)

EXAMPLE 8:

—

(a) T(u,v,w) =u(1,1,1)4+v(1,0,0)+w(1,0,1) = (u+v+w,u,u+
w) defines a linear transformation from R? into R3.

—

(b) T(u,v,w)=u(1,2) +v(0,1) + w(l,-1) = (u +w,2u+ v —w)
defines a linear transformation from R3 into R2.

—

(¢) T(u,v) =u(1,0,—-1)+v(1,2,1) = (u+ v, 2v, —u + v) defines a
linear transformation from R? into R3. u

Important Facts about Linear Transformations

(a) If T is a linear transformation from R into R" and T'(1) = A,
then T'(u) = uA.

(b) If T'is a linear transformation from R? into R” and T'(1,0) =
A and T(0,1) = B, then T(u,v) = uA + vB.

(¢) If T is a linear transformation from R?® into R™ and
(1,0,0) = A,7(0,1,0) = B and 7(0,0,1) = C, then

T
T(u,v,w) = uA +vB +wC.




4.1 Translations and Linear Transformations

EXAMPLE 9:

(a) Let T be defined by

3u+ 5v + 2w
T(u,v,w) = u—2v—w
U—v+w
3 5 2
= u +v|l -2 |4+w| -1
1 -1

The domain of T is R? and the range is R3. Let A = T(1,0,0) =
(3,1,1),B = 7(0,1,0) = (5,—-2,—1), and C = T(0,0,1) =
(2,—1,1). Then

T(u,v,w) = uA +vB + wC.

(b) Let T be defined by

—2u+wv —2 1
T(u,v) = 3u =u 3 | +v 0
ou — v 5! -1

The domain of T is R? and the range is R3. Let A = f(l, 0) =
(—2,3,5) and B=T(0,1) = (1,0,—1). Then

f(u,v) — uA +vB.

(¢) Let T be defined by

—

T(u,v,w) = (3u+ 2v — w).

—

The domain of T' is R* and the range is R. Let A = T(1,0,0) =
(3),B =1T7(0,1,0) = (2) and C = T(0,0,1) = (—1) (notice
that we are thinking of members of R as vectors). Then

T(u,v,w) = uA +vB + wC.

Example 9 points to a compact way to describe any given linear
transformation. A matrizis a rectangular array of numbers. A nxm-—
matrix is a matrix with n rows and m columns.

EXAMPLE 10:



Chapter 4. Change of Coordinate Systems

3 2 — . .
(a) A—<2 0 —6) is a 2 x 3-matrix.
0 —-11Y. .
(b) A= < 5 0 ) is a 2 X 2-matrix.
(¢c) A=(3 2 —1)isalx 3-matrix.
3
(d) A= 2 | is a 3 x 1-matrix. u
—1

A 1 x n—matrix as in Example 10.c is a row matriz while a n x
l-matrix is a column matriz. If A is a vector, then we write [A]
to denote the column matrix corresponding to A. Thus, if A =

—1
(—1,2,3), then [A] = 2
3

If T is a linear transformation from R? into R™, and T'(1,0) = A
and T'(0,1) = B, then T(u,v) = uA + vB. We let Az be the matrix
with n rows and 2 columns, the first column of which is [A] and the
second column of which is [B].

Az=([4] [B]).
In Example 9(b), T was defined by f(u,v) = uA + vB, where
A =1T(1,0) = (=2,3,5) and B = T(0,1) = (1,0,—1). Then Az is

the matrix

—2 1
A= (14 1B])=| 3 0

Notice that the matrix Arﬁ contains all of the information neces-

sary to work with the linear transformation T.

We define multiplication of Az with the column vector ( Z ) by

A,f< Z > = T(u,v) = uA +vB.
[ was defined by T(u, Jw) = ul + vB + wC,

In Example 9(a), T
0) (37171) B - T(07 70) (57_2’ )’ and

where A = T(1,0,
(

C =1T(0,0,1) = (2,—1,1). The matrix Az is
3 5 2
Ap=(14] B [€])=1 -2 -1
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In this case, we define multiplication of Az with the column vec-

u
tor v by
w
u
Al v | =T(u,v,w) =uA+vB +wC.
w

EXAMPLE 11: Let T be the linear transformation with matrix

2 0
Az=|3 -1
0 3
Then T(u,v) = Az < Z > =u(2,3,0) +v(0,—1,3). u

Suppose that T(u,v,w) = ud + vB 4+ wC is a linear transfor-
mation from R3 into R", where 7/(1,0,0) = A, f(O, 1,0) = B and
f(O, 0,1) = C. As in the case of functions from R? into R™, we can
completely describe a linear transformation from R3 into R™ with a
matrix Az with n rows and 3 columns, the columns of which are the

vectors ff, E, and C.
Ay=(14 B [0]).

Exactly as before, we define multiplication of Az with the column

u
vector v by
w
u
Al v | =T(w,v,w) =uA+vB +wC.
w

EXAMPLE 12: The matrix for the transformation in Exam-

ple 9(a) is
3 5 2
Az=|1 —2 -1
1 -1 1
Thus
u 3 5 2
Tu,v,w)=Az| v |=u| 1 |+v| -2 | +w| -1 | ®



10

Chapter 4. Change of Coordinate Systems

EXAMPLE 13: Let T be the linear transformation with matrix

1 -1 2
Ag=|1 0 -1
2 -3 2
Then
U 1 -1 2
Tu,v,w)=Az| v | =u| 1 | +v 0O |+w| -1 | ®
w -3 2

EXAMPLE 14: Let T be the linear transformation with matrix

=y 5 5)
; (3 ) o () re(h)

w

Then

T(u,v,w) = A

N

Observation: Notice that the number of columns in A is the di-
mension of the domain of T , and the number of rows in Az is the
dimension of the range. Thus, if Az has 2 rows and 3 columns, then
T is a function from R3 into R2. If Ag has 3 rows and 2 columns,
then T is a function from R2 into R3. If Az has 2 rows and 2 columns,
then T is a function from R? into R2.

In Example 3, we used a linear transformation to parametrize
a plane determined by two vectors emanating from the origin. If
T(u v) = uA—H)B is any linear transformation from R? into R? such
that Ax B = 0, then T parametrizes the plane determined by A and
B, when drawn emanating from the origin. (The test Ax B %+ 0is a
check to be sure that the two vectors do not have the same direction.)
It is also true that any plane containing the origin is the image of a
linear transformation.

EXAMPLE 15: Find a linear transformation that takes the
u, v—plane onto the plane with equation 2x 4+ 3y — 42 = 0. We
proceed by solving for x of the variables in terms of y and z to ob-

tain © = 2z — 3. We let y(u,v) = v and z(u,v) = v, which gives
z(u,v) = 2v — %, and we have the coordinate functions for
2v —3/2u
T(u,v) = u
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Theorem 2 If P is the plane with equation ax+by+cz = 0, then
P is the image of a linear transformation with domain R2.

Proof: At least one of the coordinates of (a, b, ¢) is not zero. Assume
a # 0. Then we solve ax + by + ¢z = 0 for = in terms of y and z to
obtain x = — (g) Yy — (g) z. As in Example 13, we let y(u,v) = u
and z(u,v) = v and define

P is parametrized by T.

If a = 0, then we can solve for either ¢ in terms of x and z or z
in terms of x and y.

We have described planes in R? that contain the origin as the
images of linear transformations with domain R2. Now, suppose
that A and B are vectors in R3 , drawn emanating from 7, such that
AxB = (0. The vector A x B is normal to the plane and 77 is a point
in the plane. f(u, v) = uA+vB parametrizes a plane containing the
origin, which is parallel to P. We can translate the image of T (u,v)
to P by composing T with the translation by 7y to obtain

h(u,v) = T(u,v) + 7o.

EXAMPLE 16: The vectors A = (1,2, —1) and B = (0,1,1) are
drawn emanating from C' = (1,1,2) to define a plane P. Find a
linear transformation 7' with domain R? and a vector 7 such that

- —

h(u,v) =T (u,v) + 7y parametrizes P.

SOLUTION: First, we parametrize the plane determined by the vec-
tors A and B drawn emanating from the origin. Then we translate
this plane by the vector C'. See Figure 6. Let

1 0
Af: 2 1
-1 1
Then
u 1 0 u U
T(u,v):Af<v>: 2 1 <v>— 2u+v
-1 1 —u+v

11

al

T
R -4 P
4 — 1
/7 A

Figure 6. The plane P is a
translation of P1 by the vector

—

¢=(1,12).
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is a parametrization of the plane P; containing the origin that is
parallel to P. Now we compose 1" with a translation by 7y = C to
obtain

1 0 " 1
h(r) = AfF+C: 2 1 < >+ 1
v
-1 1
u—+1
—u+v+2

EXAMPLE 17: Find a linear transformation composed with a
translation that parametrizes the plane x —y + 2z = 2.

SOLUTION: First, we parametrize the plane z —y + z = 0 as in
Example 15 with T'(u, v) = (u — v, u,v) and then translate the result
with any point in the plane, say (0,0,2), to obtain H(u,v) = (u—
v, U,V + 2). u

Summary

T is a linear transformation from R™ into R™ if and only if Az is a
m X n—matrix (n columns and m rows.)

T (ur,... up) = ut A1+ +up Ay, then Az = ( [A1] ... [An] ).
Any plane in R? can be parametrized with a function of the form

h(7) = A7 + 7, where A is a matrix with two columns and three
rows and 7 is an arbitrary point in the plane.
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EXERCISES 4.1

In Exercises 1-6, determine the domain and range of
the linear transformation associated with the matriz.

—_
|

—_

o

1(%_11> 2.0 2 -1
1 0 1
10
3(1 -1 0). 4|2 -1
1 0

5.(3 ;1 _01). 6. (1 —1).

IZL Ezxercises 7-14, find vectors A and B', such that
T ewtd-Fo Buad)find the associated nx 2 matriz
A=

T8, T(u,v) = (u+v,u—v).
9. T(u,v) = (Bu—6v,5 —4%).
10. f(u,v) = ( v, U — %)
11. T(u,v) = (—v,u — ).
12. T(u,v) = (u — v, 2u + 60).
13. f(u,v) (v 6u, —u — v,u + %)
14. T(u,v) = (6u+ 3v).

In Exercises 15-22, ﬁ_?}d vectors ff, é, and C such that
T(u,v,w) = uA + vB + wC, and find the associated
n X 3 matriz Agz.

15. T(u,v,w) = (u+v+w,u—v+w,v—w).

16. T'(u,v,w) = (u — 3v,3u +v — 7w).

17. T(u,v,w) = (6u+ 3v — w, —u — v — w, u — w).
18. T'(u,v,w) = (5w, v + w, v).

19. T(u,v,w) = (u+ v+ w,u—v).

20. T(u,v,w) = (u— v+ w,u+ v — 6w).

21. T(u,v,w) = (u+ 6v — 10w).

22. T(u,v,w) = (15u — 6v + 2w).

13

In Ezercises 25-30, find the matriz for the linear
transformation T'.
23. T takes (0,1) onto (1,3), and (1, 0) onto (—1,5).
24. T takes (1,0,0) onto (1,3), (0,1,0) onto (—1,5),
and (0,0,1) onto (—1,0).

25. takes (1,0,0) onto (1,3,2), (0,1,0) onto

1,5,1), and (0,0,1) onto (—1,0, 3).

T
(-
2. T t kes (1,0,0) onto —1, (0,1,0) onto 1, and
(0,0,1) onto 3.
T

27. akes (1,0,0) onto 1, (0,1,0) onto 2, and

(0, B 1) onto 3.

28. T takes i onto 7, J onto —% and k onto —Fk.
29. T reflects the plane over the z—axis.

30. T reflects the plane over the line z = —y.

In Ezercises 31-36, determine which of the planes is
the image of a linear transformation. Where appropri-
ate, find a linear transformation that parametrizes the
plane.

31. P is the graph of x + y + 2z = 0.
32. P is the graph of x — 2y + 3z = 0.
33. P is the graph of x + 2y + 3z = 3.

34. The vector (1,2,3) is normal to P, and P con-
tains the origin.

35. The vector (1,2,3) is normal to P, and P con-
tains (1,1,1).
36. The vector (1,2,3) is normal to P, and P con-
tains (—1,—1,1).
In Exercises 37-42, find a function of the form
h(s,t) = A < j
is the image of h.

) + (0, Y0, 20) , such that the plane P

37. P is the graph of x + y + 2z = 3.
38. P is the graph of x + 2y + 3z = —1.
39. P is the graph of x — 2y + 3z = 3.39)
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40.

41.

42.

The vector (1,2,3) is normal to P, and P con-
tains (1,1,1).

The vector (1,2,3) is normal to P, and P con-
tains (1, —1,2).
1

The vector ( ,2,3) is normal to P, and P con-
tains (—1,—1,1).

In Exercises 43-477, prove thatﬁf is not linear by show-
ing that T(F+ 8) # T(F) + T(3) for some choice of
vectors 7 and §.

43.
44.
45.
46.
47.

T(u,v) = Bu—v+1,2u+v —6).

!l

(u,v,w) = (u—2v+ 3,u+ w).
(U,U):

(u,v,w) =

T(u,v) =

Ny

(u? + 2u,u — v).

!l

(u? +v2u+v—2,u+0v).

(sinu, cos v).

In Exercises 48-52, Ty is the transformation that ro-
tates the plane 0 radians, as in Figure 7.

48.
49.
50.

ol.
92.

Find the unit vectors é; and é; in terms of 6.
Find the matrix for fg.

Find T /4(1,1).

Find T, j5(1,1).

Find T, 4(1,1).

Chapter 4. Change of Coordinate Systems

A .
Ty(xy) 6 A
\e
N
>
Figure 7.
53. Let T(u,v) = (u,—v) be the linear transfor-

54.

55.

56.

mation that reflects the plane over the r—axis.
Show that T o T;r/4 #+ T;T/4 oT (that is, a ro-
tation followed by a reflection gives a different
result than does a reflection followed by a rota-
tion.)

Let T be a function from R? into R2. Show that
if each of its coordinate functions is linear, T is
linear.

Let T be a linear transformation from R2? into
R2. Show that each of its coordinate functions
is linear.

Show that if Ehe function T frgm R™ into jlme is
linear, then 7'(0) = 0. (Hint: 7(0 4+ 0) = 7(0).)

4.2 Other Transformations

There are a number of functions or transformations that are not

linear but still quite important.

Linear transformations have the

nice property that they take planes onto single points, lines, or other
planes. However, it may be helpful to change our point of view more

drastically.

Suppose F' is a function from wvw-space into xyz—space, given

by

F(u,v,w)

x(u, v, w)
= | vlwv,w)
z(u, v, w)
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We define
o
— ou -
oF I oF
ou (u,v,w) Ou (uw w)’ ov
& sy
ou
and o
. ow
or | o
ow | (u,v,w) ow
0z
ow

The Polar Transformation

(u,v,w)

= 9y

(u,,w)

(u,v,w)

EXAMPLE 1: Let P be the function from rf-space defined by

P(r,0) = (rcosf,rsiné).

Figure 1
P(r,0) is the point r
units from the origin on the line

with inclination 6.

=l
=
)
=

(r,0) r

)

The function P is called the polar transformation. If P(r,0) =
(z,y), then (r,0) are called polar coordinates for (z,y), and (z,y) are

the rectangular coordinates for (r,0).

The transformation P takes a horizontal line of the form 6 = 6,
in rf-space onto a line passing through the origin in xy—space, as
illustrated in Figure 2.a. Similarly, P takes a vertical line of the
form r = rg in rf—space onto a circle of radius ry in xy—space, as in

Figure 2.b.

vl

e:eo

Figure 2.a The line 6 = o in rf-space goes
onto the line containing the origin with
inclination Oy in Ty-space.

a1

Figure 2.b The line r = 7o in r0-space goes
onto the circle centered at the origin with radius
0 N TY-—Space.

15
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The partial derivatives of P are

oP , op ,
— = (cosf,sinf) and — = (—rsinf,rcosh).
or 00
oP,
70,0,
0 (r9:60)
0 y Pb 8y y
P
(ro»e()) X
r X \/
Figure 3.a As the position in r0—space moves Figure 3.b
in the positive direction on the line r = ro, its P
image in xy—space moves counterclockwise ?9 (ro,00)
around the circle of radius ro. i a Qector tangent to
the circle

2?4 y? = 2
at the point

—

F)(T()7 90)

Consider the geometry associated with the partial derivatives of
P. Figure 3.a illustrates that as the position in rf#—space moves in

the positive direction on the line r = rq, its image in xy—space moves
counterclockwise around the circle of radius rg. Thus, %—5‘( ) is
T0,%0
a vector tangent to the circle #2 + y? = r at the point P(r,6p) =
ro (cos(0p), o sin(fp)) , as illustrated in Figure 3.b.
As illustrated in Figures 4.a and 4.b, we can discern the geometry

of %—f by inspection.
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P
(r9-00)
r 0°~0
0 y
P
(r9:9¢)
- X
Figure 4.a As the position in r0-space moves
in the positive direction on the line 6 = 0y, its
image in xy-space moves out the line with . oF
inclination 0g. Figure 4.b 0 | (ro.00)
70,Y0

is a vector emanating from
the point (ro,00). The
vector points away from
the origin.

The Cylindrical Transformation

EXAMPLE 2: Let C, be the function from rz—space into TYz—
space, defined by

C.(r,0,2) = (rcos,rsinb, z).

In Figure 5.a we plot the image of the point (r, 0, 2).

The function C, is called the cylindrical transformation (about
the z—axis) because it takes planes of the form r = 7y onto the
lateral surface of the cylinder x? +y? = rg. Figure 5.b illustrates how
planes parallel to the r6—plane in rfz—space are carried into zyz—
space by C,. If C"Z(r, 0,z) = (x,y,2), then (r,6, z) are the cylindrical
coordinates for (z,y,z), and (x,y, z) are the rectangular coordinates

for (1,0, z).
Thus
36’,2(81”;9,2) = (cosf,sin6,0),
9Ce(r,0,2)  _ (—rsinf,rcosf,0), and
00

= (0,0,1).
z

The geometry associated with the cylindrical transformation and
its partial derivatives is illustrated in Figures 6.a, 6.b, and 6.c.

\\ —
\. Cz(rr e’ Z)
0 |
—> [
‘o C,(r,6,0)

Figure 5.a The point
C.(r,0,z).

17

Figure 5.b Images

(in xyz—space) of planes that
are parallel to the
0z—coordinate plane in
rfz-space.
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nil

Figure 6.a As the point moves away from Figure 6.b As the point moves away from
(ro,00,20) in the r direction holding 0 and z fized, (10,00, 20) in the 6 direction holding r and z fized,
C(r, 0, z) moves directly away from the z-axis. C.(r,0,z) moves in direction tangent to the circle

parametrized by

B ro cos(f) _
h(0) = ro sin(6) = C(r0,0, 20)

20

-

aC

,/”"”“T Z < (g, 09 2¢)

e

Figure 6.c As the point moves away from
(ro,00, 2z0) in the z direction holding r and 0 fized,
C.(r,0,z) moves in the z direction in zyz—space.

The Spherical Transformation

EXAMPLE 3: Let

. pcos(0) sin(¢)
S(,O, ?, 0) = p Sin(e) sin(¢)
pcos(0)

S is called the spherical transformation since S takes the plane p = po
in pph—-space onto a sphere of radius pg. See Figure 7.

Figure 7

. pcos(0) sin(¢)
The point S(p, ,0) = | psin(0) sin(¢)
pcos(¢)

The spherical transformation appears formidable. However, as we
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illustrate in Figures 8.a and 8.b, the derivation of the function is a
straightforward application of elementary trigonometry and geome-
try. pis the length of the hypotenuse of the right triangle OAB. The
z—coordinate of S(p, ¢, 6) is pcos(¢) since OA is the side adjacent ¢
in the right triangle OAB. The line segment OC is the hypotenuse
of the right triangle OCD, and its length is psin(¢). 0D is the side
adjacent the angle 6. Therefore, the x—coordinate of S (p,0,0) is
cos(0)(psin(¢)). In the same way, BC is the side opposite 6 in the

— 5

triangle OCD, and the y-coordinate of S(p, ¢,0) is sin(8)(psin(e)).

e
W ) T~
A4 psin(Q) PR
< o -
~ PRad=¢
T (P ~_ ﬁ /_\ . I | B
p cos(Q) : e :
| | 0l ‘
N | . ﬂ ; 7
0 — cos(0)(p sin(9)) v
| // / “— 76 77777777 [
P . ) ¢
C «— sin(0)(p Sin((P))M

Figure 8.a The z—coordinate of

§(p, 6,0) is cos(e). Figure 8.b The z-coordinate of g(p, ¢,0) is

cos(0)(psin(¢)), and the y—coordinate of
5(p,,0) is sin(8) (psin(6)).

Figures 9.a—c. illustrate how S takes planes parallel to the coor-
dinate planes in uvw-space into xyz-space. If g(p, $,0) = (z,y,2),
then (p, ¢, 0) are called spherical coordinates for (z,y, z), and (z,y, 2)
are called the rectangular coordinates for (p, ¢, 0).

Wil 7,
Qi

AP

|-e
“l
<

e s

X

Figure 9.a S takes planes parallel to the Figure 9.b S takes planes parallel to the
0¢—coordinate plane onto spheres. rf—coordinate plane onto cones.
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Figure 9.c S takes planes parallel to the
r¢—coordinate plane onto planes containing the
z—axis, like pages of a book.
The geometry associated with the partial derivatives of the spher-
ical transformation is illustrated in Figures 10.1, 10.b, and 10.c.

Figure 10.a As the point moves away from Figure 10.b As the point moves away from
(ro, ¢o, 60) in the r direction holding ¢ and 0 fized, (r0, @0, 00) in the 6 direction holding r and ¢ fized,
S(r, ¢,0) moves radially away from the origin. S(r, ,0) moves in direction tangent to the latitude

parametrized by ﬁ(@) = (10, ¢0,0).

Figure 10.c As the point moves away from
(l“o, ®0,00) in the ¢ direction holding r and 0 fized,

S(r, ¢,0) moves around the longitude parametrized by

h(¢) = (T07 ¢7 00)
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EXERCISES 4.2

In Ezercises 1-9, plot the points in xy—space that have
the given polar coordinates, and compute the partial
derivatives of the polar transformation P at the given
point. (The angles are measured in radians.)

1. (2,0). 2. (2,2m). 3. (2,—2m).
4. (=2,m). 5. (5%). 6.(=52F).
7.(5,-%). 8 (L,F). 9. (-1,TF).

In Ezercises 10-1/, find all polar coordinates for the
given point in xy—space. (r* =z +y?, and, if x # 0,
tan(f) = £.)

10. (0,1).

13. (—=1,/3).

In Ezxercises 15-23, find the point in xyz—space that
has the given cylindrical coordinates, and compute par-
tial derivatives of the cylindrical transformation éz at
the given point. (The angles are measured in radians.)

11. (1,0).
14. (0,0).

12. (1,1).

15. (2,0,2). 16. (2,27,2). 17. (2,—2m,2).
18. (—=2,m,—1). 19. (5,%,2). 20. (-5,%F,2).
21. (5,-%,3). 22. (1,%,-1) 23 (-1,7F,-1)

In Exercises 2428, find the cylindrical coordinates

for the given point in xyz-space. (r? =z +y?, and,if

x#0, tan(f) = £.)
24. (0,3,2).

27. (—=1,v/3,—-1).

In Ezercises 29-36, the points are given in spherical
coordinates. Find the corresponding rectangular co-
ordinates, and the partial derivatives of the spherical
transformation S at the given point.

29. (2,0,%). 30. (-2,7,%).

31. (-2,0,77). 32, (2,m, F).
33. (2,m,—%). 34 (1,%.%).

25. (3,0,2).
28. (0,0,2).

26. (1,1,1).

1404
35. (—1,2¢, %), 36. (1,2F,-%).

In Exercises 37-40, find values for (p,¢,0) such that
(i) p>0, (1) 0 < 0 <27, and () 0 < ¢ < 7 and
such that A§'»(,0, ¢, 0) is the given point. (p* = 2% +y? +
22,z = pcos(¢), and tan(f) = £.)

37.
39.

41.

42.

43.

44.

45.

21

(1,0,1).  38. (1,1,1).
(1,v/2,1).  40. (v/6,2,2V/2)

Show that if p is a point on the plane p = pg
in pgpf-space, then S takes P onto a point in
the sphere of radius py centered at the origin in
xTYyz—space.

Show that if ¢ is on the sphere of radius py,
centered at the origin, then there is a point p'in
the plane p = po in pgf-space such that

SE) =4

Show that the partial derivatives of the polar
function are mutually perpendicular at (r,0)
provided that r # 0.

Show that the partial derivatives of the cylider-
ical transformation are mutually perpendicular
at (r,0,z) provided that r # 0.

Show that the partial derivatives of the spher-
ical transformation are mutually perpendicular
at (r, ¢,0) provided that r # 0.

In Ezxercises 46-57, sketch the set satisfying the given

50.

A), where A is the line 0 = ‘%“ in rf-space.

conditions.
46. P(A), where A is the line r = 2 in rf-space.
47. P(A), where A is the line r = —2 in rf-space.
48. P(A), where A is the line § = 5 in rf-space.
49. P(A), where A is the line 6 = T in rf-space.
(4)
P(A)

ol.

52.

93.

54.

95.

P(A) + (—1,2), where A is the line 7 = 4 in
rf—space.

P(A), where A is the rectangle in rf-space
0<r<1,0<80,< 2

ol

(A), where A is the rectangle in rf-space
0<r<1,0<60<7T.

P(A), where A is the rectangle in r6—space
1<r<2 0<6<2r.
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56.

P(A), where A is the rectangle in 70-space
1<r<2,0<0< 7.

—

P(A), where A is the rectangle in rf—space
1<r<2, —T<g<T

In Exercises 58-81, describe the set satisfying the given
conditions.

58.
99.

60.
61.
62.

63.

64.

65.

66.

67.

68.

69.

70.
71.
72.

73.

74.

C.(A), where A is the plane r = 3 in rfz—space.

C.(A), where A is the plane r = —2 in rfz-
space.

C.(A), where A is the plane § = 5 in r6z-space.

C. (A), where A is the plane § = Z in rfz—space.

INH

C.(A), where A is the plane 0 = 3 in 6z
space.

C.(A) + (1,2,3), where A is the plane 7 = 2 in
rfz—space.

C.(A), where A is the rectangle in rfz—space
0<r<1,0<0<2m 2=0.

—

C,(A), where A is the rectangle in rfz—space

0<r<i, 0§9§%, z=2.

—

C,(A), where A is the rectangle in rfz-space
1<r<2,0<60<L2m z2=-3.

C.(A), where A is the rectangular box in
r@z—space 0 <r <2, 0<6<2m 0<2<1.
C.(A), where A is the rectangular box in
rfz—space 1 <r <2, 0<6<7m, 1<2<2.
C.(A), where A is the rectangular box in
rfz—space 1 <r <2 —7m<6<m 1<z<2.
S(A), where A is the plane in r¢f-space r = 3.
§(A), where A is the plane in r¢f—-space r = —2.

(A), where A is the plane in r¢f-space

s

T
(4)

Wy

where A is the plane in r¢f-space

Wy

Il
S

(A), where A is the plane in r¢f-space
3
T-

° Wy

75.

76.

77.

78.

79.

80.

81.
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S(A) + (1,2,3), where A is the plane in
r¢f—space r = 2.

S (A), where A is the rectangle in r¢f—space 0 <
r<1,0<6<2m ¢=0.

S (A), where A is the rectangle in r¢f-space 0 <

S (A), where A is the rectangle in r¢f—space 1 <
r<20<60<2r ¢=1=.

Uy

(A), where A is the rectangular box in
r¢f-space 0 <r <2, 0<0<2m, 0<p < 7.

—

S(A), where A is the rectangular box in
r¢f—space 1 <r<2 0<0<7m, 0<¢<m.

S(A), where A is the rectangular box in
r¢f-space 1 <r <2, -1 <f0<m 0< o< 3.

In FEzercises 82-85, we define C, similarly to C. ex-
cept that the x—axis is the axis of symmetry. That is

—

Cy(x,r,0) = (z,7cos,rsinb).

82.

83.
84.
85.

Show that the partial derivatives of C, are mu-
tually perpendicular, except at points where
r=0.

Describe C,,(A), where A is the plane z = 2.
Describe C,(A), where A is the plane r = 2.

Describe Cy(A), where A is the plane 6 = 5

In Exercises 86-89, we define éy(r,y, 0) =
(rcos@,y,rsind).

86.

87.
88.
89.
90.

Show that the partial derivatives of C_"y are mu-
tually perpendicular, except at points where
r=0.

Describe C_"y (A), where A is the plane y = 2.
Describe C"y(A), where A is the plane r = 2.
Describe CE(A), where A is the plane 6 = 7.

Show that if 0 < ¢ < 7, then S satisfies the right
hand rule. That is, the partial derivative with
respect to r crossed with the partial derivative
with respect to ¢ has the same direction as the
partial derivative with respect to the 6.
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—

91. Calculate the partial derivatives of f(u,v) = 92. What is the image of f of Exercise 917
(2 cos(u) sin(v), 2 sin(u) sin(v), 2 cos(v)).

4.3 The Derivative

Let F(u,v) be a function from R? into R?. Let F, denote the z-
coordinate function, and let F}, denote the y—coordinate function, so
that

—

F(u,v) = (Fy(u,v), F,(u,v)).

Let 7(t) be a parametrization for a curve in R?, and let

g(t) = (Fx(7(t)), £y (7(1)))-

Now,
dg(t) _ (de(F(t)) dFy(f(t)))
dt a0 dt )
By Theorem 1 of Section 11.8, we see that
L) — R
= (Geem) v+ (Geem) v
_ OFydu  OF;dv
T Ou dt + ov dt’
and
) vE, ) - #(0)

- <88}Z/(F(t))> u'(t) + <6£(F(t))> v'(t)
OF, du  OF, dv
Ou dt ' dv dt’

We can express the above two equations in matrix notation in the
following way:

. dF;(7(t)) OF, du OF; dv
dgt) dt _ | eua T o a
dt 4F, (7(1)) OFy du | OF, dv
dt Ou dt ov dt

OF, OF, du

_ ou ov dt

oF, OFy dv

Bu O dt
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Definition: The Derivative of F' at (u,v)

Let F:R2 — R2 be a function

—

F(u,v) = (Fy(u,v), Fy(u,v)).

If 9 OF: OF, d 88% exist, we define

ou’ Ov’ Ou’
OF, OF;
o o ou ov
DFl) = OF, OF,
ou ov

to be the derivative of F evaluated at (u,v).

Notice that the first row of DF is simply VF,, the second row
is VI, and the derivative of F' is defined so that we have the chain
rule for functions from R? into R2.

d = 2 -
@F(T(t)) = DF |z (1).

EXAMPLE 1: Consider the polar transformation P(r, 6) = (r cos 0,
rsinf). Then

— cosf) —rsinf
DP|(7"79) - < sin@  rcos6 ) ’

If 7(t) = (1, 2mt), then P(7(t)) = (cos(2xt),sin(27t)) describes a par-
ticle moving around a circle in zy—space at a rate of one rotation/sec.
We can either calculate the derivative directly as

dP(i(1))

pra 27 (— sin(27t), cos(27t)),

or use the above to obtain

DP cos(2mt) — sin(2wt)
r,0 = ’
() sin(27t)  cos(27t)

and
7'(t) = (0,27).
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Thus
dP() _ pp
o = DPlzym (1)
cos(2mt) —sin(27t) 0
sin(27t)  cos(27t) 27

= 2n(—sin(2rt), cos(2nt)). "

In general, if §(¢) = (r(t),0(t)) is an expression for the polar coor-
dinates of a particle at time ¢, then P(5(t)) will give the rectangular
or Cartesian coordinates of the particle. The derivative §'(t) will
then denote the polar coordinates of the velocity vector and

—P(3(t)) = DPly,s'(t)

cos(0(t)) —r(t)sin(6(t)) ' (t)
sin(0(t))  r(t) cos(6(t)) 0'(t)

will give the Cartesian coordinates of the velocity vector.

Note: It is not uncommon to encounter the notation ds/dt, which
is meant to represent the rate of change of position in rectangular
coordinates even though § represents the polar coordinates of the
point.

EXAMPLE 2: Suppose that a particle is moving in the plane
so that when the polar coordinates are (2, g) , its velocity, in polar

coordinates, is (1, 7). What is the velocity in rectangular coordinates?

SOLUTION: If 3 denotes the time at which the particle is at (2, %) ,
and if § is the parametrization giving the position of the particle at

time ¢ in polar coordinates, then §(to) = (2,Z) and §'(to) = (1, ).

DB, (ko) = cos(f(to)) —r(to)sin(6(to)) Y (to)
sin(0(to))  r(to) cos(6(to)) 0 (o)
_ cos (F) —2sin (%) 1
i :

sin (

25
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242

so the particle’s z—coordinate is decreasing at the rate of (?) —V2,

while the y—coordinate is increasing at the rate of (?) +7yv/2. W

We have defined the derivative of a function F from uv—space
into zy—space (evaluated at (u,v)) to be the 2 x 2 matrix whose first
row is VFy|(y,0), and whose second row is VF} |, ). Notice also that

oF

the first column of DF |(u,) 18 %—5, and the second column is .

oF

ou
!
OFy OFy OF, OF:
ou ov ou ov — VF, T
OF, OF,
Bu o 0 O
Lau L@v ou 81)36
OFy OF, OF, OF,
m 8v auJ avJ — va
7
oF
ov

We define the derivative from R"™ into R™ in a similar manner.
If F is a function from uv—space into ryz—space, then we define the
derivative of F' to be the 3 x 2 matrix whose first row is the gradient
of F,, whose second row is the gradient of F},, and whose third row
is the gradient of F.

OF, OF,

ou ov
o _ OF, OF,
DFlww = | ¢ B
OF, OF:

ou ov

evaluated at (u,v)
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If F' is a function from uvw-space into xyz—space, then the deriva-
tive of F'is a 3 x 3 matrix, the rows again being the gradients of the
coordinate functions.

OF, O0F, OF,

ou ov ow

l — oF, O0F, O0F,
DF | (u,v,w) W W ow
OF, OF, OF,

ou ov ow

evaluated at (u,v,w)

Finally, if F is a function from uvw—space into xy—space, then
the derivative of F' is a 2 x 3 matrix, again with the rows being the
gradients of the coordinate functions.

oF, O0F, OF;

= ou ov ow
DF =

| (u,v,w) OF, OF, OF,

u ov ow evaluated at (u, v, w)

In general, if F is a function from R into R™, then the derivative
of F'is an m X n matrix, with the rows being the gradients of the
coordinate functions.

EXAMPLE 3: Let T be a linear transformation from R3 into R3
with the associated 3 x 3 matrix Az, so that T'(p) = Azp. Thus, if

U a1 b1
p= v and Af =1 a2 by co |,
w a3 by «c3
then
ay by c1
Afﬁ: ul as | +v| by | +w| e
as b3 C3
We see that
T, (u,v,w) = (ua; +vby +wey), and VT, (u,v,w) = (ay,b1,c1)
Ty(u,v,w) = (uag + vby +wcy), and VI, (u,v, w) = (az,bs, c2)
T.(u,v,w) = (uaz+vbs+wesz), and VI (u,v,w) = (as, b3, c3),
SO Df|17 = AT' u

Theorem 1 If T is a linear transformation from R™ into R™ and
Ay is the matriz associated with T', then the derivative of T' eval-
uated at any point in R™ is Az

27
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EXAMPLE 4: Let T be defined by T(u,v) = (2u + v,v). Then

= 2 1

If a particle moves with velocity (1,2) in uv—space, then its velocity
viewed in zy—space is

1\ (21 1\ (4 n
ar(5)=(01)(5)=(5)
The derivative of a function from a subset of R™ into R™ satisfies
the chain rule.

Theorem 2 (The Chain Rule: Functions from R” into R™)
Suppose that S1 is a subset of the reals, So is a subset of R",
7:51 — S9 and F : S — R™ are differentiable. Let

g(t) = Foi(t) = F(i(t).

Then

EXAMPLE 5: If

is a differentiable function from a subset of the reals into uvw—space,
and

F(u,v,w) = (z(u,v,w), y(u, v, w), z(u, v, w))

is a differentiable function from a subset of uvw-space into ryz—space
as in Figure 1, then

dg S -
i DF |47 (t)
or 9z 0
u oo Bw u'(t)
_ oy Oy 0
= | % & o V(1)
% %) \vo

oz du oz dv Oz dw
oudt Tovar T owar
— ydu | Oydv | Oy dw

oudt Tovat T ow at

0z du 0z dv 0z dw
udt T ovdt T ow dt
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It is critical to remember that all of the entries in

Oz OJz Oz

ou Ov Ow

F— | 9y 9y 9y
DF ou Ov Ow
9z 0z 0z

ou Ov Ow

are evaluated at 7(¢). Often, you will see the coordinate functions
written out separately as follows.

de _ Owdu dxdv | 0w du
oudt Ovdt Ow dt

dt

dy _ Oydu  Oydv 0y dw
dt oudt Ovdt Ow dt
dz _ Ozdu  0zdv 0z duw
dt Oudt Ovdt Owdt’

where all of the terms %, %, g—f), %, etc. are evaluated at

7(t) = (u(t),v(t), w(t)). "
EXAMPLE 6: Suppose that

is a differentiable function from a subset of the reals into uv—space,
and

F(u,v) = (x(u,v),y(u, v), 2(u,v))
is a differentiable function from a subset of uv—space into zyz—space
(as in Figure 1, except that the intermediate space is a plane rather
than a three dimensional space.) Then

Oz Oz Oz du | Oz dv

dé ou  Ov du Ou dt Ov dt
9 B = oy 9 dt )

= = . = | 9% %y = | 9%ydu _ Oydv

dt DF|7'(t)T (t) Oou Ov dv Ou dt + Ov dt

9z 0z dt Qzdu | 0z dv

ou  Ov Ou dt ov dt

The coordinate functions of % written separately give

dx Ordu Oz dv

& dudt ovdt

29
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dy _ ydu oy

dt  Oudt Ovdt

dz Ozdu 0Ozdv

— = — 4 — ||
dt Ooudt Ovdt

The Chain Rule for Partial Derivatives

Suppose that F'is a differentiable function from uv—space into xy—
space, and that ¢ is a real-valued differentiable function defined on a
subset of zy—space that contains the range of F.. Then ¢oF = ¢(F) is
a real-valued function defined on uv—space. We want to find a(gZF) =
the rate that ¢ changes as u changes.

To set this up, assume that

ﬁ(u7v) = (‘T(uv U)vy(u’v))

and let 7(t) = (u1+t,v1), for some point (uy,v1), and G(t) = F(7(t)).
By the definition of the partial derivative for real-valued differentiable
functions, we see that

090 Flwv)|  _dolg)| gy . 40)
au (UL’Ul) dt t:() 9(0) dt t:()
We know that
_ (92 98\| _ (9 9¢
Vélgo) = (ax’ ay> 70) B (89[7’ Ay ﬁ(ul,vl).

We need to calculate %gt)h:o.

dﬁ(t) - ' =/
gz o

(=2 1
oy o

5u a0 ) o) \ 0

_ (9= Oy
— \ou’ du
(e
— \ou’ du

Putting it together we obtain

7(0)

(u1,01)
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d¢ o F(u,v)
ou

_ <‘9¢ ‘9¢>
-\ 0z’ dy

(u1,v1)

More simply, we write

doF _ (95 90\ (0r Oy
ou  \ 0z’ Oy ou’ du

Similarly we can use 7(t) = (u1,v1 +¢) and obtain

d0oF _ (06 00\ (00 oy
ov  \ oz’ Oy ov’ Qv

_ 090
- Jz du

_ 090
- 9z dv

. <3$ 33/)
ﬁ(u1,v1) 8U’ 8U

31

(u1,v1)

99 0y
Oy Ou’

94 0y
Oy v’

It is understood that % and g—z’ are evaluated at F(u,v) = (z(u,v),

y(u, v)).

In much the same way, we obtain the three dimensional case,
which we present as the following chain rule for partial derivatives

without proof.

Suppose

—

space that contains the image of F. Then

Theorem 3 (The Chain Rule for Partial Derivatives)

F(u,v,w) = (z(u, v,w), y(u, v,w), z(u, v,w))

is a differentiable function from uvw-—space into ryz—space, and ¢
s a real valued differentiable function defined on a subset of ryz—

(o F)

ou

d(poF)

ov

(u,v,w)

(u,v,w)

OF
Vo -
0 Oz

9¢ 9¢ 9y
Ox Ou

Ay du
OF

V¢~%

¢ D

99 9¢ 9y
Ox Ov

Ay O

96 0-
0z ou’

96.0-
0z Ov’
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and

d(poF OF
(gba,w)(uﬂ}?w) = v¢87w

0005 000y 060z
Orodw OJyow 0z 0w

Vo, %, %, and % are evaluated at ﬁ(u,v,w). The partial
derivatives of x, y, and z are evaluated at (u,v,w). It is com-
8(¢oﬁ)

ou *

mon in the literature to write % to mean

There are, of course, similar results if, for example,

is a differentiable function from wvw-space into ry—space, and ¢ is
a real-valued differentiable function defined on a subset of xy—space
that contains the image of F', or if

is a differentiable function from uv—space into xyz—space, and ¢ is a
real-valued differentiable function defined on a subset of xyz—space
that contains the domain of F.!

!The general statement of the theorem is as follows.
Ifﬁ(ul, costn) = (@1(u1, ..oy Un), cy Tm (U, - . ., un)) is a differentiable function
from a subset of R™ into R™, and ¢(z1,---,%m) is a real-valued differentiable
function defined on a subset of R™ that contains the image of F, then

a’lLi ﬁ(ul ,,,,, Up,) ' 87114

0¢ Oz 0¢ O0xm
oz 0w, T Dz Ous




4.3 The Derivative
EXAMPLE T7: Let P(r,0) = (rcosf,rsinf) and let ¢(z,y) =
22 +y?. Then

Vo(x,y) = (2x,2y), so Vo(P(r,0)) = (2rcosf,2rsinb).

We also have

orP . oP .
E(T’ 6) = (cos®,sin ) and %(r, 0) = (—rsinf,rcosf).
Thus
o0 oP
= (2rcos#,2rsin®) - (cosf,sinf)
= 2rcos?f + 2rsin®f = 2r,
and
1)) oprP
6 - Vo(P(r,0)) - %(Ta 0)

= (2rcos®,2rsinf) - (—rsinf,rcosf).

= —2r%cosfsinf + 2r? cosfsinf = 0.

As we would expect, a direct computation produces the same
results. ¢(P(r,0)) = r?. Thus

9
or

Linear Approximations

(r?) = 2r and 889(7’2) =0.

Suppose that i(u, v) = (z(u,v), y(u,v), z(u, v)) is a function from
R? into R3. Let 7 = (ug,vp) be a fixed point. Let 7(t) be defined by

=

71(t) = h(t,vo) and 75(t) = h(ug,t). Then

oh . h .
%(Uoﬂ“o) = 7"’1(“0) and %(anm) = 7"/2(?10)'

71 (up) is tangent to the curve parametrized by it, which in turn lines

- - oh
in the image of h. It follows that U = 8—(u0, vg) is tangent to the
u

. L Oh .
image of h. Similarly, V' = a—(uo, vp) is tangent to the image of h.
v
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Figure 2. The vectors

oh oh

%(uo,vo) and %(uo,uo)
determine the Elane tangent to
the surface at h(uo, vo)

3

w4, /4
e( )
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Figure 3.a The vectors 95

and g—i determine the plane to
the sphere at S (7T ”).
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N

R
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Figure 3.b The
approzimating tangent
plane to the sphere.

Chapter 4. Change of Coordinate Systems

Thus, as long as UxV % 0, they determine the plane tangent to
the surface at h(ug,vg). See Figure 2. This plane is the image of

f(s,t) = sﬁ+ﬂ7+f’o
— S —
= D(h | + h(uo,vo)
(ug,v0) t
92 (g, vo) 22 (u, vo) ) x(uo, vo)
= %(Uo,vo) %(uo,vo) . + 1 y(ug,vo)
%(UO,U()) gv UOaUO) z(uo,vo)

Note: T is a linear transformation translated to the point of
tangency.

EXAMPLE 8: Let S(¢,0) = (sin(¢) cos(h), sin(¢)(sin(0), cos(e)).
Then the image of S is the unit sphlere centered at the origin. As

illustrated in Figures 3.a and 3.b, g?(%, fp) is tangent to a latitude

oS
circle and a—(b(gi)o, o) is tangent to a longitudinal circle. We leave it
as an exercise to show that their cross product points away from the
origin (its radial), so the plane determined by these vectors drawn
emanating from the origin is tangent to the sphere. To find the plane
tangent to the sphere at S (%, %), we find the derivative of S at that
point.

—

2(9,8) = sin(¢) cos(6),

ox ox /m = 1
% = cos(¢) cos(0), % (Z’ Z> =5
and
ox . . Or (m m\ 1
0= — sin(¢) sin(0), %0 (Z’ Z) =-3

Similarly, we get

and
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The tangent plane is the image of

1 1 1 t 1

: T2 ) 2 27212

O I I B I B IR
|

EE Sl s o1

V2 V2 V2 V2

We have been focusing on tangent planes because they are rela-
tively easy to visualize and, inspecting the basic formula, they closely
parallel the earlier work we have done with tangent lines. The parallel
does not stop there. Recall that the first order Taylor approximation
for a real valued function is given by

pi(z) = f'(zo)(z — z0) + f(z0).

In exactly the same way, we can approximate functions from R into
R™. Let h be a function from R™ into R™. The function

P = D(h)| [F — 7o) + h(7o)

is called the first order Taylor approximation for h at 7. Just as
in the first order Taylor polynomials for real valued functions, if
|7 — 7| is small, then ||p(7) — h(7)| is small. In fact, if all of the
partial derivatives are continuous, then

1

m =y
770l —0 [|77— 70|

1

1p(7) = h(7)[| = 0.

EXAMPLE 9: The first order Taylor polynomial for the function
S from Example 8 at (%, %) is

O NI =

0-3

s

4

P9, 0) =

N— DN
+

1

V2

S‘H NI—= N
no

The approximating plane is displayed in Figure 3.b. In Figure 4,
we sketch the error function ||p(¢,0) — §(¢,0)|| over the rectangle
T-01<¢<F+01and 7 —05 <6 < 7+ 0.5. Inspection of
the figure reveals that in this region, the error on the approximating

function is small, near (%, %) u

/4
/ /4 +0.1

Figure 4. The error
function over the interval

INEFSE]

~0.1<¢<T+0.1 and
~01<0< T 401

35
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Summary

(a) If F is a function from R™ into R™, then the derivative of F
evaluated at 7 is defined to be the m x n matrix such that for
cach 4, with 1 < i < m, the i*? row of D(F)|; is the gradient
of the i*® coordinate function of F evaluated at 7.

(b) If 7 is a function from R into R™ and F is a function from R"
into R™, then

d = _ L
5 F(7(0) = DF|z 7 (0).
If
z(u, v, w) u(t)
ﬁ(ug an) = y(u,v,w) and F(t) - U(t) ’
2(u, v, w) z(t)
then
i o Ordu  Ozxdv Oz dw
o = Vewvwlay T =5t 5w e
dy Ly Oydu  Oydv Oy dw
o = Vy(u, v, w) |z -7 () = oudt Tovdt " ow dl
iz oy Ozdu  Ozdv Oz dw
e Vz(u,vaw)’r*(t) m(t) = ou dt + Ov dt + ow dt

(¢) If T is a linear transformation from R™ into R™, and if A is

the m X n matrix associated to f, then the derivative of T is
the constant matrix Az.

(d) If F is a differentiable function from a subset of uvw-space into
xyz—space, and ¢ is a real-valued differentiable function from
a subset of xyz—space containing the image of F', then

oo F) OF
T(u’ v, w) = v¢|ﬁ(u7v7w) ’ %(1% v, U}),

which is usually shortened to

90 _opor 060y 090:
ou Oxdu Oydu 0z0u’
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(e)

is the first order Taylor approximation for h at 0.

_ 1 2 1
EXERCISES 4.3 16. DF|;, = ( o
In Ezxercises 1-7, find the derivative of the linear trans-
formations. _ 1
. 17. DF|, =
1. T(u,v) = (3u, —2v). ’ -1
2. T(u,v) = (u+ 3v,v—u). 18, Dﬁ‘%:( 1 9 3).
3. T(u,v) = (u—v,2v,u+v).
4. T(s,t) = (s —t,3t + s,t — s). a2z a4
B 19. DE|. = | b by by
5. T(u,v) =u+v. 0
- €1 C2 C3
6. T(u,v,w) = (2u —v,u+w,u+v+w).
7 f(r, s,8) = (20 45—t r—5— 3,7 +5+1). {n Exerc?ses 2.0723, a partzck S posztzor; 50 and velqc‘zty
Uy are given in polar coordinates. Find the position
8. T(u,v,w) = (2u —w+ v, u+ v — 22w). and velocity in rectangular coordinates.
9. T(u,v,w) = (u+ v+ w,u+v+w). 20. 5o =(1,m), T =(2,3).
10. T(u,v,w) = u+v +w. 21. 5 =(2,3), @o=(-1,2).
11. Find the derivative of the cylindrical transfor- 22. 5 = (17 %) , o = (1,-2).
mation C. 23. 5o=(1,12), 7 =(23).
12. Finc.l thec_;derivative of the cylindrical transfor- In Exercises 24-27, a particle’s position 3y and ve-
mation Cz. locity Uy are given in cylindrical coordinates. Find the
13. Find the derivative of the spherical transforma- position and velocity in rectangular coordinates.
tion. 24. 5= (1,m,1), =(23,1).
In E:ve?“cises 14719, F is a_’funcfz’on from.R" into 25. 5, = (_17%’2)7 7o = (—1,2,0).
R™. Given the derivative of F' at 7y, determine n and
m. 26. 55 = (1, 5 1), ¥=(1,-2,-2).
. 1 2 27. 5= (1,77, -2), = (2,3,1).
14. DF|_ = : (.52
ro -1 0 In Exercises 28-31, a particle’s position sy and velocity
Uy are given in spherical coordinates. Find the position
0 2 and velocity in rectangular coordinates.
15. Dl“:: o = -1 3 28. §0 = (177T7 %) ’ ’UO = (2737 1)

1 0 29. 5% = (-1,%,2), @ =(-1,2,0).
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30. 5% =(1,%,%), 7o=(1,-2,-2).
31. 5= (1,5, -%), ¥=(23,1).
32. Find the derivative of the function h(u,v) =

Fi
(ucos(v),usin(v), u).
Fi

nd the derivative of the function h(u v) =

(u? cos(v), u? sin(v), u).

33.

In Ezercises 34-306, ¢(x,y,z) = e*¥T*. Use the chain

rule for partial derivatives to calculate % = %
and 22 = Aok for the given function F
a v 9 :
34. F(u,v) = (u+v,v,uv).
35. F(u,v) = (u,ucosv,usinv).
36. F(u,v) = (coswvsinu, sin v sin u, cos u).

In Ezercises 37-39, P(r,0) = (rcosf,rsinf) is the
polar transformation. Use the chain rule to calculate

% = % for the given function ¢.
37. ¢(x,y) =z +y. 38. ¢(z,y) = zy”.
39. ¢(z,y) = Ilnz + 3y.

In FEzercises 40-42, g(p, ¢,0) = (pcosfsing,psind

sin @, pcos @) is the spherical transformation. Use the
chain rule to calculate % = % for the given
function ¢.

40. ¢(z,y) =z +y+ 2.
42. ¢(z,y) = zyz.

41. ¢(z,y) = 2% +y? + 2%

In Ezercises 43—45, you are given the derivative of
F, 7, F(7o), and A7. Use Taylor’s first order approz-
imation for F at 7o to approximate F(7o+ AF).

B, 12 ) 1
43. DF|. = , o= ,
’ -1 0 -1
L 0.1
F(r) = and A7 =
3 —0.05
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1
_ 1 0 1
44. DF|. = , To=1| -1 1,
0 -1 10
2
0.1
. -2
F(rp) = and A7= | —0.1
1
0.02
1 2
. 0
45. DF|. =| -1 0 |, ”oz( ;
To 1
0 1
2
., 0.1
F(rp) = 1 and A7 =
—0.1
3

In Ezercises 4649, find the first order Taylor polyno-
mial for the polar transformation P at 7.

46. 7 = (2,3)  AT. 7o =(-2,%)
48. 7o = (1,3F)  49. 7y = (-1,%)

In Ezercises 50-53, find the first order Taylor polyno-
mial for the cylindrical transformation C, at 1.

50. 7o = (2,%,3) 5l 7= (-2,%F, 1)

52. 7 = (1,%F,0) 53. 7o = (-1, %,5)
In Ezercises 54-57, find the first order Taylor poly-
nomial for the spherical transformation S at 7.

54. 7o = (2,3,%) 55 7o =(-2,%,7%)

)99 4 ’ 274
56. 7 = (1,52, %) 57. 7% = (—1,%,37)

58. Use the Taylor polynomial from Exercise 46 to
approximate P(1.9, 5 4 0.2).

59. Use the Taylor polynomial from Exercise 53
to approximate C,.(7y + A7), where AF =
(=0.1,0.2,0.1).

60. Use the Taylor polynomial from Exercise 55
to approximate S(7p + A7), where AF =
(—0.1,0.2,0.1).



