SHOW ALL WORK

1. (3 pts each)
(a) Sketch $\vec{B}-\vec{A}$.
(b) Sketch $\vec{B}+\vec{A}$.
(c) Sketch the projection of \vec{B} onto \vec{A}.

2. Let $\vec{A}=(1,1,2), \vec{B}=(-1,1,1)$, and $\vec{C}=(1,2,3)$.
(a) Find the cosine of the angle between \vec{A} and \vec{B}.
(b) Find the projection of \vec{A} onto \vec{B}.
(c) Find a unit vector that points in the direction of \vec{A}
(d) Find $\vec{A} \times \vec{B}$.
(e) Find a vector that is perpendicular to both \vec{A} and \vec{B}.
(f) Find the volume of the parallelopiped with adjacent edges \vec{A}, \vec{B}, and \vec{C}.
(g) Find the area of the triangle with verticies \vec{A}, \vec{B}, and \vec{C}.
3. The graph of a function f is sketched below.

(a) Determine the segments where $f^{\prime}>0$
(b) Determine the segments where $f^{\prime}<0$
(c) Determine where the graph of f has a horizontal tangent line.
(d) Where does f^{\prime} fail to be derfined?
(e) Where does f fail to be continuous?
4. The graph of the DERIVATIVE of f is sketched below.

(a) Determine where f attains its maximum.
(b) Determine where f is concave up.
5. (10 pts each) Find the derivative of:
(a) $f(x)=\left(4 x^{-3 / 2}+2 x^{2}-x^{-2}+\pi\right)\left(x^{-3}-x^{4 / 7}+3\right)$.
(b) $f(x)=(\sin (6 \pi x)+4) /(\cos (5 x+2))$.
(c) $f(x)=\tan (3 x)+\sec (5 x+1)+\cot (x)$.
(d) $f(x)=e^{\left(x^{2}\right)}+\ln \left(x^{3}+2\right)$
6. (10 pts) Find an equation for the line tangent to $f(x)=\left(x^{-3}+x^{2}+1\right)$ at $x_{0}=1$.
7. (10 pts) Parameterize the line tangent to $\vec{r}(x)=(\cos (3 \pi x), \sin (\pi x), \ln (2 x))$ at $x_{0}=1 / 2$.
8. (10 pts) One leg of a right triangle is fixed at 3 meters as the other leg is decreasing at a rate of $2 \mathrm{~m} / \mathrm{sec}$. What is the rate of change of the area of the triangle when the leg of variable length is 1 meter long?
9. $(15 \mathrm{pts})$ Let $f(x)=\frac{x^{3}}{3}+3 x^{2}+x$.
(a) Determine where f is increasing and where f is decreasing.
(b) Determine the concavity of f.
(c) Sketch.
10. (10 pts) Find the maximum value for $f(x)=\sin (x) \cos (x)$ on the interval $0 \leq x \leq 2 \pi$.
11. (5 pts each) $\vec{r}(t)=(x(t), y(t))$.You are given the graphs of $x(t)$ and $y(t)$ below.

(a) Determine where the curve parametrized by \vec{r} has a horizontal tangent line.
(b) Determine where the curve parametrized by \vec{r} has a vertical tangent line.
12. (10 pts each) Let $F(x)=\int_{2}^{x} \frac{t d t}{(t+5)(t-4)}$
(a) Determine the domain of F.
(b) Find the derivative of F.
13. (10 pts each) Evaluate
(a) $\int x^{2}\left(x^{3}+1\right)^{99} d x$.
(b) $\int \frac{x^{2}}{x^{3}+1} d x$.
(c) $\int x^{2} e^{x^{3}+1} d x$.
(d) $\int_{0}^{1} \frac{d}{d x}\left(x^{3}+6 x^{2}\right)^{2 x} d x$.
(e) $\int_{0}^{\pi / 2} \sin ^{3} x \cos x d x$.
