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Proof of Proposition 1. Let Yj = (y1 − ỹj, y2 − ỹj, . . . , yn − ỹj)
T , Xj = (x1 − x̃j, x2 −

x̃j, . . . , xn − x̃j)
T , Wj = diag(w1j, w2j, . . . , wnj). Then the target function

Lλ(b, θ) =
n

∑

j=1

n
∑

i=1

(yi − ỹj − bjθ
T (xi − x̃j))

2wij + λ

n
∑

j=1

|bj|

p
∑

k=1

|θk|

can be re-written as

L(b, θ) =
n

∑

j=1

[

(Yj − Xjbjθ)
T Wj(Yj − Xjbjθ) + λ

p
∑

k=1

|bjθk|
]

.

We have

L(b, θ) =
n

∑

j=1

[

Y T
j WjYj − 2bjθ

T XT
j WjYj + bjθ

T XT
j WjXjbjθ + λ

p
∑

k=1

|bjθk|
]

≥
n

∑

j=1

[

Y T
j WjYj − 2bjθ

T XT
j WjYj + λ

p
∑

k=1

|bjθk|
]

The above inequality follows from the fact that bjθ
T XT

j WjXjbjθ ≥ 0. Recall that Rj =

XT
j WjYj. Therefore,

L(b, θ) ≥
n

∑

j=1

[

Y T
j WjYj +

p
∑

k=1

(λ − 2rjksgn(bjθk))|bjθk|
]

,

where sgn(·) is the sign function. Further recall that r11 = max |rjk|. When λ ≥ 2|r11|,

λ − 2rjksgn(bjθk) ≥ 0 for all j and k, and thus L(b, θ) ≥
∑n

j=1
Y T

j WjYj. The minimum

is achieved at bj = 0 and arbitrary θ. Therefore, bj(λ) = 0 and θ is not identifiable when

λ ≥ 2|r11|.

Assume that the second largest |rjk| is |rj2k2
|. Consider λ ∈ (2|rj2k2

|, 2|r11|). Following

argument similar to the above, we conclude that bj(λ) = 0 for j ≥ 2. Therefore, we only

need to minimize

L1(b1, θ) = (Y1 − X1b1θ)
T W1(Y1 − X1b1θ) + λ

p
∑

k=1

|b1θk|,
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which is the Lasso with weight least squares. Applying existing results of the regular Lasso

or using the KKT conditions, it is easy to show that there exists δ > 0 such that for λ ∈

(2|r11|−δ, 2|r11|), the minimizer of L1(b1, θ) is b1θ1 = [
∑n

i=1
(xi1−x̃i1)

2wi1]
−1[r11−sgn(r11)λ/2]

and b1θk = 0 for 2 ≤ k ≤ p. Therefore,

b̂1(λ) = [
n

∑

i=1

(xi1 − x̃i1)
2wi1]

−1[r11 − sgn(r11)λ/2], and θ(λ) = (1, 0, 0, . . . , 0)T .

Proof of Proposition 2. Let b+

j and b−j denote the positive and negative parts of bj (1 ≤

j ≤ n) and let θ+

k and θ−k denote the positive and negative parts of θk (1 ≤ k ≤ p). Let θ+ =

(θ+

1 , θ+

2 , . . . , θ+
p )T , θ− = (θ−1 , θ−2 , . . . , θ−p )T , b+ = (b+

1 , b+

2 , . . . , b+
n )T , and b− = (b−1 , b−2 , . . . , b−n )T .

Then, θ = θ+ − θ− and b = b+ − b−. The sim-lasso problem can be re-written as to minimize

L(b, θ) = Q(b, θ) + λ
n

∑

j=1

(b+

j + b−j )

p
∑

k=1

(θ+

k + θ−k ) (1)

subject to θ+

k ≥ 0, θ−k ≥ 0, b+

j ≥ 0, b−j ≥ 0, θ+

k θ−k = 0 and b+

j b−j = 0 for 1 ≤ k ≤ p and

1 ≤ j ≤ n. It is not difficult to verify that the last two constraints will be satisfied by the

minimizer of (1) automatically and thus are redundant. Therefore, they are dropped in the

discussion below. The KKT conditions given below characterize the minimizer of (1).

∂L

∂b+

j

− u+

j =
∂Q

∂bj

+ λ

p
∑

k=1

|θk| − u+

j = 0

∂L

∂b−j
− u−

j = −
∂Q

∂bj

+ λ

p
∑

k=1

|θk| − u−

j = 0

∂L

∂θ+
− v+ =

∂Q

∂θ
+ λ

n
∑

j=1

|bj| − v+ = 0

∂L

∂θ−
− v− = −

∂Q

∂θ
+ λ

n
∑

j=1

|bj| − v− = 0

where u+

j , u−

j , v+ = (v+

1 , . . . , v+

k ), and v− = (v−

1 , . . . , v−

k ) are Lagrange (dual) variables such

that u+

j ≥ 0, u−

j ≥ 0,v+

k ≥ 0, v−

k ≥ 0, u+

j b+

j = u−

j b−j = 0, v+

k θ+

k = v−

k θ−k = 0. For any j ∈ B,

bj 6= 0, which implies either b+

j 6= 0 or b−j 6= 0. If b+

j 6= 0, then u+

j = 0; if b−j 6= 0, then

u−

j = 0. In either case, the following equation holds

∂Q

∂bj

= −sgn(bj)λ

p
∑

k=1

|θk|.

When both u+

j > 0 and u−

j > 0, then,

|
∂Q

∂bj

| < λ

p
∑

k=1

|θk|.
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This implies that bj = 0 and j ∈ Bc. Whenever bj with j ∈ B becomes zero or u+

j or u−

j with

j ∈ Bc becomes zero, the corresponding data point need to be removed from B or added to

B for reconsideration. Combining these facts together gives (iii) and (iv) of the proposition.

Similarly we can obtain (i) and (ii) of the proposition.

Proof of Proposition 3. We have

∂Q

∂θ
= −2

n
∑

j=1

n
∑

i=1

(yi − ỹj − bjθ
T (xi − x̃j))wijbj(xi − x̃j) = −2

n
∑

j=1

bjRj + 2
n

∑

j=1

b2

jSjθ

and

∂Q

∂bj

= −2
n

∑

i=1

(yi − ỹj − bjθ
T (xi − x̃j))wijθ

T (xi − x̃j) = −2RT
j θ + 2bjθ

T Sjθ

for 1 ≤ j ≤ n. Suppose at a fixed λ which is not a transition value, the active sets are A

and B. From Proposition 2, we have

−2
∑

j∈B

bjRjA + 2
∑

j∈B

b2

jSjAθA + sgn(θA)λ
∑

j∈B

|bj| = 0; (2)

and for j ∈ B,

−2RT
jAθA + 2bjθ

T Sjθ + sgn(bj)λ
∑

k∈A

|θk| = 0. (3)

When λ is between two consecutive transition values, θA and bj’s do not change signs.

Differentiating the two sides of (2) and (3) with respect to λ, we have

∑

j∈B

b2

jSjA

∂θA
∂λ

+
∑

j∈B

UjA

∂bj

∂λ
+

1

2
sgn(θA)

∑

j∈B

|bj| = 0

and for j ∈ B,

UT
jA

∂θA
∂λ

+ θT
ASjAθA

∂bj

∂λ
+

1

2
sgn(bj)

∑

k∈A

|θk| = 0,

where

UjA = −RjA + 2bjSjAθA + λsgn(bj)sgn(θA)/2.

Solving the above two equations for the derivatives of θA and bB leads to the formulas given

in the proposition.

3


