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This article focuses on designs involving two distinct groups of factors. In particular,
we assume that between-group interactions are more important than within-group
interactions. Under this assumption, a new word-length pattern is proposed to
characterize the aliasing severity of a design, and the concepts of resolution
and aberration are defined accordingly. Furthermore, we have obtained various
bounds on the maximum number of factors that a design with given resolution can
accommodate.

Keywords Compromise plan; Fractional factorial design; Minimum aberration;
Resolution; Word-length pattern; Word-type pattern.
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1. Introduction

Regular two-level fractional factorial designs (or briefly designs) are widely used
in scientific and industrial experiments to investigate factorial effects due to their
economic run sizes. For given number of factors and run size, there are usually
many distinct designs with different statistical properties. Various criteria have been
proposed in the literature to rank and select designs for practical use. Two such
examples are the maximum resolution criterion (Box and Hunter, 1961) and the
minimum aberration criterion (Fries and Hunter, 1980). They have been further
extended to other design scenarios such as split-plot designs (Bingham and Sitter,
1999), blocking designs (Chen and Cheng, 1999), and robust parameter designs
(Wu and Zhu, 2003). Readers are referred to Wu and Hamada (2000) for a
comprehensive account of two-level fractional factorial designs.

Recently, designs with multiple groups of factors have attracted much attention.
In this article, we consider designs involving two groups of factors. The two groups
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Maximum Number of Factors in Designs 2303

are denoted by G1 and G2, and factors in these two groups are referred to as G1-
and G2-factors, respectively. We assume that interactions involving three or more
factors are negligible. Therefore, only main effects and two-factor interactions (2fis)
need to be considered in design. Denote Gi ×Gj as the collection of 2fis between
one Gi-factor and one Gj-factor (i� j = 1� 2). In practice, prior knowledge may exist
regarding the relative importance of the 2fis. For example, 2fis in G1 ×G2 are
potentially significant, whereas 2fis in G1 ×G1 and G2 ×G2 are likely negligible.
Four scenarios have been considered in the literature, which are (1) G1 ×G1;
(2) G1 ×G1 and G2 ×G2; (3) G1 ×G1 and G1 ×G2; (4) G1 ×G2. In each scenario
above, the listed type of 2fis is considered more important than those unlisted.
Scenarios 1–3 were first discussed by Addelman (1962) and were recently studied
in Constantine and Xue (1998a,b) and Ke, Tang, and Wu (2005); Scenario 4 was
discussed in Sun (1993). All these designs are referred to as compromise plans in the
literature.

This article generalizes Scenario 4 to include interactions involving more than
two factors. Let G1 ×G2 denote the collection of interactions involving both G1-
and G2-factors and G1 ×G1 (or G2 ×G2) the collection of interactions involving
only G1-factors (or G2-factors). We assume that between-group interactions (i.e.,
those in G1 ×G2) are more important than within-group interactions (i.e., those in
G1 ×G1 or G2 ×G2). Under this assumption, the ordinary word-length pattern is
no longer appropriate for discriminating and ranking designs, because interactions
of the same order may have different importance. Instead, we propose a new word-
length pattern based on word-type patterns introduced in Wu and Zhu (2003),
which takes into consideration the distinction between the two groups of factors.
Furthermore, the concepts of resolution and aberration are redefined according to
the new word-length pattern.

Given the resolution of a design, it is usually of practical and theoretical interest
to know the maximum number of factors that the design can accommodate. Define
R�r�m� as the maximum number of factors that a design of m runs and resolution
at least r can accommodate. It is known that R�3� 2k� = 2k − 1 and R�4� 2k� = 2k−1

for designs not involving multiple groups of factors; see Draper and Lin (1990)
for more results. In this article, we further investigate and report various bounds
on the maximum number of factors for designs involving two groups of factors.
These results provide useful guidelines and information for practical application and
further theoretical study of these designs.

The remaining part of this article is organized as follows. Section 2 introduces
the new word-length pattern and redefines resolution and aberration. Section 3
discusses some bounds on the maximum number of factors under various scenarios.
Section 4 ends this article with some concluding remarks. All the designs discussed
in this article have resolution III or higher.

2. New Wordlength Pattern and Resolution

A 2n−p design, which has n two-level factors and 2k runs �k = n− p�, is uniquely
determined by p independent defining words, which are aliased with the gross
mean. The defining contrast subgroup consists of all the defining words. Let Wi

be the number of words of length i in the defining contrast subgroup. The word-
length pattern is defined to be W = �W1� � � � �Wn�. A design has resolution i if the
first nonzero element in W is Wi. A design D has less aberration than design D′
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2304 Zeng et al.

if Wi�D� < Wi�D
′� and Wj�D� = Wj�D

′� for 0 < j < i. If no other design has less
aberration than D, it is called a minimum aberration (MA) design.

When a 2n−p design consists of two distinct groups of factors, say, G1 with
�G1� = n1 and G2 with �G2� = n2, where n = n1 + n2 and �S� denotes the cardinality
of set S, the design is referred to as a 2�n1+n2�−p design. Because of the presence
of two groups, the ordinary word-length pattern is not appropriate to characterize
the defining contrast subgroup any longer. The set of words of the same length
is no longer homogenous and should be further distinguished. For example, a 2fi
in G1 ×G2 should be distinguished from a 2fi in G1 ×G1, because the former is
assumed to be more important than the latter and thus an alias involving the
former should be considered more severe. Wu and Zhu (2003) categorized the set
of words of length i into i+ 1 subtypes as �0� i�, �1� i− 1�� � � � � �i� 0�, where �t� s�
denotes words involving t G1-factors and s G2-factors (0 ≤ t� s ≤ i). Denote Wi�j as
the number of words of subtype �t� s� in the defining contrast subgroup. A word-
type pattern is defined to be the collection of Wi�j , W = �Wi�j�0≤i≤n1�0≤j≤n2

, where
Wi�j = 0, 0 ≤ i+ j ≤ 2, for designs of resolution III or higher. Clearly, word-type
pattern determines word-length pattern by Wk =

∑
i+j=k Wi�j .

In order to introduce a new word-length pattern for 2�n1+n2�−p designs, let us
first discuss how the ordinary word-length pattern is obtained from the hierarchical
ordering principle. The hierarchical ordering principle consists of two basic
assumptions: (1) effects of lower order are more important than effects of higher
order; (2) effects of the same order are of same importance. The second assumption
implies that we should group the elements Wi�j in the word-type pattern according
to the value of �i+ j� and sum them within each group. By ordering them in the
increasing order of �i+ j� as suggested by the first assumption, we reproduce the
ordinary word-length pattern for 2n−p designs,

�W3�0 +W2�1 +W1�2 +W0�3�W4�0 +W3�1 +W2�2 +W1�3 +W0�4� � � � ��

where Wi�j = 0, 0 ≤ i+ j ≤ 2 are dropped from the vector for simplicity.
The above interpretation of word-length pattern sheds light on how to construct

a similar vector for 2�n1+n2�−p designs. The key is to group and combine Wi�j

according to the relative importance of interactions. Notice that the hierarchical
ordering principle is not appropriate any more. Specifically, the first assumption
remains valid, but the second assumption should be abandoned because between-
group interactions are more important than within-group interactions. The words
of length three consist of four subtypes: (0, 3), (1, 2), (2, 1), (3, 0). Because of the
symmetry of G1 and G2, it is not necessary to distinguish subtypes (0, 3) and (3, 0).
Similarly, we treat subtypes (1, 2) and (2, 1) the same. A word of subtype (0, 3) or
(3, 0) induces the aliasing of a main effect and a within-group 2fi, whereas a word of
subtype (1, 2) or (2, 1) induces the aliasing of a main effect and a 2fi in G1 ×G2 (see
Remark 2.1 below). So the latter aliasing is regarded more severe than the former,
and subtypes (1, 2) and (2, 1) are more important than subtypes (0, 3) and (3, 0).
Consequently, the first two elements in the new word-length pattern, denoted by
W ∗, are

W ∗ = �W1�2 +W2�1�W0�3 +W3�0� � � � ��

The words of length four consist of five subtypes: (0, 4), (1, 3), (2, 2), (3, 1), (4, 0).
Following similar arguments, subtype (0, 4) is treated the same as subtype (4, 0),
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and both of them are less important than the other subtypes. Because subtype (2, 2)
induces the aliasing between two 2fis in G1 ×G2 and subtype (1, 3) or (3, 1) induces
the aliasing between a 2fi in G1 ×G2 and a 2fi in G2 ×G2 or G1 ×G1, we regard
subtype (2, 2) as more important than subtype (1, 3) or (3, 1). Therefore, including
the next three elements in W ∗ yields

W ∗ = �W1�2 +W2�1�W3�0 +W0�3�W2�2�W1�3 +W3�1�W4�0 +W0�4� � � � ��

Similarly, we are able to write out the remaining elements in W ∗. Notice that the
elements in W ∗ are of the form either Wi�i or Wi�j +Wj�i. The element Wi1�j1

+Wj1�i1

precedes Wi2�j2
+Wj2�i2

if (i) i1 + j1 < i2 + j2; or (ii) i1 + j1 = i2 + j2 and �i1 − j1� <
�i2 − j2�. This rule also applies to elements Wi�i.

Remark 2.1. A word can induce more than one aliasing relation. For example,
suppose that ab1b2 is a word of subtype (1, 2), where a ∈ G1 and b1� b2 ∈ G2. This
word induces the aliasing of a and b1b2, and also induces the aliasing of b1 and ab2.
The latter aliasing is regarded more severe than the former, because it involves a 2fi
in G1 ×G2, which is more important than 2fis in G2 ×G2. When comparing two
words of different subtypes, it is only necessary to compare the most severe aliasing
relation induced by these words.

We redefine resolution and aberration in terms of W ∗ as follows. A 2�n1+n2�−p

design has resolution r�s if it has resolution r in the usual sense and s = min��i−
j��Wi�j �= 0 and i+ j = r�. The integer part of the newly defined resolution is
consistent with the resolution of usual 2n−p designs if we ignore the difference
between two groups of factors, and the fractional part is used to distinguish different
situations when the integer parts are equal. Notice that the fractional part cannot
be any value. For example, a design can only have resolution III.1, III.3, IV.0, IV.2,
IV.4, etc. The definition of aberration resembles the ordinary one, and the only
difference is to replace W by W ∗.

3. Maximum Number of Factors

This section discusses the maximum number of factors in detail. For 2�n1+n2�−p

designs, we need to consider the presence of two groups of factors. Denote
R∗�r�s� n1�m� as the maximum number of G2-factors for a 2�n1+n2�−p design that has
resolution r�s� n1G1-factors and m runs.

Projective geometry has been used as a convenient tool in the study of fractional
factorial designs. Lemma 1 in Chen and Hedayat (1996) asserted that a 2n−p

design is uniquely determined by a set of n distinct points in PG�n− p− 1� 2�,
which denotes the projective geometry of dimension n− p− 1 over GF�2�. Or,
equivalently, a 2n−p design induces a two-way partition �G1�G2� of PG�n− p−
1� 2�, where �G1� = n and �G2� = 2n−p − 1− n. Similarly, a 2�n1+n2�−p design induces
a three-way partition �G1�G2�G3�, where �G1� = n1, �G2� = n2, and �G3� = n3 =
2n1+n2−p − 1− n1 − n2. R

∗�r�s� n1�m� is the maximum of �G2�.
For ease of presentation, we need to introduce some additional notations. For

any a� b ∈ PG�k− 1� 2�, their interaction is denoted by a+ b. Three points a, b, and
c form a line if any point is the interaction of the other two. For any subset S ⊂
PG�k− 1� 2�, define a+ S = �a+ s � s ∈ S�. For any two subsets S1� S2 ⊂ PG�k−
1� 2�, define S1 + S2 = �a+ b � a ∈ S1� b ∈ S2�.
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R∗�3�1� n1� 2
k� and R∗�4�0� n1� 2

k� can be easily obtained from R�3� 2k� and
R�4� 2k�, as stated in Theorem 3.1, because a 2�n1+n2�−p design is also a 2n−p design.

Theorem 3.1. R∗�3�1� n1� 2
k� = 2k − 1− n1 and R∗�4�0� n1� 2

k� = 2k−1 − n1.

Proof. A 2�n1+n2�−p design of resolution III.1 is also a resolution III design in
the usual sense, which implies R∗�3�1� n1� 2

k� ≤ R�3� 2k�− n1 = 2k − 1− n1. We
can construct a 2�n1+n2�−p design with 2k runs and n2 = 2k − 1− n1 by randomly
assigning n1 points in PG�k− 1� 2� to G1 and the remaining to G2. Therefore,
R∗�3�1� n1� 2

k� = 2k − 1− n1.
Following the similar argument as above, R∗�4�0� n1� 2

k� ≤ R�4� 2k�− n1 =
2k−1 − n1. A saturated resolution IV design has the structure �a� ∪ �a+ PG�k−
2� 2��, where a 	 PG�k− 2� 2�. We can construct a 2�n1+n2�−p design with 2k runs and
n2 = 2k−1 − n1 by randomly assigning n1 points in the saturated design to G1 and
the remaining to G2. Therefore, R

∗�4�0� n1� 2
k� = 2k−1 − n1. �

Next, we consider 2�n1+n2�−p designs with resolution III.3. Because W1�2 =
W2�1 = 0, a main effect is not aliased with a 2fi in G1 ×G2. However, it may be
aliased with a within-group 2fi because at least one of W3�0 and W0�3 is nonzero. The
following lemma establishes an upper bound for n2.

Lemma 3.1. For a 2�n1+n2�−p design of resolution III.3 or higher, n2 ≤ 2k−1 − n1 +
3W3�0/n1.

Proof. Let Ni�j�k be the number of lines such that i points come from G1, j points
from G2 and k points from G3. For a resolution III.3 design, W1�2 = N1�2�0 = 0 and
W2�1 = N2�1�0 = 0, which means there is no line crossing G1 and G2. For any point in
G1 and any point in G2, their interaction has to be in G3, which implies n1n2 = N1�1�1.
For any point in G1 and any point in G3, their interaction may be in G1, G2, or G3,
which implies

n1n3 = N1�1�1 + 2N2�0�1 + 2N1�0�2�

For any two points in G1, their interaction may be in G1 or G3, which implies

1
2
n1�n1 − 1� = 3W3�0 + N2�0�1�

Combining the above equations yields

2N1�0�2 = n1n3 − n1n2 − n1�n1 − 1�+ 6W3�0

= n1�2
k − 2�n1 + n2��+ 6W3�0�

The result immediately follows from N1�0�2 ≥ 0. �

It is easy to know from Lemma 3.1 that when W3�0 = 0, the maximum number
of G2-factors in a resolution III.3 design is 2k−1 − n1. One construction for this case
is the same as the resolution IV.0 design in the proof of Theorem 3.1. When W3�0 > 0,
is it possible to find a resolution III.3 design with larger number of G2-factors?
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The answer is negative. To obtain this result, we need first introduce the following
lemma.

Lemma 3.2. For any subset S ⊂ PG�k− 1� 2�, if there is no line crossing S and
PG�m− 1� 2�, (0 < m < k), then �a+ S� ∩ �b + S� = � for any two distinct points
a� b ∈ PG�m− 1� 2�.

Proof. If �a+ S� ∩ �b + S� �= �, then there must exist two distinct points c1� c2 ∈ S
such that a+ c1 = b + c2, which yields a+ b = c1 + c2. Because a+ b ∈ PG�m−
1� 2�, there is a line crossing PG�m− 1� 2� and S, which contradicts the assumption.
Therefore, this lemma holds. �

Theorem 3.2. R∗�3�3� n1� 2
k� = 2k−1 − n1.

Proof. When W3�0 = 0, n2 ≤ 2k−1 − n1 due to Lemma 3.1, and the equality is
attainable. When W0�3 = 0, we can also obtain n2 ≤ 2k−1 − n1 following the similar
argument as in Lemma 3.1. Then it is enough to further show that n2 ≤ 2k−1 − n1

when W3�0 �= 0 and W0�3 �= 0.
When W3�0 �= 0, assume that a� b� a+ b ∈ G1 without loss of generality. Sets G1,

G2, �a+G2�, �b +G2�, and �a+ b +G2� are mutually disjoint due to Lemma 3.2
and W1�2 = W2�1 = 0. Therefore,

�G1� + �G2� + �a+G2� + �b +G2� + �a+ b +G2�
= n1 + n2 + n2 + n2 + n2 = n1 + 4n2 ≤ 2k − 1�

When W0�3 �= 0, following the similar argument, 4n1 + n2 ≤ 2k − 1. Therefore, 5n1 +
5n2 ≤ 2�2k − 1�, which implies n2 ≤ 2�2k − 1�/5− n1 < 2k−1 − n1.

Therefore, R∗�3�3� n1� 2
k� = 2k−1 − n1. �

When the resolution of a 2�n1+n2�−p design is less than or equal to IV.0, we are
able to identify R∗�r�s� n1�m� exactly for any n1. For designs with higher resolution,
it is difficult to obtain similar results due to their complicated structures. In the
following we only report some upper bounds for R∗�r�s� n1�m� when r�s > 4�0.

A 2�n1+n2�−p design of resolution IV.2 has W1�2 = W2�1 = W3�0 = W0�3 = W2�2 = 0.
Hence, any main effect is not aliased with any 2fi and is clearly estimable.
Additionally, between-group 2fis are not aliased with each other, but they may be
aliased with within-group 2fis. When the latter 2fis are assumed negligible due to
prior knowledge, the former are estimable.

Theorem 3.3. R∗�4�2� n1� 2
k� ≤ 	2k/�n1 + 1�
− 1, where 	x
 denotes the largest

integer smaller than or equal to x.

Proof. Because W1�2 = W2�1 = 0, for any two points a ∈ G1 and b ∈ G2, their
interaction a+ b ∈ PG�k− 1� 2�\�G1 ∪G2�. For two different pairs �a1� b1� and
�a2� b2� such that a1� a2 ∈ G1 and b1� b2 ∈ G2, we have a1 + b1 �= a2 + b2 because
W2�2 = 0. Therefore,

n1 + n2 + n1n2 ≤ 2k − 1�

which implies n2 ≤ 2k/�n1 + 1�− 1. �
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The upper bound in Theorem 3.3 is attainable for some values of n1. For
example, when n1 = 2m − 1 (0 < m < k), a resolution IV.2 design with n2 = 2k−m − 1
has the structure G1 = PG�m− 1� 2� and G2 = PG�k− 1−m� 2�.

In a 2�n1+n2�−p design of resolution IV.4, all between-group 2fi’s are clearly
estimable, which is also discussed by Ke, Tang, and Wu (2005). The proof of
Theorem 3.4 is similar to that of Theorem 4 in Ke, Tang, and Wu (2005).

Theorem 3.4. R∗�4�4� n1� 2
k� ≤ 	�2k + 1− 2n1�/�n1 + 2�
.

Proof. Because W1�2 = W2�1 = W3�0 = W0�3 = W2�2 = 0, sets G1, G2, and G1 +G2 are
mutually disjoint. For any point a ∈ G1 and b ∈ G2, a+ �G1\�a�� is disjoint with
b + �G2\�b��, and both of them are mutually disjoint with the previous three sets
because W1�3 = W3�1 = 0. Therefore,

n1 + n2 + �n1 − 1�+ n1n2 + �n2 − 1� ≤ 2k − 1�

which yields the results. �

Because R∗�4�4� n1� 2
k� ≥ 1 for a 2�n1+n2�−p design, the number of factors in

G1 necessarily satisfies n1 ≤ �2k − 1�/3 = 2k−2 + �2k−2 − 1�/3. The upper bound in
Theorem 3.4 is attainable for some value of n1. For example, when n1 = 2k−2 − 1,
	�2k + 1− 2n1�/�n1 + 2�
 = 2, in this case, we can construct the design as G1 = a+
PG�k− 3� 2� and G2 = �a� b�, where a� b 	 PG�k− 3� 2�; also see Ke, Tang, and Wu
(2005).

In a 2�n1+n2�−p design of resolution V.1, all main effects and 2fis are clearly
estimable.

Theorem 3.5. R∗�5�1� n1� 2
k� ≤ 	

√
2k+1 − 7/4− 1/2
− n1.

Proof. Because sets G1, G2, G1 +G1, G1 +G2, and G2 +G2 are mutually disjoint,
we have

n1 + n2 +
1
2
n1�n1 − 1�+ n1n2 +

1
2
n2�n2 − 1� ≤ 2k − 1�

or equivalently,

n2
2 + �2n1 + 1�n2 + n2

1 + n1 − 2�2k − 1� ≤ 0�

Notice that � = �2n1 + 1�2 − 4�n2
1 + n1 − 2�2k − 1�� = 8�2k − 1�+ 1 ≥ 0, we have

−�2n1 + 1�−√
�

2
≤ n2 ≤

−�2n1 + 1�+√
�

2
�

Hence, the theorem is proved. �

From Theorem 3.5, we are also able to obtain an upper bound on the maximum
number of factors for a resolution V design, R�5� 2k� ≤ 	

√
2k+1 − 7/4− 1/2
. When

k = 4, R�5� 24� = 5 attains the upper bound. However, when 5 < k ≤ 12, the upper
bound is strictly larger than R�5� 2k� reported by Draper and Lin (1990).
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4. Conclusions and Discussions

The value of R∗�r�s� n1�m� can provide useful guidelines for practical experiment
planning. In this article, we have obtained the exact value of R∗�r�s� n1�m� when
r�s ≤ 4�0. When r�s > 4�0, to obtain the exact value of R∗�r�s� n1�m� usually requires
computer search. The algorithm discussed in Draper and Lin (1990) can be easily
modified and adopted for this purpose.

Word-type patterns can capture more detailed features of a design than the
ordinary word-length pattern when there are multiple groups of factors involved
in an experiment. They can be further used to define a vector similar to the
ordinary word-length pattern in order to incorporate prior knowledge on the
relative importance of interactions. Based on this vector, resolution and aberration
can be redefined accordingly. This approach was also employed by Bingham and
Sitter (2003) and Wu and Zhu (2003) when studying robust parameter designs.
The article follows the same approach and focuses on a generalized version of
Scenario 4 of the compromise plans. As a matter of fact, the reported results can be
extended to the other scenarios.

Nonregular designs are not considered in this article because of the intractability
of their complex aliasing structures. Recently J -characteristics, playing a similar
role as word-length in regular designs, have been proposed for the study of non-
regular designs; see Tang (2001) and references therein. We believe that it is possible
to generalize J -characteristics to non-regular designs with two distinct groups of
factors, and we are not aware of any existing results in the literature. We will pursue
this extension of our work in the future.
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