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a b s t r a c t

The central mean and central subspaces of generalized multiple index model are the main
inference targets of sufficient dimension reduction in regression. In this article, we propose
an integral transform (ITM) method for estimating these two subspaces. Applying the
ITM method, estimates are derived, separately, for two scenarios: (i) No distributional
assumptions are imposed on the predictors, and (ii) the predictors are assumed to follow an
elliptically contoured distribution. These estimates are shown to be asymptotically normal
with the usual root-n convergence rate. The ITM method is different from other existing
methods in that it avoids estimation of the unknown link function between the response
and the predictors and it does not rely on distributional assumptions of the predictors
under scenario (i) mentioned above.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that Y ∈ R is a univariate response and X ∈ Rp is a vector of continuous explanatory variables. A general model
can be postulated about the relationship between Y and X as follows.

Y = g(βτ1X, . . . , β
τ
q X, ε) = g(B

τX, ε), (1)

where β1, . . . , βq are p-dimensional vectors (q < p),B = (β1, . . . , βq), g(·) is an unspecified (q+1)-variate link function, ε
is a randomerror independent ofX, and E(ε) = 0. Thismodelwas originally proposed in [1] to facilitate sufficient dimension
reduction and includes many well-known models as special cases. When ε is additive, that is,

g(BτX, ε) = h(BτX)+ ε, (2)

where h is an unknown link function, (1) is known as the multiple index model in the literature. Furthermore, if q = 1,
then the multiple index model becomes the single index model. We refer to (1) as the generalized multiple index model.
There exists one drawback with the formulation of (1). In some applications, it may be difficult to conceive a link function
or a meaningful independent random error. To avoid this drawback, [2] proposed the following model, using conditional
independence,

YyX | BτX, (3)
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where y means ‘‘independent of’’. The model (3) states that given BτX, Y and X are independent of each other. In other
words, all the information in X about Y is contained in the low-dimensional projectionBτX. Using conditional distribution
functions, (3) can be re-written as

FY |X(y|x) = FY |BτX(y|Bτx), (4)
where FY |BτX(y|Bτx) is the conditional distribution function of Y given BτX = Bτx. (4) was mentioned but not explicitly
explored in both [1] and [2]. Although themodels (1), (3) and (4) are different in their formulations, they are in fact equivalent
to each other. We state this equivalence as a lemma below and defer its proof to the Appendices.

Lemma 1. Models (1), (3) and (4) are equivalent.
The column vectors β1, . . . , βq ofB are referred to as indices. In the literature on sufficient dimension reduction, these

indices are interpreted as the directions along which Y and the projection of X are dependent. The linear space spanned by
these indices, denoted by S(B), is referred to as a dimension reduction subspace. For a given generalized multiple index
model, its dimension reduction subspacemay not be unique. [2] introduced a concept, called central subspace, to resolve this
ambiguity. The central subspace, denoted by SY |X, is defined to be the intersection of all the dimension reduction subspaces
whenSY |X is a dimension reduction subspace itself. [2] also showed that the central subspace exists under general conditions.
We assume its existence throughout this article. Under (1), it is not difficult to see that the mean response E(Y |X = x)
also depends on a low-dimensional projection of x. The corresponding projection space is referred to as a mean dimension
reduction subspace in the literature. The intersection of all the mean dimension reduction subspaces, when it is a mean
dimension reduction subspace itself, is called the central mean subspace, denoted by SE(Y |X) ([3]). Note that the central mean
subspace is always a subspace of the central subspace, that is, SE(Y |X) ⊆ SY |X.
A number of methods exist for estimating the central subspace, such as sliced inverse regression (SIR; [1]), sliced average

variance estimate (SAVE; [4]), and contour regression (CR; [5]). For estimating the central mean subspace, the existing
methods include the structure adaptive method (SAM; [6]), theminimum average variance estimationmethod (MAVE; [7]),
the principal Hessian directionmethod (pHd; [8]), and the iterative Hessian transformationmethod (IHT; [3]). Among these
methods, SIR, SAVE, CR, pHd and IHT avoid estimating the unknown link function, which is considered an advantage in
high-dimensional scenarios, but they need to impose restrictive distributional assumptions of X. On the other hand, the
methods SAM, MAVE and their variants avoid distributional assumptions on X, but they need to estimate the unknown link
function nonparametrically. Relaxing distributional assumption on X and mitigating the burden of nonparametric function
fitting become two major motivations in the literature for developing computationally efficient methods for estimating the
central and central mean subspaces.
Under the single indexmodel,B = (β1), and the central and central mean subspaces are identical and equal to S(β1). [9]

proposed to estimate β1 by averaging the derivative (or gradient) of E(Y |X = x) with respect to x and called the resulting
estimate an average derivative estimate (ADE). The ADEmethod for estimating β1 has twomajor advantages. First, it avoids
the estimation of the link function; and second, it achieves the root-n convergence rate. See [10–12] for more discussions.
The main drawback of ADE is that it can only recover one direction.
Lately, under the assumption that X follows the multivariate normal distribution, [13] proposed a Fourier method for

exhaustively estimating the central mean and central subspaces. The Fourier method can be viewed as an extension of the
ADEmethod, but the distributional assumption on X is too restrictive in some applications. In the current article, we further
generalize the Fourier method in the following two directions. First, we remove the distributional assumption, and use a
plug-in estimate of the log density when estimating the central and central mean subspaces. Second, the Fourier transform
is extended to general integral transforms, which provide users with the flexibility of choosing the transformmost suitable
for their applications. We call the resulting method the integral transform (ITM) method. The ITMmethod does not impose
distributional assumptions on X and avoid nonparametric fitting of the unknown link function. It does require the use of a
nonparametric plug-in estimate of the log density ofX. It is known that nonparametric estimates (e.g. the plug-in estimate of
log density) typically converge at a rate slower than root-n. Therefore, it is nontrivial to establish the root-n convergence rate
of the estimates of the central and central mean subspaces generated by the ITMmethod. Following [9], we show that these
estimates can still converge at the usual root-n rate when the technique ‘‘undersmoothing’’ is implemented. Furthermore,
we derive the asymptotic distributions of the subspaces estimates explicitly. The ITMmethod is a full-fledged generalization
of the ADE method from the single index model to the generalized multiple index model.
The rest of the article is organized as follows. Section 2 proposes the ITM method and derives matrices whose column

spaces are identical to the central mean and central subspaces. These matrices are referred to as candidate matrices or
kernel matrices in the literature. Section 3 derives the estimates of the central mean and central subspaces based on the
candidatematrices, and proves their asymptotic normalities. Section 4 derives the estimates of the central mean and central
subspaces when X follows an elliptically contoured distribution. Section 5 discusses issues related to the implementation of
the proposed methods. Section 6 presents several simulation examples and Section 7 concludes this article with additional
remarks.
Throughout this article we assume that all the involved distributions admit densities, and denote the joint density

function of Y and X by fY ,X(y, x), the conditional density function of Y given X = x by fY |X(y|x), and the marginal density
function of X by fX(x). The model (4) can be restated in terms of these conditional densities as

fY |X(y|x) = fY |BτX(y|Bτx). (5)



P. Zeng, Y. Zhu / Journal of Multivariate Analysis 101 (2010) 271–290 273

We further assume these density functions are differentiable with respect to their coordinates wherever necessary. For ease
of reading, technical assumptions and proofs are collected in the Appendices.

2. Integral transform and candidate matrices

We first consider the central mean subspace under the multiple index model (2). Let m(x) = E(Y |X = x). A key fact
utilized by the ADE method is

∂m
∂x
(x) = B

∂h
∂u
(u)
∣∣∣∣
u=Bτ x

∈ S(B),

that is, the derivative of m(x) belongs to the linear space spanned by B. This further implies that E(∂m(X)/∂x) ∈ S(B),
which leads to the average derivative estimate. The ADE method suffers from two drawbacks. First, it fails when E[∂m(X)/
∂x] = 0; for example, when m(x) = (βτx)2 and X is standard normal. Second, as mentioned in the introduction, the ADE
method can only generate one direction and thus is not able to estimate the central mean subspace of dimension higher
than one. The first drawback can be overcome by using a proper weight functionW (x) such that E[W (X)∂m(X)/∂x] 6= 0.
To further overcome the second drawback, we propose to use a family of weight functions {W (x,u) : u ∈ Rp} instead of a
single weight function; note that u is the family index varying in Rp. Consequently different weight functions can generate
different vectors in the centralmean subspace. By collecting the estimates of these vectors, it is possible to derive an estimate
of the entire central mean subspace. Weighted average derivatives were probably first considered by [10], but they were
only used to facilitate the calculation of ADEs.
Define ξ(u) to be the expectation of ∂m/∂xweighted byW (x,u),

ξ(u) = E
[
∂m
∂x
(X)W (X,u)

]
=

∫
∂m
∂x
(x)W (x,u)fX(x) dx. (6)

In fact ξ(u) is the integral transform of the density-weighted ∂m/∂x, andW (x,u) is the kernel function of this transform.
WhenW (·, ·) is chosen properly, the linear space spanned by {ξ(u), u ∈ Rp} is identical to that spanned by the density-
weighted derivatives {fX(x)∂m(x)/∂x, x ∈ Rp}.

Definition 1. Let g be a vector-valued function from Rp to Rp. An integral transform with kernel W (x,u) is said to be
nondegenerate for g if

span
{∫

g(x)W (x,u)dx, u ∈ Rp
}
= span{g(x), x ∈ Rp}.

And the kernelW (x,u) is said to be a nondegenerate kernel.

Although the nondegenerate kernel is defined for a specific function in the definition above, there exist kernels that are
nondegenerate for awide range of functions. Two such examples areW1(x,u) = exp(ıuτx) andW2(x,u) = H(u−x)where
H(·) is absolutely integrable. The integral transforms withW1 andW2 are commonly known as the Fourier transform and
the convolution transform, respectively.

Lemma 2. Both W1 and W2 are nondegenerate kernels for any absolutely integrable function g(x).

It is known that the central mean subspace can be spanned by ∂m(x)/∂xwith x ∈ supp(X),

SE(Y |X) = span
{
∂m
∂x
(x) : x ∈ supp(X)

}
= span

{
∂m
∂x
(x)fX(x) : x ∈ Rp

}
.

WhenW is chosen to be a nondegenerate kernel for fX(x)∂m(x)/∂x, SE(Y |X) can also be spanned by ξ(u)with u ∈ Rp. Notice
that in (6), ∂m/∂x is assumed known. In what follows, we derive a different expression for ξ(u) that does not require this
assumption. Under some regularity conditions (see Lemma 3), applying integration by parts to (6), we have

ξ(u) = E
[
∂m
∂x
(X)W (X,u)

]
= −E[Yψ(X,u)], (7)

where ψ(x,u) = ∂W (x,u)/∂x +W (x,u)g(x) and g(x) = ∂ log fX(x)/∂x is the derivative of the log density of X. Because
the second expression of (7) does not involvem or its derivative, ξ(u) can be calculated without involving the link function
m or its derivative. We define a candidate matrix, denoted byMITM, for SE(Y |X) as follows.

MITM =

∫
ξ(u)ξ(u)τ du = E[UITM(Z1, Z2)], (8)

where z = (y, x), Z1 and Z2 are independent and identically distributed as Z,

UITM(z1, z2) = y1y2
∫
ψ(x1,u)ψ(x2,u)τ du.
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The next lemma claims that the column space ofMITM is exactly equal to the central mean subspace SE(Y |X). Thus it is indeed
a candidate matrix for SE(Y |X). A function is said to vanish on the boundary of supp(X) if it goes to zero when x goes to any
point on the boundary or goes to infinity when the support of X is unbounded.

Lemma 3. Assume fX(x)∂m(x)/∂x exists and is absolutely integrable. If W (x,u)m(x)fX(x) vanishes on the boundary of supp(X)
and log fX(x) is differentiable, then (7) holds. Furthermore, if W (·, ·) is a nondegenerate kernel for fX(x)∂m(x)/∂x and ξ(u) is
square integrable, thenMITM is a nonnegative definite matrix and S(MITM) = SE(Y |X).

Remark 1. The choice ofW (·, ·) determines how the derivative ∂m(x)/∂x is integrated together to give ξ(u), and it further
determines the properties ofMITM. For example, [13] choseW (x,u) = exp(ıuτx) to develop the Fourier method for suffi-
cient dimension reduction. Another possible choice isW (x,u) = δ(u− x)where δ(·) is the Dirac delta function. With this
choice, ξ(u) = ∂m(u)/∂x · fX(u), andMITM becomes the density-weighted outer product of ∂m(u)/∂x. The simple outer
product of ∂m(u)/∂xwas discussed in [14] and [7].

Nextwe apply the same approach to derive a candidatematrix for the central subspace SY |X. As discussed in the introduc-
tion,SE(Y |X) ⊆ SY |X. Let T (Y )be an arbitrary transformation of the responseY . The centralmean subspace for the transformed
response T (Y ), denoted by SE[T (Y )|X], is defined in a similar way as SE(Y |X). It is not difficult to see that SE[T (Y )|X] also belongs
to SY |X and is not necessarily identical to SE(Y |X). This suggests that the collection of a number of different central mean sub-
spaces (e.g., generated fromdifferent transformations)may cover the entire central subspace; furthermore, the combination
of the candidate matrices of these central mean subspaces may lead to a candidate matrix of the central subspace.
We propose to use a simple family of transformations (indexed by v ∈ R), that is, {Tv(·) : Tv(y) = H(y, v), for y, v ∈ R},

where H is a given function. Under some mild conditions, SY |X =
∑

v∈R SE[Tv(Y )|X], which can be implied from Lemma 4
below. For v ∈ R, the mean response of Tv(Y ) is m(x, v) = E[H(Y , v)|X = x]. Similar to the definition of ξ(u) for the
central mean subspace SE(Y |X), we define ξ(u, v) as the integral transform of ∂m(x, v)/∂xfX(x) using a kernel W (x,u).
Under certain regularity conditions (given in Lemma 4),

ξ(u, v) = E
[
∂m(X, v)
∂x

W (X,u)
]
= −E[H(Y , v)ψ(X,u)]. (9)

The second equality above is obtained by integration by parts.
The vectors ξ(u, v) for u ∈ Rp and v ∈ R play the same role for SY |X as ξ(u) for SE(Y |X). They span the central subspace

and can be used to form a candidate matrix for SY |X. We define

MITC =

∫∫
ξ(u, v)ξ(u, v)τ dudv = E[UITC(Z1, Z2)], (10)

where

UITC(z1, z2) =
∫
H(y1, v)H(y2, v) dv

∫
ψ(x1,u)ψ(x2,u)τ du.

Notice that the only difference between (8) and (10) is that Y1Y2 is used inMITM whereas
∫
H(Y1, v)H(Y2, v)dv is used in

MITC. The next lemma states thatMITC is indeed a candidate matrix for SY |X.

Lemma 4. Assume ∂ fY |X(y|x)/∂x · fX(x) exists and is absolutely integrable. If for any given y and u, W (x,u)fY ,X(y, x) vanishes
on the boundary of supp(X), then (9) holds. Furthermore, if H(y, v)W (x,u) is a nondegenerate kernel for fX(x)∂ fY |X(y|x)/∂x
and ξ(u, v) is square integrable, thenMITC is a nonnegative definite matrix and S(MITC) = SY |X.

The candidate matrix MITC is naturally connected with the candidate matrix MSIR (=cov[E(X|Y )]) used in SIR. When
X follows the p-dimensional standard normal distribution, g(x) = −x. If we further choose W (x,u) ≡ 1, then it can be
verified that

MITC = E
[∫
H(Y1, v)H(Y2, v) dv E(X1|Y1)E(X2|Y2)τ

]
.

Based on the expression above, if we select H(·, ·) such that
∫
H(Y1, v)H(Y2, v) dv is positive on the support of Y , then

S(MITC) = span{E(X|Y = y), y ∈ supp(Y )} = span(MSIR).

It is known that SIR fails to capture the directions along which the link function g is even and the distribution of X is
symmetric. Hence,when theweight functionW (·, ·) is chosen to be a constant function,MITC is degenerated to be equivalent
toMSIR and may also fail to recover the whole central subspace. In general as claimed in Lemma 4,MITC can successfully
recover the whole central subspace SY |X whenW (x,u) is chosen appropriately.
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3. Estimates of candidate matrices

Let Zi = (Yi,Xi) for 1 ≤ i ≤ n be n iid copies of (Y ,X) and zi = (yi, xi) be a realization of Zi for 1 ≤ i ≤ n. In what follows,
we first consider the derivation of an estimate forMITC. Note thatMITC = E[UITC(Z1, Z2)]. SinceMITC is the expectation of
UITC(Z1, Z2), a natural estimate ofMITC is the sample average ofUITC(zi, zj). There however remains one difficulty, which
is g(x) = ∂ log fX(x)/∂x = ( ∂∂x fX(x))/fX(x) is unknown. Therefore, we need to estimate g(x) first based on {xi}1≤i≤n, an iid
sample from fX(x).
If fX(x) can be assumed to belong to a parametric family, that is, fX(x) = f0(x; θ) where f0 is of known form and θ

is a vector of unknown parameters, then g(x) can be estimated parametrically. In this article, our focus is on estimating
the central mean and central subspaces without imposing distributional assumptions on X. Hence, we do not assume any
parametric form for fX(x) and instead propose to estimate fX(x) and its derivative nonparametrically. The kernel density
estimate of fX at a fixed point x0 is

f̂X(x0) = f̂h(x0) = (nhp)−1
n∑
`=1

K
(
x0 − x`
h

)
,

where K(·) is a kernel function and h is the bandwidth [15,16]. Note that h depends on n, but we use h instead of hn for
the cleanness of expression. The derivative of fX(x0) is estimated by the derivative of f̂h(x0). Both f̂h(x0) and ∂ f̂h(x0)/∂x are
asymptotically consistent estimates of fX(x0) and ∂

∂x fX(x0), and they lead to an asymptotically consistent estimate of g(x0),

ĝ(x0) =
∂
∂x f̂h(x0)

f̂h(x0)
=

(nhp+1)−1
n∑̀
=1
K ′ ((x0 − x`)/h)

(nhp)−1
n∑̀
=1
K ((x0 − x`)/h)

(11)

where K ′(·) is the derivative of K(·). Given {zi}1≤i≤n and ĝ(·), we derive an estimate ofMITC,

M̂∗ITCk = n
−2

n∑
i=1

n∑
j=1

ÛITCk(zi, zj),

where ÛITCk is obtained by replacing g inUITC by ĝ.
Let Îi = I[f̂h(xi)>bn] for 1 ≤ i ≤ nwhere I is an indicator function and bn is a pre-specified threshold. To avoid the negative

effect of small values of f̂h, we modified M̂∗ITCk to be

M̂ITCk = n−2
n∑
i=1

n∑
j=1

ÛITCk(zi, zj)Îi Îj.

To ensure that M̂ITCk is asymptotically consistent, bn needs to decrease to zero as the sample size n goes to infinity. In the
rest of the article, we suppress the subscript of bn and simply use b. The next theorem states that under some technical
conditions M̂ITCk is asymptotically normal with a worked out covariance matrix.

Theorem 2. Suppose conditions (A1)–(A4) and (A5c)–(A9c) hold. If (a) n→∞, h→ 0, b→ 0, and b−1h→ 0; (b) for some
ε > 0, b4n1−εh2p+2 →∞; and (c) nh2s−2 → 0, then vec(M̂ITCk) asymptotically follows a multivariate normal distribution,

√
n (vec(M̂ITCk)− vec(MITC))

L
−→ N(0,ΣITCk),

whereΣITCk is the covariance matrix of vec(R(Z)+R(Z)τ ), and

R(z) =
∫∫

ξ(u, v)
{
[m(x, v)− H(y, v)]ψ(x,u)+

∂m(x, v)
∂x

W (x,u)
}τ
dudv.

The operator vec(·) in the above theorem is to convert a matrix to a vector by stacking up all its columns. For example, if
M = (m1, . . . ,mk) is a p× kmatrix with columnsm1, . . . ,mk, vec(M) = (mτ

1, . . . ,m
τ
k )
τ is a pk-dimensional vector. The

proof of Theorem 2 given in Appendix A.4 is an extension of the proof of Theorem 3.1 in [9].
The estimation ofMITC (or equivalently SY |X) is a semiparametric estimation problem. As a matter of fact,MITC can be

considered a finite-dimensional parameter and (10) can be regarded as a mapping from the density function fY ,X(y, x) =
fY |X(y|x)fX(x) to the space of p×p semi-positive definitematrices. The proposed integral transformmethod has successfully
transformed the original semiparametric model to an estimation problem of (MITC, fX(x)) with fX(x) being a nuisance,
infinite-dimensional parameter. Note that the estimation of the other nuisance parameter fY |X has been avoided. The
standard approach to estimating a finite-dimensional parameter (e.g., MITC) at the presence of an infinite-dimensional
parameter (e.g., fX(x)) is to employ a plug-in estimate of the latter ([17]). In the derivation of M̂ITCk, a kernel estimate of
fX(x) is used as the plug-in estimate. Typically the nonparametric plug-in estimate cannot achieve the root-n convergence
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rate, whereas the estimate of the finite parameter can often attain the rate. Theorem 2 shows it is indeed the case for M̂ITCk.
The root-n convergence rate of M̂ITCk is achieved through a technique called ‘‘undersmoothing’’ originally used by [9]. The
condition (c) in Theorem 2 requires the bandwidth h be narrower than the usual optimal bandwidth for kernel density
estimation. A narrower bandwidth makes the bias of f̂h(xi) vanish at a rate faster than

√
n; it however results in larger

variabilities to f̂h(xi)’s. Because f̂h(xi)’s are averaged in ξ̂ (u, v), the fast decrease in bias is inherited by ξ̂ (u, v) and the
increased variabilities are mitigated. Therefore, the root-n convergence rate of M̂ITCk is obtained.
Theorem2 implies that the eigenvalues and eigenvectors of M̂ITCk also converge to those ofMITC at the same convergence

rate. If the rank of MITC is q, the space spanned by the eigenvectors corresponding to the largest q eigenvalues of M̂ITCk
converges to S(MITC), or equivalently SY |X, at the root-n rate.
The foregoing procedure can be modified to derive an estimate ofMITM. Because the modification is straightforward, it

is omitted and only the results are reported below. The estimate ofMITM is

M̂ITMk = n−2
n∑
i=1

n∑
j=1

ÛITMk(zi, zj)Îi Îj

where ÛITMk is obtained by replacing g inUITM by ĝ and Îi for 1 ≤ i ≤ n are the same as before. The asymptotic behavior of
M̂ITMk is described in the following theorem.

Theorem 3. Suppose conditions (A1)–(A4) and (A5m)–(A9m) hold. If (a) n→∞, h→ 0, b→ 0, and b−1h→ 0; (b) for some
ε > 0, b4n1−εh2p+2 →∞; and (c) nh2s−2 → 0, then vec(M̂ITMk) asymptotically follows a multivariate normal distribution,

√
n (vec(M̂ITMk)− vec(MITM))

L
−→ N(0,ΣITMk),

whereΣITMk is the covariance matrix of vec(R(Z)+R(Z)τ ), and

R(z) =
∫
ξ(u)

{
[m(x)− y]ψ(x,u)+

∂m(x)
∂x

W (x,u)
}τ
du.

The proof of Theorem 3 is similar to that of Theorem 2; see Remark 3 in Appendix A.4. Theorem 3 asserts that M̂ITMk
converges toMITM at the root-n rate, which implies that the eigenvalues and eigenvectors of M̂ITMk also converge to those
of MITM at the same rate. If the rank of MITM is q, the space spanned by the eigenvectors corresponding to the largest q
eigenvalues of M̂ITMk converges to S(MITM), or equivalently SE(Y |X), at the same root-n rate.
If we choose W (x,u) ≡ 1, thenMITM = δδτ and M̂ITM = δ̂δ̂

τ
where δ = E[∂m(X)/∂x] is the average derivative and

δ̂ is the ADE of δ proposed in [9]. According to Theorem 3.1 in [9], the asymptotic covariance matrix of
√
n(δ̂ − δ) is equal

to the covariance matrix of r(X, Y ) = [m(X) − Y ]g(X) + ∂m(X)/∂x. It can be verified that the asymptotic covariance of
√
n(δ̂δ̂

τ
− δδτ ) is equal to that of δr(X, Y )τ + r(X, Y )δτ , which is exactly equal toΣITMk in Theorem 3. Therefore, Theorem 3

is a successful generalization of Theorem 3.1 in [9].

4. Elliptically contoured distributions

The kernel estimate f̂X used in both M̂ITCk and M̂ITMk is susceptible to the curse of dimensionality; when the dimension
of X increases, its performance deteriorates quickly. The performance of M̂ITCk and M̂ITMk, however, does not degrade
as fast as f̂X, especially when the dimension of X is in teens. When the dimension of X is above 20, the performance of
M̂ITCk and M̂ITMk starts to become unacceptable. When some prior knowledge is available regarding the distribution of X,
estimates that are less susceptible to the curse of dimensionality can be developed. In this section, we consider the family
of elliptically contoured distributions, which is broad enough to include many important multivariate distributions such
as multivariate normal distributions as its members. Elliptically contoured distributions are essentially one-dimensional
because their density functions are radial functions. The contour regression (CR) method proposed by [5] for estimating the
central subspace also assumes that X follows an elliptically contoured distribution.
Since an elliptically contoured distribution can always be transformed to become spherical, we only focus on spherical

distributions below. Let fX(x) = f (xτx) with mean 0 and covariance Ip. Let R = ‖X‖ and fR(r) be the density function of R.
Then fR(r) can be represented in terms of fX(x),

fR(r) = (2πp/2)
(
Γ

(
1
2
p
))−1

rp−1f (r2),

whereΓ (·) is the Gamma function; see [18]. This relationship provides the possibility to estimate the derivative of log f (xτx)
with respect to x, i.e., g(x), through estimating the derivative of log fR(r)with respect to r . In fact

g(x) =
∂

∂x
log f (xτx) =

2xf ′(xτx)
f (xτx)

=
x
r
gR(r)−

p− 1
r2

x,

where gR(r) = f ′R(r)/fR(r), and f
′(·) and f ′R(·) are the derivatives of f (·) and fR(·), respectively.
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Recall that {xi}ni=1 is an iid sample from fX(x). Let ri = ‖xi‖. Then {ri}
n
i=1 is an iid sample from fR(r). Let f̃R,h be the kernel

density estimator based on {ri}ni=1 with bandwidth h, and let f̃
′

R,h be the derive of f̃R,h. Then an estimate of g(x) is

g̃(xi) =
xi
ri

f̃ ′R,h(ri)

f̃R,h(ri)
−
p− 1
r2i

xi.

Replacing ĝ(x) in M̂ITCk by g̃(x), we obtain an estimate ofMITC,

M̃ITCe = n−2
n∑
i=1

n∑
j=1

ŨITCe(zi, zj)Ĩi Ĩj,

where ŨITCe(zi, zj) is obtained by replacing g inUITC(zi, zj) by g̃, Ĩi = I[f̃R,h(ri)>b] is used to trim the pointswhere the estimated
densities are too small, and the subscript e in M̂ITCe indicates that X follows an elliptically contoured distribution. The
asymptotic behavior of M̂ITCe is stated in the next theorem.

Theorem 4. Suppose that X follows an elliptically contoured distribution with mean 0 and covariance matrix Ip and some regu-
larity conditions hold. If (a) n→∞, h→ 0, b→ 0, and b−1h→ 0; (b) for some ε > 0, b4n1−εh4 →∞; and (c) nh2s−2 → 0,
then the estimate M̂ITCe asymptotically follows a normal distribution, that is,

√
n(vec(M̃ITCe)− vec(MITC))

L
−→ N(0,ΣITCe),

whereΣITCe is the covariance matrix of vec(R(Z)+R(Z)τ ), and

R(z) = E[UITC(Z1, z)] +
∫∫

ξ(u, v)
{
m1(r,u, v)gR(r)+

∂m1(r,u, v)
∂r

}τ
dudv,

andm1(r,u, v) = r−1E[H(Y , v)W (X,u)X|R = r].

Due to space limitation, the regularity conditions required by Theorem 4 are omitted; see Remark 4 in Appendix A.4 for
more details. Similarly, for the central mean subspace, we replace ĝ(x) in M̂ITMk by g̃(x) and derive the following estimate
ofMITM,

M̃ITMe = n−2
n∑
i=1

n∑
j=1

ŨITMe Ĩi Ĩj,

where ŨITMe is obtained by replacing g inUITM by g̃. The following theorem claims that vec(M̃ITMe) asymptotically follows
a normal distribution. The regularity conditions are also omitted due to space limitation; see Remark 4 in Appendix A.4.

Theorem 5. Suppose that X follows an elliptically contoured distribution with mean 0 and covariance matrix Ip, and some
regularity conditions hold. (a)n→∞, h→ 0, b→ 0, and b−1h→ 0; (b) for some ε > 0, b4n1−εh4 →∞; and (c)nh2s−2 → 0,
then the estimate M̃ITMe asymptotically follows a normal distribution, that is,

√
n(vec(M̃ITMe)− vec(MITM))

L
−→ N(0,ΣITMe),

whereΣITMe is the covariance matrix of vec(R(Z)+R(Z)τ ), and

R(z) = E[UITM(Z1, z)] +
∫
ξ(u)

{
m1(r,u)gR(r)+

∂m1(r,u)
∂r

}τ
du,

andm1(r,u) = r−1E[YW (X,u)X|R = r].

When X does not follow an elliptically contoured distribution, the ITM method using M̃ITCe or M̃ITMe is not able to
estimate central or central mean subspace correctly in general. However, we may be able to alleviate the departure from
the elliptically contoured distribution via a reweighting scheme as suggested by [19]. [20] showed that the shapes of lower-
dimensional projections from high-dimensional data are mostly elliptically contoured in some sense. This suggests that the
elliptically contoured distribution may be a reasonable distribution to work with in analyzing high-dimensional data.
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5. Implementation

To implement the methods proposed in the previous sections, the weight functions W (·, ·) and H(·, ·) need to be
specified. Gaussian kernels are popular choices for weight functions. Let

W (x,u) = (2πσ 2u )
−p/2 exp{−(x− u)τ (x− u)/(2σ 2u )};

H(y, v) = (2πσ 2v )
−1/2 exp{−(y− v)2/(2σ 2v )}.

Simple calculation yields∫
ψ(x1,u)ψ(x2,u)du = c1 exp

{
−

xτ12x12
4σ 2u

}(
1
2σ 2u

Ip +

(
g(x1)−

1
2σ 2u

x12
)(

g(x2)+
1
2σ 2u

x12
)τ)

,∫
H(y1, v)H(y2, v)dv = c2 exp

{
−
(y1 − y2)2

4σ 2v

}
,

where x12 = x1 − x2 and c1 and c2 are two positive constants only depending on σu and σv . With the specified weight
functionsW and H and the worked out integrals above, explicit expressions of M̂ITMk, M̂ITCk, M̃ITMe and M̃ITCe are available.
Due to space limitation, these expressions are omitted. Gaussian kernels are also used in ĝ(x) and g̃(x). The choice of
bandwidths for these kernels will be discussed later.
Next we present a unified algorithm for estimating the central mean and central subspaces using various estimated

candidate matrices. For ease of presentation, we use S to denote a subspace, which can be a central mean subspace or a
central subspace; use M to denote a candidate matrix, which can be MITC or MITM; and use M̂ to denote an estimated
candidate matrix, which can be M̂ITCk, M̃ITCe, M̂ITMk, or M̃ITMe. Let Ŝ denote an estimate of S. Suppose the dimension of S is
known to be q and all the involved tuning parameters are already given. The unified algorithm for computing Ŝ consists of
the five steps given below.

(1) Specify the parameters q, σ 2u , σ
2
v , h, and b.

(2) Calculate x̃i = Σ̂
−1/2

(xi − x̄) and ỹi = (yi − ȳ)/sy, where x̄ and Σ̂ are the sample mean and covariance matrix of xi’s,
and ȳ and sy are the sample mean and standard deviation of yi’s.

(3) Calculate M̂ using the standardized data {(ỹi, x̃i)}1≤i≤n.
(4) Perform the spectral decomposition of M̂ and obtain the eigenvalue–eigenvector pairs (λ̂1, ê1), . . . , (λ̂p, êp) with λ̂1 ≥
· · · ≥ λ̂p.

(5) S is estimated by Ŝ = span{Σ̂
−1/2

ê1, . . . , Σ̂
−1/2

êq}.

In application, the specifications ofM and its estimate in the above algorithm depend on which subspace is of interest and
whether X follows an elliptically contoured distribution. For example, if one is interested in the central subspace and X can
be assumed to follow an elliptically contoured distribution, thenMITC and M̃ITCe should be used in the places ofM and M̂,
respectively. We want to mention that, even when the central mean subspace is of interest, it is still worth to check the
central subspace, because there may exist some unsuspected, important patterns.
Before proceeding to discuss other issues in implementation, we introduce a measure of distance between two linear

subspaces. This distancemeasure will be used tomeasure the discrepancy between S and Ŝ. SupposeA andB are two p×q
matrices of full column rank, andS(A) andS(B) are their column spaces. LetPA = A(AτA)−1Aτ andPB = B(BτB)−1Bτ

be the projection matrices onto S(A) and S(B), respectively. Let r =
√
tr(PAPB)/q. It can be shown that r is always in

[0, 1], and we refer to r as the trace correlation between S(A) and S(B). The larger r is, the closer S(A) and S(B) are to
each other. Hence, we define the distance between S(A) and S(B) to be D(S(A), S(B)) = 1 − r . It can be shown that
D(S(A), S(B)) = 0 if S(A) and S(B) are identical; and D(S(A), S(B)) = 1 if S(A) and S(B) are orthogonal to each
other; otherwise, D(S(A), S(B)) is strictly between 0 and 1. The discrepancy between S and Ŝ is measured by D(Ŝ, S).

5.1. Choice of tuning parameters

There are four tuning parameters (σ 2u , σ
2
v , h and b) that need to be specified in Step 1. The parameters σ

2
u and σ

2
v are

associated with the Gaussian weight functionsW and H , h is the bandwidth of the Gaussian kernel function used in ĝ(x) or
g̃(x), and b is the threshold used in trimming. The parameter σ 2v is not needed when estimating the central mean subspace.
Based on experience from extensive simulation study, we recommend to choose b to trim 10% of the data points, and choose
σ 2u = 5.0 and σ

2
v = 0.5 for samples of moderate size. In general, a bootstrap procedure can be engineered to select σ

2
u , σ

2
v

and h, following the original idea of [21] and its implementation in [13]. The key idea is to select the parameters tominimize
the variability of D(Ŝ, S). The bootstrap procedure is to estimate this variability by the average distance between Ŝ and Ŝ(j),
where Ŝ(j) is an estimate of S based on a bootstrapped sample. In what follows, we use the selection of σ 2u as an illustrative
example. Supposewewant to select the optimal σ 2u from a set of candidate values {σ

2
1 , . . . , σ

2
m}, which are in general equally

spaced in an interval. For each ` such that 1 ≤ ` ≤ m,
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(1) randomly sample from {(yi, xi)}1≤i≤n with replacement to generate N bootstrapped samples each of size n, and the jth
sample is denoted by {(y(j)i , x

(j)
i )}1≤i≤n for 1 ≤ j ≤ N;

(2) for each bootstrapped sample, e.g., the jth sample {(y(j)i , x
(j)
i )}1≤i≤n, derive the estimate of S and denote it by Ŝ(j);

(3) calculate the distance between Ŝ(j) and Ŝ and denote it by d(j) = D(Ŝ(j), Ŝ);
(4) calculate d̄(σ 2` ) = N

−1∑N
j=1 d

(j), which is the average distance between Ŝ(j) and Ŝ for 1 ≤ j ≤ N .

The optimal σ 2u is chosen to be the σ
2
` that minimizes d̄(σ

2
` ). The above procedure can be easily modified for the selection

of σ 2v or h.
Sometimes, it is necessary to choose all the tuning parameters. Two possible approaches can be followed. The first is to

select the parameters iteratively, for example, to choose h and b first, then σ 2u , and at last σ
2
v . The second approach is to

choose the optimal tuning parameters from a set of candidate 4-tuples {(σ 2ui, σ
2
vi, hi, bi)}1≤i≤m. The latter approach is often

more intensive computationally.

5.2. Selection of dimensionality

In many applications, the dimension of the central or central mean subspace is unknown and needs to be inferred from
data. One simple approach to determining the dimension is to plot the ordered eigenvalues of M̂ as in principal components
analysis and look for an ‘‘elbow’’ pattern in the plot. The dimension is chosen to be the number of dominant eigenvalues.
Although subjective, this method is intuitive and works well in general. Alternatively, the bootstrap procedure described in
the previous subsection can be adopted to determine the dimension of S. The procedure treats the dimension of S as another
tuning parameter and then choose the dimension k that minimizes d̄(k). More details can be found in both [21] and [13].
It is also possible to conduct a formal hypothesis test to determine the dimension of S. The hypotheses H0 : dim(S) = d
versus H1 : dim(S) > d is equivalent to H0 : rank(M) = d versus H1 : rank(M) > d, because S(M) = S. A proper
test statistic for the latter is Λ̂d = n

∑d+1
i=p λ̂i, where λ̂d+1, . . . , λ̂p are the smallest (p− d) eigenvalues of M̂. Under H0, the

smallest (p − d) eigenvalues of M̂ are zeros, and thus λ̂d+1, . . . , λ̂p are expected to be small. Therefore we reject H0 when
Λ̂d is large. We conjecture that Λ̂d follows a weighted chi-squared distribution asymptotically. This conjecture is currently
under investigation. For practical use, we may utilize a permutation algorithm discussed in [22] to evaluate the P-value of
this test.

6. Simulation examples

We use ITCk, ITCe, ITMk and ITMe to label the methods for estimating SY |X or SE(Y |X) based on the estimated candidate
matrices M̂ITCk, M̃ITCe, M̂ITMk and M̃ITMe, respectively. Let 1n denote an n-dimensional vector of ones and 0n denote an n-
dimensional vector of zeros.

Example 1. Consider the following model,

Y =
|βτ1X+ ε|

2+ |βτ2X− 4+ ε|
,

where βτ1 = (1
τ
4, 0

τ
6), β

τ
2 = (0

τ
6, 1

τ
4), X follows a mixture of three multivariate normal distributions, and ε is an error term

following the standard normal distribution and independent of X. The distribution of X is 0.5N(c1, I10)+0.3N(−c1, I10)+
0.2N(c2, I10), where cτ1 = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1), and cτ2 = (1, 1,−1,−1,−1,−1,−1,−1, 1, 1). We ran-
domly draw 500 samples (each of size 1000) from the above model, and apply ITCk (σ 2u = 5.0, σ

2
v = 0.5), ITMk (σ

2
u = 5.0),

SIR and SAVE to each sample to estimate the central subspace. Assume the dimension of the subspace is known to be 2.
In order to compare the methods under different specifications of bandwidth and/or the number of slices (i.e., H), we run
ITCk and ITMk with h = 0.5, 1.0, 1.5, 2.0 and SIR and SAVE with H = 4, 6, 8, 10, separately. In total, 16 estimated central
subspaces are obtained for each sample. The distances (i.e.,D(Ŝ, S)) between these estimated central subspaces and the true
central subspace S = span{β1, β2} are calculated. Thus for each method under each specified h or H , 500 such distances
are generated; and these distances are used to generate the boxplots in Fig. 1. The mean and standard deviations of these
distances are reported in Table 1. Overall, ITMk demonstrates the best performance in this example. The boxplots for ITCk
shows that its performance is sensitive to the choice of bandwidth; and the best choice of bandwidth for this example is
h = 1.5. Both ITCk and ITMk outperform SIR and SAVE. The reason the latter two methods do not perform as well is that
the linearity condition they require is violated by the mixture distribution of X.

Example 2. Consider the following model,

Y = βτ1X+ (4β
τ
2X)ε,

where βτ1 = (1τ4, 0
τ
6), β

τ
2 = (0τ6, 1

τ
4), X follows the same mixture distribution as in Example 1, and ε follows N(0, 1) and

independent of X. Similarly as in Example 1, we randomly draw 500 samples of size 1000 from the above model, and apply
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Fig. 1. Boxplots of D(Ŝ, S) for different methods with different values of h or H in Example 1. For ITCk and ITMk, the four boxplots correspond to h = 0.5,
1.0, 1.5, 2.0; and for SIR and SAVE, the four boxplots correspond to H = 4, 6, 8, 10.

Table 1
Means and standard deviations of D(Ŝ, S) for different methods with different values of h or H in Example 1.

h = 0.5 h = 1.0 h = 1.5 h = 2.0

ITCk 0.1468 (0.0792) 0.1127 (0.0859) 0.0490 (0.0313) 0.0833 (0.0548)
ITMk 0.0156 (0.0074) 0.0125 (0.0060) 0.0139 (0.0064) 0.0144 (0.0067)

H = 4 H = 6 H = 8 H = 10

SIR 0.2178 (0.0711) 0.1953 (0.0766) 0.1843 (0.0843) 0.1818 (0.0843)
SAVE 0.2012 (0.0787) 0.2010 (0.0785) 0.2122 (0.0749) 0.2182 (0.0677)

Fig. 2. Boxplots of D(Ŝ, S) for different methods with different values of h and H in Example 2. For ITCk and ITMk, the four boxplots correspond to h =
0.5, 1.0, 1.5, 2.0, respectively; and for SIR and SAVE, the four boxplots corresponds to H = 4, 6, 8, 10.

Table 2
Means and standard deviations of D(Ŝ, S) for different methods with different values of h or H in Example 2.

h = 0.5 h = 1.0 h = 1.5 h = 2.0

ITCk 0.1847 (0.0828) 0.1859 (0.0902) 0.0732 (0.0518) 0.1229 (0.0769)
ITMk 0.2356 (0.0674) 0.1832 (0.0773) 0.1866 (0.0762) 0.2060 (0.0745)

H = 4 H = 6 H = 8 H = 10

SIR 0.2666 (0.0476) 0.2631 (0.0493) 0.2618 (0.0523) 0.2631 (0.0517)
SAVE 0.0891 (0.0708) 0.1114 (0.0803) 0.1239 (0.0802) 0.1422 (0.0825)

ITCk (σ 2u = 5.0, σ
2
v = 0.5), ITMk (σ

2
u = 5.0), SIR and SAVE to each sample to estimate the central subspace. Assume the

dimension of the subspace is known to be 2. Again, different values of h (or H) are considered for ITCk and ITMk (or SIR and
SAVE). The boxplots of the distances between estimated central subspaces and the true central subspace are generated for
each method with each specification of h or H (Fig. 2) and the means and standard deviations of the distances are given in
Table 2. Overall, ITCk with h = 1.5 demonstrates the best performance, and the second best performance belongs to SAVE
with H = 4. ITMk is expected to have poor performance because it targets the central mean subspace spanned by β1 only.

Example 3. Consider the following model

Y = eX1 + (X2 + 1.5)2 + ε,

where X3, . . . , X10, ε are independent N(0, 1) random variables, and X1 and X2 are generated from X3, . . . , X8 and two
additional independent N(0, 1) random variables δ1 and δ2 by

X1 = 0.2X3 + 0.2(X4 + 2)2 + 0.2X5 + δ1,
X2 = 0.1+ 0.1(X6 + X7)+ 0.3(X7 + 1.5)2 + 0.3X8 + δ2.
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Fig. 3. Boxplots of D(Ŝ, S) for different methods with different values of bandwidth h in Example 3.

Table 3
Means and standard deviations of D(Ŝ, S) for different methods in Example 3.

ITMk h = 0.5 h = 1.0 h = 1.5 h = 2.0 h = 2.5

Mean 0.0438 0.0261 0.0344 0.0372 0.0385
Standard deviation 0.0183 0.0117 0.0140 0.0150 0.0156

MAVE h = 0.6 h = 1.0 h = 1.5 h = 2.0 h = 2.5

Mean 0.0648 0.0591 0.0639 0.0702 0.0751
Standard deviation 0.0363 0.0269 0.0234 0.0248 0.0264

OPG h = 2.0 h = 2.5 h = 3.0 h = 3.5 h = 4.0

Mean 0.0747 0.0653 0.0632 0.0644 0.0664
Standard deviation 0.0635 0.0536 0.0485 0.0471 0.0473

Thus there exists a nonlinear confounding among the predictors. The central mean subspace is spanned by (1, 0τ9)
τ and

(0, 1, 0τ8)
τ . We use this model to compare the performance of ITMk with OPG and MAVE ([7]). The dimension of the central

subspace is assumed to be known. Randomly draw 500 samples of size 1000 from this model, and apply ITMk (σ 2u = 5.0),
OPG and MAVE to each sample to estimate the central mean subspace. Fig. 3 displays the side-by-side boxplots of D(Ŝ, S)
for ITMk, MAVE and OPG with different bandwidths, and their corresponding means and variances are reported in Table 3.
Because the initial estimates used in MAVE are OPG estimates, MAVE in general performs better than OPG. We observe

that although all the methods estimate the central mean subspace with high accuracy, ITMk performs better than the other
two methods in this example.

Example 4. Consider the following model,

Y =
X1

0.5+ (1.5+ X2)2
+ (1+ X2)2 + 0.8 ε,

where X = (X1, . . . , X10) follows the multivariate t-distribution with 10 degrees of freedom, and ε follows N(0, 1) and
independent of X. In this model, the central subspace and the central mean subspace are identical, and both are spanned by
(1, 0τ9)

τ and (0, 1, 0τ8)
τ . We use this example to compare the performance of different methods under the assumption that

X follows an elliptically contoured distribution. In particular, wewant to compare the proposedmethods with SCR and GCR,
which are the simple and general contour regression methods proposed in [5].

We draw 500 random samples each of size 1000 from the above model, apply SCR, GCR, SIR, SAVE, pHd, ITCe (σ 2u = 5.0,
σ 2v = 0.5, and h = 0.3), and ITMe (σ

2
u = 5.0 and h = 0.3) to each sample, and calculate D(Ŝ, S), the distance between

the true subspace and an estimated subspace. For each method, we construct a boxplot of the distances to show its overall
performance (Fig. 4), and include the means and standard deviations of these distances in Table 4. All the methods except
pHd have performed well in estimating S, and ITMe has performed slightly better than the others. This is expected because
SCR, GCR, ITMc and ITMe are specifically developed for handling elliptically contoured X. The good performance of SIR is
due to the fact that the linearity condition holds for the multivariate t distribution.

7. Conclusion

In this article, we have proposed the ITM method for estimating the central mean and central subspaces under the
generalized multiple index model. The asymptotic properties of the resulting estimates have been established. The two
major advantages of this approach are that (i) it avoids the estimation of the link function between the response and
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Fig. 4. Boxplots of D(Ŝ, S) for different methods in Example 4. Every boxplot is based on 500 samples of size 1000. For ITCe, σ 2u = 5.0, σ
2
v = 0.5, and

h = 0.3. For ITMe, σ 2u = 5.0 and h = 0.3.

Table 4
Means and standard deviations of D(Ŝ, S) for different methods in Example 4.

SCR GCR SIR SAVE PHD ITCE ITME

Mean 0.0538 0.0381 0.0295 0.0863 0.2696 0.0583 0.0288
Standard deviation 0.0422 0.0305 0.0143 0.0650 0.0456 0.0385 0.0141

predictors and (ii) it does not impose distributional assumptions on the predictors. The ITM approach is fairly flexible and
can be easily extended to other regression settings such as those involving multiple responses and/or categorical responses.
Due to their generality, the proposed methods may not perform well when the number of predictors is very large. When
applied to specific applications, however, they can be modified and thus improved by adopting a proper integral transform
and using a plug-in estimate of the marginal distribution of the predictors less susceptible to the curse of dimensionality.
We will further study these issues in the future.
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Appendix

As a convention, plain capital letters such as Y represent random variables; bold capital letters such as Z and X represent
random vectors; and small letters (e.g. z, y, and x) represent realizations of random variables or vectors (e.g. Z, Y and X,
respectively). Expectations such as E[b1(Z1, Z2)] and E[b1(zi, Z2)] are understood to be taken over the random variables or
vectors.

A.1. Proofs in Sections 1 and 2

Proof of Lemma 1. The equivalence between (3) and (4) directly follows from the definition of conditional independence
([23]). Hence, it is enough to show that (1) and (3) are equivalent.
First, we assume that (1) holds. GivenBτX = Bτx, Y depends on ε only. Because ε and X are independent of each other,

Y is independent of X. Therefore (3) holds.
Second, we assume (3) holds. Because (3) and (4) are equivalent, we have

FY |X(y|x) = P(Y ≤ y|X = x) = P(Y ≤ y|BτX = Bτx) = FY |BτX(y|Bτx).

Introduce a random variable ε, which follows uniform distribution U(0, 1) and is independent of X. For any given x, define
a new random variable Ỹ by Ỹ = F−1Y |X(ε|x),where F

−1
Y |X(·|x) is defined to be

F−1Y |X(t|x) = inf{y : FY |X(y|x) ≥ t} = inf{y : FY |BτX(y|B
τx) ≥ t},
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for 0 < t < 1. Hence, Ỹ is a well-defined function of Bτx and ε. Denote the function by g̃ . So we have Ỹ = g̃(Bτx, ε). Re-
placing xwithX, we have Ỹ = g̃(BτX, ε). Clearly ỸyX | BτX. Nextwe need to show that (Ỹ ,X) and (Y ,X) are stochastically
equivalent, and it is sufficient to show that, given X = x, Ỹ and Y have the same distribution.
Following the same argument as in the proof of Theorem 14.1 in [24], F−1Y |X(ε|x) ≤ y if and only if ε ≤ FY |X(y|x). Then

P(Ỹ ≤ u | X = x) = P{F−1Y |X(ε | x) ≤ u} = P{ε ≤ FY |X(u|x)}
= FY |X(u|x) = P(Y ≤ u | X = x).

Note that the second last equality follows from ε ∼ U(0, 1). Therefore, (1) holds. So the three models are equivalent. �

Proof of Lemma 2. Denote the Fourier transform of g as F (g). For any vector b, it is known that bτg ≡ 0 a.s. if and only
if F (bτg) = bτF (g) ≡ 0 a.s. ([25]). So g and F (g) span the same linear space. Consequently,W1(x,u) = exp(ıuτx) is a
nondegenerate kernel for g.
Similarly, whenW2(x,u) = H(u− x), F (

∫
g(x)H(u− x)dx) = F (g) · F (H). As long as H is not always zero,

span
{∫

g(x)H(u− x)dx
}
= span{F (g)} = span{g}.

HenceW2(x,u) is a nondegenerate kernel for g. �

A.2. Regularity conditions

A function h(x,u, v) is locally Lipschitz continuous in x if there exists a function ωh(x,u, v) such that ‖h(x+ t,u, v)−
h(x,u, v)‖ ≤ ωh(x,u, v)‖t‖ for t in a neighborhood of 0. A function h(x) is locally γ -Hölder continuous if there exist γ > 0
and c(x) such that ‖h(x+ v)− h(x)‖ ≤ c(x)‖v‖γ . The functions ωh(x,u, v) and c(x) are called modulus.
(A1) The supportΩ of fX is a convex subset of Rp with nonempty interior. The underlying measure of (y, x) can be written

as µy × µx, where µx is Lebesgue measure.
(A2) fX(x) vanishes on the boundary ofΩ .
(A3) All derivatives of fX(x) of order s exist, where s ≥ p+ 2. Let f

(s)
X denote any sth order derivative of f . Then f (s)X is locally

γ -Hölder continuous with modulus c(x).
(A4) The kernel function K(u) has support {u | ‖u‖ ≤ 1}, is symmetric, and K(u) = 0 for all u ∈ {u | ‖u‖ = 1}. The first

s− 1 moments of K(u) vanish. The (s+ γ )-th moments of K(·) exist.

Given below are the additional technical conditions required by Theorem 2.

(A5c)
∫
E[H(Y1, v)|x1]E[H(Y2, v)|x2]dv

∫
W (x1,u)W (x2,u)du has continuous second-order partial derivatives on Ω0 ×

Ω0 ⊂ Ω ×Ω , whereΩ ×Ω −Ω0 ×Ω0 is a set of measure 0.
(A6c) The following integrals exist.∫

E|H(Y , v)|4dv,
∫
E|W (X,u)|4du,

∫
E
∥∥∥∥ ∂∂x W (X,u)

∥∥∥∥4 du, ∫
E‖W (X,u)g(X)‖4du.

(A7c) Denote I1 = I[fX(x1)≥b] and Ī1 = 1− I1. As n→∞, the following statements hold.∫
E[|H(Y1, v)|2 Ī1]dv

∫
E[‖W (X1,u)g(X1)‖2 Ī1] du = o(n−1/2),∫

E[|H(Y1, v)|2 Ī1]dv
∫
E

[∥∥∥∥∂W (X1,u)∂x

∥∥∥∥2 Ī1
]
du = o(n−1/2).

(A8c) Assume that fX, f ′X,m
∂W
∂x ,

∂m
∂xW , andmWg are locally Lipschitz continuous in xwith modulus ωf , ωf ′ , ωmW ′ , ωm′W , and

ωmWg , respectively. We further assume that
∫
E‖W (X, u)H∗(X)‖4du is finite for H∗ ∈ {f −1X ωf ′ , gf −1X ωf }. Assume that∫∫

E(ω∗f ∗)2dudv is finite for ω∗ ∈ {ωmW ′ , ωm′W , ωmWg} and f ∗ ∈ {1, f ′X, ωf ′ , gfX, gωf }.
(A9c) Let An = {x : fX(x) > b}. The following integrals are bounded as n→∞.∫ ∫

An
|E[H(Y , v)|x]|2|f ∗(x)|dxdv,

∫ ∫
An

∥∥∥∥ ∂∂xW (x,u)
∥∥∥∥2 |f ∗(x)|dxdu,∫ ∫

An
|W (x,u)|2|f ∗(x)|dxdu,

∫ ∫
An
‖W (x,u)g(x)‖2|f ∗(x)|dxdu

for f ∗ ∈ {fX, f
(s)
X , hγ c}.

The technical conditions (A5m)–(A9m) required by Theorem 3 resemble (A5c)–(A9c). They can be obtained from
(A5c)–(A9c) by changing H(Y , v) to Y and removing

∫
dv. We do not list them explicitly to save space.
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A.3. A generic theorem

Considering the similarities between Theorems 2 and 3, we introduce the following notation to present them in a unified
way. LetM = E[U1(Z1, Z2)] and

U1(z1, z2) = b1(z1, z2)g(x1)g(x2)τ + b2(z1, z2)g(x2)τ + g(x1)b2(z2, z1)τ +B3(z1, z2),

where b1(z1, z2) is a real-valued function, b2(z1, z2) is a vector-valued function, andB3(z1, z2) is a matrix-valued function.
Given an iid sample z1, . . . , zn, an estimate ofM is

M̂n = n−2
n∑
i=1

n∑
j=1

[b1(zi, zj)ĝ(xi)ĝ(xj)τ + b2(zi, zj)ĝ(xj)τ + ĝ(xi)b2(zj, zi)τ +B3(zi, zj)]Îi Îj,

where ĝ(xi) is defined in (11).
It can be verified thatM and M̂n becomeMITC and M̂ITCk when b1, b2 and B3 are properly chosen; see Appendix A.4.

Similarly a different specification of b1, b2 and B3 can makeM and M̂n becomeMITM and M̂ITMk. In what follows, we first
prove a generic theorem, i.e., Theorem 6, without referring to particular specifications of b1, b2 and B3. After Theorem 6 is
proven, Theorems 2 and 3 can be proven simply by verifying that their corresponding specifications of b1, b2 andB3 satisfy
the conditions required by Theorem 6.
Under the regularity conditions required by Theorem 6, which will be given later, we can obtain an expansion of M̂n as

follows.

M̂n =M + n−1
n∑
i=1

[R(zi)+R(zi)τ − 2M] + op(n−1/2), (A.1)

where

R(z) = EZ1 [U1(Z1, z)] − EZ1 [a1(X1, x)g(X1)g(x)
τ
+ a2(X1, x)g(x)τ ]− EZ1 [g(X1)a

′

1(X1, x)
τ
+ a′2(X1, x)], (A.2)

the expectation is taken with respect to Z1 = (Y1,X1), and

a1(xi, xj) =
∫
b1(zi, zj)fY |X(yi|xi)fY |X(yj|xj)dyidyj, a′1(xi, xj) =

∂a1(xi, xj)
∂xj

,

a2(xi, xj) =
∫

b2(zi, zj)fY |X(yi|xi)fY |X(yj|xj)dyidyj, a′2(xi, xj) =
∂a2(xi, xj)
∂xτj

.

Theorem 6. Assume the conditions (A1)–(A4) (stated in Appendix A.2) and the conditions (A5g)–(A9g) (given below) hold. If
(a) n → ∞, h → 0, b → 0, and b−1h → 0; (b) for some ε > 0, b4n1−εh2p+2 → ∞; and (c) nh2s−2 → 0, then vec(M̂n)
asymptotically follows a multivariate normal distribution,

√
n (vec(M̂n)− vec(M))

L
−→ N(0,Σ), as n→∞,

whereΣ is the covariance matrix of vec(R(Z)+R(Z)τ ).

Given below are the technical conditions (A5g)–(A9g) required by Theorem 6.

(A5g) a1(x1, x2) and a2(x1, x2) have continuous derivatives on Ω0 × Ω0 ⊂ Ω × Ω , where Ω × Ω − Ω0 × Ω0 is a set of
measure 0.

(A6g) The following expectations are finite.

E‖b1(Z1, Z2)‖2, E‖b1(Z1, Z2)g(X1)‖2, E‖b1(Z1, Z2)g(X1)g(X2)τ‖2,
E‖B3(Z1, Z2)‖2, E‖b2(Z1, Z2)‖2, E‖b2(Z1, Z2)g(X2)τ‖2.

(A7g) Let Ī12 = 1− I1I2. As n→∞, the following statements hold.

E[b1(Z1, Z2)g(X1)g(X2)τ Ī12] = o(n−1/2),
E[b2(Z1, Z2)g(X2)τ Ī12] = o(n−1/2),
E[B3(Z1, Z2)Ī12] = o(n−1/2).

(A8g) The functions fX(x), f ′X(x), a
′

1(x1, x), a
′

2(x1, x), a1(x1, x)g(x), and a2(x1, x)g(x)τ are locally Lipschitz continuous in x
with modulus ωf , ωf ′ , ωa′1 , ωa′2 , ωa1g , and ωa2g , respectively. We further assume that the following expectations are
finite:
(a) E‖b2(Z1, Z2)H(X2)τ‖2 and E‖b1(Z1, Z2)H(X1)H∗(X2)τ‖2 for H and H∗ ∈ {g, f −1X ωf ′ , gf −1X ωf };
(b) E‖H1(X1,X2)‖2 for H1 ∈ {gωa′1 , ωa′2 , gωa1g , ωa2g};
(c) E‖H2(X1,X2)f ∗(X2)‖2 for H2 ∈ {ωa′1 , a

′

1, ωa1g , a1g} and f
∗
∈ {f ′X, ωf ′ , gfX, gωf }.
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(A9g) Let An = {(x1, x2) : fX(x1) > b, fX(x2) > b}. The following integrals are bounded as n→∞.∫
An
‖H3(x1, x2)fX(x1)f ∗(x2)‖ dx1dx2,

∫
An
‖H4(x1, x2)f ∗(x1)f ∗∗(x2)‖ dx1dx2

for H3 ∈ {a1g, a2, ha2gτ , ha1ggτ }, H4 ∈ {hs−1a1, hsa1g, hs+1a1ggτ }, and f ∗ and f ∗∗ ∈ {f
(s)
X , hγ c}.

A.3.1. A lemma

Lemma 5. Suppose {z1, . . . , zn} is an iid sample. Consider a general V -statistic vn = n−m
∑n
i1=1
· · ·
∑n
im=1 pn(zi1 , . . . , zim),

where pn is symmetric under the permutation of its m variables. Let ûn = θn +
m
n

∑n
i=1[rn(zi) − θn], where θn = E[pn(Z1,

. . . , Zm)] and rn(zi) = E[pn(Z1, . . . , Zm)|Zi = zi]. If E‖pn(Zi1 , . . . , Zim)‖
2
= o(n) for any i1, . . . , im ∈ {1, . . . ,m}, then√

n(vn − ûn) = op(1).

Proof of Lemma 5. The proof consists of two steps. The first step is to show that
√
n(un − ûn) = op(1) where un is a

U-statistic defined by un =
( n
m

)−1∑
i1<i2<···<im

pn(zi1 , . . . , zim); and the second step is to show that
√
n(vn − un) = op(1).

The proof of the first step is the direct generalization of Lemma 3.1 in [10], wherem = 2. Thus the detail is omitted and
we only focus on proving

√
n(vn − un) = op(1). In fact,

vn − un =
(
m! n−m −

( n
m

)−1) ∑
i1<···<im

pn(zi1 , . . . , zim)+ n
−m

∑
i1 , . . . , im are not distinct

pn(zi1 , . . . , zim).

Notice thatm! n−m−
( n
m

)−1
= O(n−m−1) and the number of summands in the second term above is

(m
2

) ( n
1

) ( n
m−2

)
+ · · · =

O(nm−1). Because E‖pn(Zi1 , . . . , Zim)‖
2
= o(n), we have pn(zi1 , . . . , zim) = op(n

1/2). Thus,

vn − un = O(n−m−1)O(nm)op(n1/2)+ n−mO(nm−1)op(n1/2) = op(n−1/2).

Therefore,
√
n(vn − un) = op(1). The lemma follows by combining the two steps proven above. �

Remark 2. When pn is not symmetric, define p∗n = (m!)−1
∑

pn(zi1 , . . . , zim), where the summation is over all different
permutations of (i1, . . . , im). Then the lemma holds for p∗n .

A.3.2. Proof of Theorem 6
The key step to prove Theorem 6 is to show that M̂n has the expansion (A.1). Once the expansion is obtained, the

asymptotic normality of M̂n directly follows from the central limit theorem. Similar to the proof of Theorem 3.1 in [9],
we divide the proof of Theorem 6 into the following four steps.

(1) Linearization:
√
n(M̄n−M̃n) = op(1), where M̄n is obtained by replacing Îi in M̂nwith Ii = I[fX(xi)>b], and M̃n is obtained

by replacing ĝ(xi) in M̄n with g̃(xi), where

g̃(x) = g(x)+
f̂ ′h(x)
fX(x)

−
f̂h(x)
fX(x)

g(x).

Notice that the true density function fX(x) appears in the denominators in g̃.
(2) Asymptotic normality:

√
n(M̃n − E(M̃n)) asymptotically follows normal distribution.

(3) Asymptotic bias:
√
n(E(M̃n)−M) = o(1).

(4) Trimming effect:
√
n(M̂n − M̄n) = op(1).

The asymptotic normality of M̂n follows by combining the above four steps together.

A.3.2.1. Linearization. Because nh2s−2 → 0 as n → ∞, the pointwise mean squared errors of f̂h and f̂ ′h are dominated by
their variances. Since the set {x | fX(x) ≥ b} is compact and b−1h→ 0, for any ε > 0, we have [26],

sup
x
|f̂h(x)− fX(x)|I[fX(x)>b] = Op[(n

1−(ε/2)hp)−1/2],

sup
x
‖f̂ ′h(x)− f

′

X(x)‖I[fX(x)>b] = Op[(n
1−(ε/2)hp+2)−1/2].

Let cf be a constant such that sup |f̂h − fX|I[fX(x)>b] ≤ cf (n1−ε/2hp)−1/2 holds with high probability. Denote cn = cf
(n1−ε/2hp)−1/2. Then f̂h(x) ≥ b − cn holds with high probability for x such that fX(x) > b. Notice that b−1cn → 0, because
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[b2(n1−ε/2hp)]2 →∞. We write M̄n explicitly as follows.

M̄n = n−2
n∑
i=1

n∑
j=1

b1(zi, zj)ĝ(xi)ĝ(xj)τ IiIj + n−2
n∑
i=1

n∑
j=1

b2(zi, zj)ĝ(xj)τ IiIj

+ n−2
n∑
i=1

n∑
j=1

ĝ(xi)b2(zj, zi)τ IiIj + n−2
n∑
i=1

n∑
j=1

B3(zi, zj)IiIj

= M̄n,1 + M̄n,2 + M̄n,3 + M̄n,4.

Let M̃n,i be the result of replacing ĝ(xj) by g̃(xj), for i = 1, 2, 3 and 4. Because M̄n,4 does not involve ĝ, M̄n,4 and M̃n,4 are
the same. The other three terms all contain ĝ. Since these terms can be treated similarly, we only include the treatment of
M̄n,2 below. Because

ĝ(xj)− g̃(xj) =
[fX(xj)− f̂h(xj)][f̂ ′h(xj)− f

′

X(xj)]
f̂h(xj)fX(xj)

+
[fX(xj)− f̂h(xj)]2

f̂h(xj)fX(xj)
g(xj)

we have

‖
√
n(M̄n,2 − M̃n,2)‖ ≤ n−2

n∑
i=1

n∑
j=1

IiIj · ‖b2(zi, zj)‖
√
n

b(b− cn)
{sup |fX − f̂h|I}{sup ‖f̂ ′h − f

′

X‖I}

+ n−2
n∑
i=1

n∑
j=1

IiIj · ‖b2(zi, zj)g(xj)τ‖
√
n

b(b− cn)
{sup |fX − f̂h|Ij}2

= Op(b−2n−(1−ε)/2h−p−1)+ Op(b−2n−(1−ε)/2h−p) = op(1).

Note that n−2
∑n
i=1
∑n
j=1 ‖b2(zi, zj)‖IiIj and n

−2∑n
i=1
∑n
j=1 ‖b2(zi, zj)g(xj)

τ
‖IiIj are bounded in probability, because

E‖b2(Z1, Z2)‖2 and E‖b2(Z1, Z2)g(x2)τ‖2 are finite; b−2n−(1−ε)/2h−p−1 = o(1) because b4n1−εh2p+2 → ∞. Similarly, we
can show that both

√
n(M̄n,1 − M̃n,1) and

√
n(M̄n,3 − M̃n,3) are of op(1). Therefore,

√
n(M̄n − M̃n) = op(1).

A.3.2.2. Asymptotic normality. We need to express M̃n − E(M̃n) as the sum of the average of n iid random matrices and a
negligible term of order op(n−1/2) by applying Lemma 5. Then the asymptotic normality directly follows from the central
limit theorem. Some calculations lead to the following expression of M̃n,

M̃n = n−2
n∑
i=1

n∑
j=1

{
U1(zi, zj)IiIj + u2(zi, zj)f̂ ′h(xj)

τ IiIj + f̂ ′h(xi)u2(zj, zi)
τ IiIj − u2(zi, zj)g(xj)τ f̂h(xj)IiIj

− g(xi)u2(zj, zi)τ f̂h(xi)IiIj + u3(zi, zj)f̂ ′h(xi)f̂
′

h(xj)
τ IiIj + u3(zi, zj)g(xi)g(xj)τ f̂h(xi)f̂h(xj)IiIj

− f̂ ′h(xi)f̂h(xj)u3(zi, zj)g(xj)
τ IiIj − u3(zj, zi)g(xi)f̂h(xi)f̂ ′h(xj)

τ IiIj
}
,

where

u2(zi, zj) = b1(zi, zj)g(xi)f −1X (xj)+ b2(zi, zj)f −1X (xj),

u3(zi, zj) = b1(zi, zj)f −1X (xi)f −1X (xj).

In what follows, we only discuss the first two terms in the expression of M̃n above, and the remaining terms can be
treated similarly.
Applying Lemma 5 to the first term of M̃n,

n−2
n∑
i=1

n∑
j=1

U1(zi, zj)IiIj − E[U1(Z1, Z2)I1I2]

= n−1
n∑
i=1

{E[U1(zi, Z1)IiI1] + E[U1(Z1, zi)I1Ii] − 2E[U1(Z1, Z2)I1I2]} + op(n−1/2)

= n−1
n∑
i=1

{E[U1(zi, Z1)] + E[U1(Z1, zi)] − 2E[U1(Z1, Z2)]} + op(n−1/2).

For the second term of M̃n,

n−2
n∑
i=1

n∑
j=1

u2(zi, zj)f̂ ′h(xj)
τ IiIj = n−3h−p−1

n∑
i=1

n∑
j=1

n∑
`=1

u2(zi, zj)K ′
(
xj − x`
h

)τ
IiIj,
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which is a general V -statistic. We need to verify E‖h−p−1u2(Zi, Zj)K ′(
Xj−X`
h )τ IiIj‖2 = o(n) before applying Lemma 5.

E‖h−p−1u2(Zi, Zj)K ′
(
Xj − X`
h

)τ
IiIj‖2 ≤ b−2h−p−2

∫
‖(b2(zi, zj)+ b1(zi, zj)g(xi))K ′(u)τ‖2

× fY ,X(yi, xi)fY ,X(yj, xj)fX(xj − hu)dxidxjdudyidyj
= O(b−2h−p−2) = O(n(b2nhp+2)−1) = o(n).

Notice that K is symmetric, so K ′(0) = 0. Then E‖h−p−1u2(Zi, Zj)K ′(0)τ IiIj‖ = 0, which can be considered of order o(n).
Applying Lemma 5, we can write

n−2
n∑
i=1

n∑
j=1

u2(zi, zj)f̂ ′h(xj)
τ IiIj − h−p−1 E

[
u2(Z1, Z2)K ′

(
X2 − X3
h

)τ
I1I2

]

= n−1
n∑
i=1

{E[W2(zi, Z1, Z2)] − E[W2(Z1, Z2, Z3)]} + op(n−1/2), (A.3)

where

hp+1 W2(zi, z1, z2) = u2(zi, z1)K ′
(
x1 − x2
h

)τ
IiI1 + u2(z1, zi)K ′

(
xi − x2
h

)τ
I1Ii + u2(z1, z2)K ′

(
x2 − xi
h

)τ
I1I2.

Next, we want to show that E[W2(zi, Z1, Z2)] can be approximated by an expression without Ii’s, which therefore does
not depend on n. Notice that f ′X satisfies local Lipschitz condition (A8g) and by applying Cauchy–Schwarz inequality
E‖u2(Z1, Z2)ωf ′‖2 is finite. For the first term of E[W2(zi, Z1, Z2)], we have∫

h−p−1u2(zi, z1)K ′
(
x1 − x2
h

)τ
IiI1fY ,X(y1, x1)fX(x2) dx1dy1dx2

=

∫
u2(zi, z1)K(u)IiI1fY ,X(y1, x1)f ′X(x1 − hu)

τ dx1dy1du

=

∫
u2(zi, z1)fY ,X(y1, x1)f ′X(x1)

τ dx1dy1 + op(1). (A.4)

Similarly for the second term of E[W2(zi, Z1, Z2)],∫
h−p−1u2(z1, zi)K ′

(
xi − x2
h

)τ
IiI1fY ,X(y1, x1)fX(x2) dx1dy1dx2

=

∫
u2(z1, zi)fY ,X(y1, x1) dx1dy1 · f ′X(xi)

τ
+ op(1). (A.5)

Now we discuss the third term of E[W2(zi, Z1, Z2)]. Let b∗ = supx,u{fX(x+ hu) | fX(x) = b, |u| ≤ 1} and I∗i = I[fX(xi)>b∗].
When I∗i = 1, it is always true that I[fX(xi+hu)>b] = 1.∫

h−p−1u2(z1, z2)K ′
(
x2 − xi
h

)τ
I1I2fY ,X(y1, x1)fY ,X(y2, x2) dx1dy1dx2dy2

= −I∗
∫
[a′2(x1, xi + hu)+ g(x1)a′1(x1, xi + hu)]I1K(u)fX(x1)dx1du+ (1− I

∗)A(xi; h, b),

where

A(xi; h, b) =
∫
h−1[a2(x1, xi + hu)+ a1(x1, xi + hu)g(x1)]K ′(u)τ I1I[fX(xi+hu)>b]fX(x1) dx1du.

Then ∫
h−p−1u2(z1, z2)K ′

(
x2 − xi
h

)τ
I1I2fY ,X(y1, x1)fY ,X(y2, x2) dx1dy1dx2dy2

+

∫
[a′2(x1, xi)+ g(x1)a′1(x1, xi)

τ
] fX(x1)dx1

= −I∗
∫
[a′2(x1, xi + hu)− a′2(x1, xi)]K(u)fX(x1)dx1du

− I∗
∫

g(x1)[a′1(x1, xi + hu)− a
′

1(x1, xi)]
τK(u)fX(x1)dx1du
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+ I∗
∫
[a′2(x1, xi + hu)+ g(x1)a′1(x1, xi + hu)

τ
]K(u)(1− I1)fX(x1)dx1du

+(1− I∗)
∫
[a′2(x1, xi)+ g(x1)a′1(xi, x1)

τ
] fX(x1)dx1 + (1− I∗)A(xi; h, b). (A.6)

The first and second terms on the right-hand side of (A.6) are of order op(1) due to assumption (A8g). The third and forth
terms on the right-hand side of (A.6) are of order op(1) because b → 0. To verify that the fifth term (1 − I∗)A(xi; h, b)
vanishes, we only need to show that the second moment of A(xi; h, b) is finite. Suppose the kth column of A(xi; h, b) is
ak(xi; h, b). Then applying integration by parts to ak(xi; h, b), we have

ak(xi; h, b) = −
∫

∂

∂uk
[a2(x1, xi + hu)+ g(x1)a1(x1, xi + hu)]K(u)I1I[fX(xi+hu)>b]dx1du

−

∫
D
[a2(x1, xi + hu)+ a1(x1, xi + hu)g(x1)]K(u)I1 dxidu(k),

where D contains all u such that fX(xi + hu) = b and du(k) = du1 · · · duk−1duk+1 · · · dup. Thus the second moment of
ak(X; h, b) exists, which further implies that the second moment ofA(X; h, b) exists. Therefore, all terms on the right-hand
side of (A.6) are of order op(1) and we obtain∫

h−p−1u2(z1, z2)K ′
(
x2 − xi
h

)τ
I1I2fY ,X(y1, x1)fY ,X(y2, x2) dx1dy1dx2dy2

= −

∫
[a′2(x1, xi)+ g(x1)a′1(x1, xi)

τ
] fX(x1)dx1 + op(1). (A.7)

Combining (A.3)–(A.5) and (A.7) together, we have

n−2
n∑
i=1

n∑
j=1

u2(zi, zj)f̂ ′h(xj)
τ IiIj − h−p−1 E

[
u2(Z1, Z2)K ′

(
X2 − X3
h

)τ
I1I2

]

= n−1
n∑
i=1

{W̃2(zi)− E[W̃2(Z1)]} + op(n−1/2),

where

W̃2(zi) =
∫

u2(zi, z1)fY ,X(y1, x1)f ′X(x1)
τ dx1dy1 +

∫
u2(z1, zi)fY ,X(y1, x1) dx1dy1 · f ′X(xi)

τ

−

∫
[a′2(x1, xi)+ g(x1)a′2(x1, xi)

τ
] fX(x1)dx1.

Following the similar arguments, we can have expansions for the other terms of M̃n − E(M̃n). Collecting all these terms
together, we obtain an expansion for M̃n,

M̃n − E(M̃n) = n−1
n∑
i=1

{R(zi)+R(zi)τ − E[R(Z1)+R(Z1)τ ]} + op(n−1/2),

whereR(z) is defined in (A.2).

A.3.2.3. Asymptotic bias. Notice thatM = E[U1(Z1, Z2)]. The bias is

E(M̃n)−M = {E[U1(Z1, Z2)I1I2] −M} + h−p−1E[u2(Z1, Z2)K ′
τ

23I1I2] + h
−p−1E[K ′13u2(Z2, Z1)

τ I1I2]

− h−pE[u2(Z1, Z2)g(X2)τK23I1I2] − h−pE[g(X1)u2(Z2, Z1)τK13I1I2]
+ h−2p−2E[u3(Z1, Z2)K ′13K

′τ

24I1I2] + h
−2pE[u3(Z1, Z2)g(X1)g(X2)τK13K24I1I2]

− h−2p−1E[K ′13K24u3(Z1, Z2)g(X2)
τ I1I2] − h−2p−1E[u3(Z2, Z1)g(X1)K13K ′

τ

24I1I2],

where Kij = K((Xi − Xj)/h) and K ′ij = K
′((Xi − Xj)/h).

For the first term of E(M̃n) −M, E[U1(Z1, Z2)I1I2] −M = o(n−1/2) due to condition (A7g). Let ` denote an index set
(`1, . . . , `k) with

∑
`i = s. For u = (u1, . . . , uk), define u` = u

`1
1 · · · u

`k
k and f

(s)
` = ∂`fX/(∂u)`. For the second term of

E(M̃n)−M,

h−p−1E
[
u2(Z1, Z2)K ′

(
X2 − X3
h

)τ
I1I2

]
=

∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)f ′X(x2)

τ dx1dx2

+ hs−1
∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)K(u)

∑
`

f (s)` (ξ)u
` dx1dx2du, (A.8)
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where ξ lies on the line segment between x2 and x2 − hu. Consider the integral in the second term in (A.8),∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)

∑
f (s)` (ξ) dx1dx2

=

∑∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)f

(s)
` (x2) dx1dx2

+

∑∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)[f

(s)
` (ξ)− f

(s)
` (x2)] dx1dx2 = Op(1).

The last equation holds because f (s)X is locally Hölder continuous and the integrals in the second term in the above expression
are bounded due to condition (A9g). Thus (A.8) becomes

h−p−1E
[
u2(Z1, Z2)K ′

(
X2 − X3
h

)τ
I1I2

]
=

∫
An
[a2(x1, x2)+ a1(x1, x2)g(x1)]fX(x1)f ′X(x2)

τ dx1dx2 + Op(hs−1).

Similarly we can obtain expansions for the other terms of E(M̃n) −M. After collecting these terms together, we find that
the lower-order terms sum to zero and the bias E(M̃n)−M is of order Op(hs−1) = op(n−1/2).

A.3.2.4. Trimming effect. Because b−1cn → 0, the previous result still holds if we change I[fX(x)>b] to I[fX(x)>b+cn]. Denote
Ĩ = I

[f̂h(x)>b]
−I[fX(x)>b+cn], which is equal to I[fX(x)≤b+cn;f̂h(x)>b]. (The equality holdswith large probability because sup |fX(x)−

f̂h(x)|I ≤ cn with large probability.) Define

Ĩij = I[f̂h(xi)>b]I[f̂h(xj)>b] − I[fX(xi)>b+cn]I[fX(xj)>b+cn] = Ĩi Ĩj + ĨiI[fX(xj)>b+cn] + I[fX(xi)>b+cn] Ĩj,

so

√
n(M̂n − M̄n) = n−3/2

n∑
i=1

n∑
j=1

U1(zi, zj)Ĩij + n−3/2
n∑
i=1

n∑
j=1

b2(zi, zj)(ĝ(xj)− g(xj))τ Ĩij

+ n−3/2
n∑
i=1

n∑
j=1

(ĝ(xi)− g(xi))b2(zj, zi)τ Ĩij

+ n−3/2
n∑
i=1

n∑
j=1

b1(zi, zj)(ĝ(xi)ĝ(xj)τ − g(xi)g(xj)τ )Ĩij.

We only discuss the first terms of the foregoing expression in detail. The treatment of the remaining terms is similar to
that in the linearization step. Consider

E

∥∥∥∥∥n−3/2 n∑
i=1

n∑
j=1

U1(zi, zj)Ĩij

∥∥∥∥∥
2

≤ n−3E

(
n∑
i=1

n∑
j=1

‖U1(Zi, Zj)‖Ĩij

)2
= n[Op(E[U1(Zi, Zj)Īij])]2 = op(1).

The above equation holds because E[U1(Z1, Z2)Ī12] = o(n−1/2). Thus the first term of
√
n(M̂n − M̄n) is of order op(1).

Therefore, the effect of trimming is negligible.

A.4. Proofs of Theorems 2–5

Theorem 2 can in fact be considered a special case of Theorem 6, where

b1(z1, z2) =
∫
H(y1, v)H(y2, v)dv

∫
W (x1,u)W (x2,u)du,

b2(z1, z2) =
∫
H(y1, v)H(y2, v)dv

∫
∂W (x1,u)

∂x
W (x2,u2)du,

B3(z1, z2) =
∫
H(y1, v)H(y2, v)dv

∫
∂W (x1,u)

∂x
∂W (x2,u)
∂xτ

du.

Applying Theorem 6 with U1 = UITC, it can be verified that R(z) in Theorem 6 becomes R(z) in Theorem 2. Therefore,
it is sufficient to show that the conditions required by Theorem 2 implies the conditions required by Theorem 6. In other
words, the conditions (A5c)–(A9c) implies the conditions (A5g)–(A9g). This can be proved by applying the Cauchy–Schwarz
inequality repeatedly and noticing that Z1 and Z2 are independent. Due to space limitation, we omit the details.
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Remark 3. The only difference between Theorems 2 and 3 is that
∫
H(y1, v)H(y2, v)dv in Theorem 2 is replaced by Y1Y2 in

Theorem 3. The proof of Theorem 3 is similar to that of Theorem 2, and is omitted due to limited space.

Remark 4. BothMITCe andMITMe can be expressed asM = E[Ue(Z1, Z2)], where

Ue(z1, z2) = B1(z1, z2)gR(r1)gR(r2)+B2(z1, z2)gR(r2)+ gR(r1)B2(z1, z2)+B3(z1, z2),

andB1,B2, andB3 are matrix-valued functions. Given an iid sample z1, . . . , zn, an estimate ofM is M̂n = n−2
∑n
i=1
∑n
j=1

Ûe(zi, zj)Ĩi Ĩj, where Ûe is obtained by replacing gR in Ue with f̃ ′R,h/f̃R,h. Following the similar steps as in Theorem 6, we
can show that

√
n(vec(M̂n)− vec(M)) asymptotically follows a multivariate normal distribution. The technical conditions

of Theorem 6 need to be modified accordingly. In fact, (A1)–(A4) become conditions imposed on the density function fR,
which is a univariate function; the conditions (A5g)–(A9g) become conditions imposed on functions involvingB1,B2, and
B3. Theorems 4 and 5 can be proved after specifying B1, B2, and B3 properly. Due to limited space, we do not state these
technical conditions and proofs in the current article. They are available from the authors upon request.
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