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SUMMARY

The central subspace and central mean subspace are two important targets of sufficient di-
mension reduction. We propose a weighted chi-squared test to determine their dimensions based
on matrices whose column spaces are exactly equal to the central subspace or the central mean
subspace. The asymptotic distribution of the test statistic is obtained. Simulation examples are
used to demonstrate the performance of this test.
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1. INTRODUCTION

Sufficient dimension reduction in regression reduces the dimension of predictors by identifying
a subspace that contains all information about regression, and therefore the regression can be
conducted in the identified subspace instead of using the original predictors (Li, 1991; Cook,
1998b).

Suppose that the response Y is univariate and the predictor X = (X1, . . . , X p)T is a vector of
continuous explanatory variables. One objective of sufficient dimension reduction is to identify
a subspace S ⊂ R

p such that

Y X | PS X, (1)

where denotes ‘is independent of’ and PS is the orthogonal projection matrix on to S in
the usual inner product. Under model (1), the conditional distribution of Y |X is equal to the
conditional distribution of Y |PS X , which implies that PS X contains all information in X about
Y . The subspace S is called a dimension reduction subspace. If the intersection of all dimension
reduction subspaces also satisfies (1), it is called the central subspace, which is denoted by
SY |X (Cook, 1996). The central subspace exists and is unique under weak conditions (Cook,
1996), which are assumed throughout this article. For example, consider a heteroscedastic model
Y = αT X + εβT X , where α and β are two vectors and ε is a random error independent of X .
The central subspace SY |X is spanned by α and β.

When only the mean response E(Y |X ) is of primary interest, the objective of sufficient
dimension reduction is to find a subspace S ⊂ R

p such that

Y E(Y |X ) | PS X . (2)

The intersection of all subspaces satisfying (2) is called the central mean subspace, which is
denoted by SE(Y |X ) (Cook & Li, 2002). The central mean subspace contains all information
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in X about E(Y |X ), and is always a subspace of the corresponding central subspace. For the
heteroscedastic model mentioned above, the central mean subspace SE(Y |X ) is spanned by α.

One important problem in sufficient dimension reduction is to determine the dimension of
the central subspace or central mean subspace. All existing tests for this problem are associated
with methods for estimating these two subspaces. For example, Li (1991), Schott (1994) and
Bura & Cook (2001) discussed a chi-squared test based on sliced inverse regression, which can be
used to determine the dimension of the central subspace. Cook & Ni (2005) discussed a weighted
chi-squared test in an inverse regression family. Li (1992), Cook (1998a) and Cook & Li (2004)
studied tests for the central mean subspace, which are based on principal Hessian directions (Li,
1992) or iterative Hessian transformation (Cook & Li, 2002).

The methods mentioned above usually construct a matrix M , called a candidate matrix, whose
columns span a subspace of SY |X or SE(Y |X ). Hence the column space of M , denoted by S(M),
is an approximation of SY |X or SE(Y |X ). Each test is essentially intended to determine the rank of
M . After imposition of a coverage condition that S(M) = SY |X or S(M) = SE(Y |X ), the test for
the rank of M can be used to infer the dimension of SY |X or SE(Y |X ). The coverage condition is
introduced mainly for technical convenience. There is no systematic study on when the coverage
condition holds for these methods and how it can be verified. Consequently, the tests associated
with these methods may underestimate the dimension of SY |X or SE(Y |X ).

Recently, Zhu & Zeng (2006) proposed a Fourier method by constructing two candidate matri-
ces, MFC and MFM, whose column spaces are exactly equal to the central subspace and the central
mean subspace, respectively. The coverage condition automatically holds for the Fourier method.
Therefore, it is expected that a test based on MFC or MFM will minimize the risk of underestimating
or overestimating the dimension. Following the idea of Ye & Weiss (2003), Zhu & Zeng (2006)
discussed a bootstrap method for estimating dimension, which is computationally intensive and
may be impractical when the sample size is large. In this article, we derive a weighted chi-squared
test to determine dimension.

2. THE FOURIER METHOD AND ITS CANDIDATE MATRICES

The Fourier method proposed by Zhu & Zeng (2006) constructs two candidate matrices MFM

and MFC such that S(MFM) = SE(Y |X ) and S(MFC) = SY |X . As a result of the similarity between
MFM and MFC, they can be expressed in the common form

M = E
(
c12

[
σ 2

ω Ip + {
G(X1) − σ 2

ω(X1 − X2)
}{

G(X2) + σ 2
ω(X1 − X2)

}T])
, (3)

where G(x) = ∂ log fX (x)/∂x , fX (x) is the marginal density function of X , and (X1, Y1)
and (X2, Y2) are independent and follow the same distribution as (X, Y ). Note that M =
MFM when c12 = Y1Y2 exp(−σ 2

ω‖X1 − X2‖2/2), while M = MFC when c12 = exp{−σ 2
t (Y1 −

Y2)2/2} exp(−σ 2
ω‖X1 − X2‖2/2), where σ 2

ω and σ 2
t are two positive constants. The only dif-

ference between MFM and MFC lies in the expression for c12, which represents different ways of
determining the weights in expectation. For ease of presentation, we use M and S to denote a
candidate matrix and the targeted subspace. When the central subspace is of interest, they are
represented by MFC and SY |X ; when the central mean subspace is of interest, they are represented
by MFM and SE(Y |X ).

The density function fX (x) is needed to evaluate the candidate matrix in (3). In practice, users
may be able to choose a reasonable family of distributions for X . For example, they may have
some prior knowledge about fX (x) from historical data, or they may intentionally make X follow
some specific distribution when collecting data, as in computer experiments.



Dimension of the central subspace 471

In this article, we assume that X follows a normal distribution, as is at least approximately valid
in many applications. If the normality assumption is violated, we may apply the Voronoi weighting
method proposed by Cook & Nachtsheim (1994) to assign different weights to different points in
order to alleviate the violation of normality. Hence the proposed method is still applicable.

When X ∼ N (0, Ip), G(x) = −x and

M = E
{

c12
(
σ 2

ω Ip + a X1 XT
2 − bX1 XT

1

)}
,

where a = σ 4
ω + (σ 2

ω + 1)2 and b = 2σ 2
ω(σ 2

ω + 1) are two constants depending on σ 2
ω. Given a

sample {(xi , yi ), i = 1, . . . , n}1�i�n , M can be estimated by replacing the expectation by the
sample average,

M̂n = 1

n2

n∑
i=1

n∑
j=1

ci j
(
σ 2

ω Ip + axi x
T
j − bxi x

T
i

)
. (4)

Zhu & Zeng (2006) showed that M̂n asymptotically follows a normal distribution, and thus the
eigenvalues and eigenvectors of M̂n converge to those of M at rate n1/2. When the dimension of
S is known to be d, S can be estimated by the eigenspace of M̂n corresponding to the largest d
eigenvalues. However, d is usually unknown in practice, and it needs to be inferred from data.

3. MAIN RESULTS

This section derives a weighted chi-squared test for determining the dimension of S from
a sample {(xi , yi ), i = 1, . . . , n}1�i�n . We also discuss a discrepancy measure that defines a
distance between an estimated subspace and the true subspace, and obtain an asymptotic expansion
of this discrepancy measure.

The dimension of S is equal to the rank of M because S is exactly equal to the column space
of M . Thus testing the rank of M is equivalent to testing the dimension of S. Consider the
hypotheses

H0 : rank(M) = d, Ha : rank(M) > d.

Given a sample {(xi , yi )}1�i�n , a consistent estimator of M is M̂n given in (4). Let λ̂1 � · · · �
λ̂p � 0 be the ordered eigenvalues of M̂n . When H0 holds, M has only d nonzero eigenvalues.
The smallest p − d eigenvalues of M̂n are therefore expected to be very small, because they are
consistent estimators of zero. Hence �̂d = n

∑p
i=d+1 λ̂i can be used as a test statistic, and we

reject H0 if �̂d is larger than a threshold, which is chosen according to the sampling distribution
of �̂d . Since it is difficult to obtain the exact distribution of �̂d , we use instead the limiting
distribution of �̂d as n goes to infinity. The following theorem gives us an expansion for �̂d .

THEOREM 1. When rank(M) = d and X ∼ N (0, Ip), �̂d has the expansion

�̂d = n
p∑

i=d+1

λ̂i = n

(
n

2

)−1 ∑
i< j

U (xi , yi , x j , y j ) + E{U (X0, Y0, X0, Y0)} + op(1),

where (X0, Y0) follows the same distribution as (X, Y ),

U (xi , yi , x j , y j ) = 1

2
ci j

{
2σ 2

ω(p − d)+2axT
j Qxi −bxT

i Qxi −bxT
j Qx j

}−(
2σ 2

ω + 1
)2

τiτ j x
T
j Qxi

×
(

ηi − σ 2
ω

σ 2
ω + 1

ϑi Pxi

)T

M+
(

η j − σ 2
ω

σ 2
ω + 1

ϑ j Px j

)
,
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τi = (σ 2
ω + 1)−(p−d)/2 exp{−σ 2

ωxT
i Qxi/2(σ 2

ω + 1)}, P is the projection matrix on to S, Q =
Ip − P, M+ is the Moore–Penrose generalized inverse of M,

ϑi = E(X0,Y0)
[
ϕi0 exp

{−σ 2
ω(xi − X0)T P(xi − X0)/2

}]
,

ηi = E(X0,Y0)
[
ϕi0 exp

{−σ 2
ω(xi − X0)T P(xi − X0)/2

}
P X0

]
,

ϕi0 = yi Y0 for the central mean subspace and ϕi0 = exp{−σ 2
t (Y0 − yi )2/2} for the central sub-

space.

Theorem 1 shows that �̂d can be approximated by the sum of a U -statistic and a constant when
the sample size is large. Since this U -statistic is first-order degenerate, the following theorem
claims that �̂n asymptotically follows a weighted chi-squared distribution based on the theory of
U -statistics (Lee, 1990, Ch. 3).

THEOREM 2. Assume that E{U (X1, Y1, X2, Y2)2} < ∞. Under the same conditions as in
Theorem 1, the limiting distribution of �̂d = n

∑p
i=d+1 λ̂i is the same as

∑∞
i=1 viχ

2
i (1), where

χ2
i (1) are independent chi-squared variables with one degree of freedom, and vi are the eigen-

values of the integral equation∫
U (x1, y1, x2, y2) φ(x1, y1) d F(x1, y1) = viφ(x2, y2), (5)

in which F(x, y) is the joint distribution function of (X, Y ).

Similar weighted chi-squared tests have been obtained by other authors, such as Cook (1998a),
Bura & Cook (2001) and Cook & Ni (2005), but in their cases the limiting distribution is a linear
combination of a finite number of chi-squared distributions. In the above theorem, the number of
eigenvalues of the integral equation is generally infinite, so that the limiting distribution of �̂d is
a linear combination of an infinite number of chi-squared distributions, which can be regarded as
a price paid for achieving S(M) = S.

In order to determine the dimension of S, we sequentially apply the test of H0 : rank(M) = d
for d = 0, 1, . . . , p − 1. Starting with d = 0, if the hypothesis is not rejected, then we claim
that the dimension of S is 0. Otherwise, we then test H0 with d = 1. The procedure continues
until the hypothesis is not rejected, and we claim the dimension of S to be the corresponding
value of d.

Although Theorem 2 gives the limiting distribution of �̂d , it is difficult to calculate all the
vi ’s explicitly. We have to find a simple distribution to approximate the limiting distribution of
�̂d for practical use. One common choice is to use a single scaled chi-squared random variable
(Satterthwaite, 1941; Box, 1954). More recently, this approximation was used by Bentler & Xie
(2000) in sufficient dimension reduction. Let g = ∑

v2
i /

∑
vi and h = (

∑
vi )2/

∑
v2

i . Then
T = ∑

viχ
2
i (1) can be approximated by gχ2(h) such that they have the same first two moments.

It remains to estimate g and h, or equivalently estimate
∑

vi and
∑

v2
i , for a given sample.

Following the Fredholm theory of integral equations, there exist sequences of eigenvalues and
eigenfunctions, vi and φi , satisfying (5), and the kernel U admits the expansion

U (x1, y1, x2, y2) =
∞∑

i=1

viφi (x1, y1)φi (x2, y2),

where
∫

φi (x, y)φ j (x, y)d F(x, y) = 1 if i = j and = 0 if i � j . Since the constant 1 is an
eigenfunction corresponding to the eigenvalue zero, we have E{φi (X, Y )} = 0 for i = 1, 2, . . ..
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It can be verified that

E{U (X1, Y1, X1, Y1)} = E

{ ∞∑
i=1

viφ
2
i (X1, Y1)

}
=

∞∑
i=1

vi ,

E{U (X1, Y1, X2, Y2)2} = E

⎡
⎣

{ ∞∑
v=1

viφi (X1, Y1)φi (X2, Y2)

}2
⎤
⎦ =

∞∑
i=1

v2
i .

Given a sample {(xi , yi )}1�i�n ,
∑

vi and
∑

v2
i can be estimated simply by replacing the expec-

tations in the above expressions by their corresponding sample averages. Consequently, g and h
can be estimated by

ĝ = n−2 ∑n
i=1

∑n
j=1 U (xi , yi , x j , y j )2

n−1
∑n

i=1 U (xi , yi , xi , yi )
, ĥ = {n−1 ∑n

i=1 U (xi , yi , xi , yi )}2

n−2
∑n

i=1
∑n

j=1 U (xi , yi , x j , y j )2
.

When the dimension of S is chosen to be d by the above testing procedure, an estimator Ŝ
of S is the space spanned by the eigenvectors of M̂n corresponding to the largest d eigenvalues.
We need to assess the performance of the estimator. Since a subspace uniquely corresponds to a
projection matrix, the distance between S and Ŝ can be defined in terms of projection matrices.
Let P be the projection matrix on to S = S(M), and let P̂ be the projection matrix on to Ŝ.
A distance function is defined to be D(Ŝ,S) = 1 − d−1tr(P̂ P). It is easy to see that D(Ŝ,S)
is always between 0 and 1. D(Ŝ,S) = 0 if Ŝ = S, and D(Ŝ,S) = 1 if Ŝ ⊥ S. The following
theorem provides an expansion of the expectation of the distance function.

THEOREM 3. Under the same conditions as in Theorem 1,

E{D(Ŝ,S)} = (p − d)ζ

nd
E

⎧⎨
⎩

∥∥∥∥∥M+
(

ηi − σ 2
ω

σ 2
ω + 1

ϑi P X

)∥∥∥∥∥
2
⎫⎬
⎭ + o(n−1),

where ζ = (2σ 2
ω + 1)2(3σ 2

ω + 1)−(p−d+2)/2(σ 2
ω + 1)−(p−d−2)/2 and ‖ · ‖ is the Euclidean norm of

a vector.

4. IMPLEMENTATION AND EXAMPLE

Given a sample {(xi , yi )}1�i�n , the algorithm below should be followed to test the dimension
of the central subspace or the central mean subspace.

Step 1. Choose proper values of σ 2
ω and σ 2

t , if applicable.

Step 2. Standardize data by calculating zi = �̂−1/2(xi − x̄) and ỹi = (yi − ȳ)/sy , where x̄ and
�̂ are the sample mean and the sample covariance matrix of the xi ’s, and ȳ and sy are the sample
mean and the sample standard deviation of the yi ’s.

Step 3. Calculate M̂n using {(zi , ỹi ), i = 1, . . . , n}1�i�n .

Step 4. Perform the spectral decomposition of M̂n to obtain its eigenvalues λ̂1 � · · · � λ̂p � 0.

Step 5. Test the hypothesis regarding the rank of M :

(i) set d = 0;
(ii) test H0 : rank(M) = d versus Ha : rank(M) > d, by calculating �̂d , ĝ and ĥ, rejecting

H0 if �̂d/ĝ > χ2
α(ĥ), where α is a significance level, and otherwise accepting H0;
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(iii) if H0 is rejected, set d = d + 1 and repeat (ii), otherwise go to step 6.

Step 6. The dimension of S is d.

The first four steps of the algorithm also lead to an estimate of S, which is the space spanned
by �̂−1/2α̂1, . . . , �̂

−1/2α̂d , where α̂1, . . . , α̂d are eigenvectors of M̂n corresponding to the largest
d eigenvalues (Zhu & Zeng, 2006).

Since S(M) = S for any positive σ 2
ω and σ 2

t , Theorem 2 ensures that the above algorithm
works for virtually any positive σ 2

ω and σ 2
t as long as the sample size is large enough. However,

when the sample size is small, the choice of σ 2
ω and σ 2

t may still affect the performance of the
weighted chi-squared test. In general we should avoid excessively large or small values of σ 2

ω

and σ 2
t in order to ensure that the test has a large power against the alternative hypothesis. We

consider some extreme cases. If σ 2
ω = 0, MFC = E[exp{−σ 2

t (Y1 − Y2)2/2} E(X1|Y1)E(X2|Y2)T]
and MFM = E{Y E(X |Y )} E{Y E(X |Y )}T. Both MFC and MFM are zero if E(X |Y ) = 0, which
happens, for example, when Y = (βT X )2 and X ∼ N (0, Ip). Hence S(MFC) or S(MFM) may be
proper subspaces of SY |X or SE(Y |X ) when σ 2

ω = 0. When σ 2
t = 0, MFC becomes an expectation

of a function of X1 and X2, which is independent of the response. In these two cases, therefore,
S(M) cannot always be equal to S. When σ 2

ω and σ 2
t are too large, c12 is close to 0, in which case

the performance of the test also deteriorates. Based on intensive simulations, we recommend the
use of σ 2

ω = 0·5 when testing the dimension of SE(Y |X ), and σ 2
ω = 0·8 and σ 2

t = 4·0 when testing
the dimension of SY |X ; see Zhu & Zeng (2006) for more discussion.

We use the following simulation example to demonstrate the performance of the weighted
chi-squared test. Consider a quadratic model,

Y = βT
1 X + (

βT
2 X

)2 + 0·2 ε,

where X ∈ R
5 ∼ N (0, I5), ε ∼ N (0, 1) is independent of X , β1 = (1, 1, 0, 0, 0)T and β2 =

(0, 0, 0, 1, 1)T. The central subspace and central mean subspace are both equal to S(β1, β2)
with two dimensions.

First, consider estimating the dimension of the central mean subspace. We randomly generate
500 samples each of size n, and apply the weighted chi-squared test with significance level α = 5%
to each sample. Figure 1 shows how the probability of correctly determining dim(SE(Y |X )) = 2
changes as σ 2

ω increases for a given sample size. The lines marked by 1, 2, 3 and 4 correspond to
sample sizes n = 50, 100, 200 and 300, respectively. When the sample size is too small, as with
Line 1 in Fig. 1, it is difficult for the weighted chi-squared test to determine the dimension of
SE(Y |X ) correctly, because the test is based on large-sample theory. As the sample size increases,
the probability increases quickly and the performance is very good even when the sample size
is as small as n = 100 for some σ 2

ω. The performance is best when σ 2
ω is about 0·4. When σ 2

ω is
too small or too large, we need a much larger sample size than when σ 2

ω is moderate in order to
achieve similar performance. When n = 300, the choice of σ 2

ω has a rather small influence on the
performance of the test, and this supports the claim that the algorithm works for any σ 2

ω when the
sample size is large enough.

Next, we discuss the performance of the weighted chi-squared test for determining the dimen-
sion of the central subspace. We randomly generate 500 samples each of size n = 250. Figure 2
shows the probability of correctly determining dim(SY |X ) = 2 for different values of σ 2

ω and σ 2
t .

In Fig. 2(a), σ 2
t is chosen to be 0·5, 1·5, 3·0 and 8·0, corresponding to the lines marked by 1,

2, 3 and 4. The influence of σ 2
ω demonstrates a pattern similar to that in Fig. 1. However, the

performance is not as good as that for the central mean subspace, because it is much easier to
claim noise falsely as a part of the central subspace than as part of the central mean subspace.
Figure 2(b) displays how the performance of the test changes with the value of σ 2

t , where σ 2
ω is
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Fig. 1. The probability of correctly determining dim(SE(Y |X )) = 2
is plotted against σ 2

ω . The four lines marked by 1, 2, 3, 4 correspond
to sample size n = 50, 100, 200, 300, respectively.
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Fig. 2. (a) The probability of correctly determining dim(SY |X ) = 2 is plotted against σ 2
ω . The four lines marked by 1,

2, 3, 4 correspond to σ 2
t = 0·5, 1·5, 3·0, 8·0, respectively. (b) The probability of correctly determining dim(SY |X ) = 2

is plotted against log2(σ 2
t ). The four lines marked by 1, 2, 3, 4 correspond to σ 2

ω = 0·3, 0·6, 0·9, 1·5, respectively.

chosen to be 0·3, 0·6, 0·9 and 1·5, corresponding to the lines marked by 1, 2, 3 and 4. Figure 2(b)
shows a pattern similar to that of σ 2

ω, but note that the probability is plotted against log2(σ 2
t ) and

the choice of σ 2
t is not so sensitive as the choice of σ 2

ω. A wide range of values of σ 2
t yield similar

performance, especially when σ 2
ω is chosen optimally. For example, when σ 2

ω = 0·6, Line 2, σ 2
t

can roughly be any value between 1 and 26.
Finally, we compare the weighted chi-squared test with a bootstrap method and a permutation

test, because one motivation for deriving the former is that the latter two methods are com-
putationally intensive and may be impracticable when the sample size is large. Recall that the
permutation test uses the same test statistic �̂d , but evaluates p-values according to a permuta-
tion algorithm (Cook & Yin, 2001). The bootstrap method, which is not a formal test, calculates
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Fig. 3. (a) The percentage of correctly determining dim(SE(Y |X )) = 2 is plotted against sample size. (b) The percent-
age of correctly determining dim(SY |X ) = 2 is plotted against sample size. In both plots, the lines marked ‘w’, ‘p’

and ‘b’ correspond to the weighted chi-squared test, the permutation test and the bootstrap method, respectively.

discrepancies between S and estimates of S for different dimensions and chooses the dimension
corresponding to the smallest discrepancy. For a fair comparison, all three methods are based
on MFM with σ 2

ω = 0·5 when estimating the dimension of SE(Y |X ), and are based on MFC with
σ 2

ω = 0·8 and σ 2
t = 4·0 when estimating the dimension of SY |X . We randomly generate 200

samples each of size n, and apply the three methods separately to each sample to determine the
dimensions of SE(Y |X ) and SY |X . We use 1000 bootstrap samples and 1000 permutations for the
two computational methods, respectively. Figure 3(a) shows the percentages of correctly deter-
mining dim(SE(Y |X )) = 2 when the sample sizes are n = 50, 100, 200 and 300. The weighted
chi-squared test performs better than the other two methods for this model. Figure 3(b) shows
the probability of correctly determining dim(SY |X ) = 2. The weighted chi-squared test is com-
parable to the other two methods when the sample size is large, and is inferior to them when the
sample size is small. This occurs because the weighted chi-squared test is derived assuming the
sample size is large, while computational methods usually have nice small-sample properties. In
view of the large computing time needed by the bootstrap method and the permutation test, the
weighted chi-squared test is always preferred when the sample size is large. When the sample size
is moderate or small, the weighted chi-squared test is still a useful alternative when the dimension
of the central mean subspace is being estimated.

5. DISCUSSION

The limiting distribution of the test statistic �̂d has been obtained for normal predictors.
Although the normality assumption is stronger than is needed for some existing methods, the
proposed weighted chi-squared test does not need to assume the coverage condition. Recently,
Li et al. (2005) proposed contour regression, which can exhaustively estimate the central subspace
when X follows an elliptically contoured distribution. However, there is no available testing
procedure associated with contour regression to determine the dimension of the central subspace.

When X follows a different distribution with a known density function, the limiting distribution
of �̂d is similar, but with different U (xi , yi , x j , y j ). When the distribution of X is completely
unknown, a nonparametric density estimate can be used to replace fX (x) and a similar weighted
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chi-squared test is also expected. The candidate matrix (3) discussed in this article is a special case
of Zhu & Zeng (2006) with Gaussian weight functions. It is straightforward to extend the results
derived here to other weight functions. The choice of σ 2

ω and σ 2
t is worth further exploration; for

example, Fig. 2 shows some interaction between σ 2
ω and σ 2

t .
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APPENDIX

Sketch proofs
The appendix contains a brief sketch of the proofs of Theorem 1, 2 and 3. More detailed calculations

are available from the author upon request.

Proof of Theorem 1. The proof of this theorem follows from Lemma A·1 in Li (1991). Suppose the
estimate M̂n has expansion

M̂n = M + n−1/2T (1) + n−1T (2) + op(n−1), (A1)

where T (1) and T (2) are symmetric matrices. When the rank of M is d, the sum of the smallest p − d
eigenvalues of M̂n has expansion

p∑
i=d+1

λ̂i = n−1/2λ(1) + n−1λ(2) + op(n−1),

where λ(1) = tr(QT (1) Q), λ(2) = tr(QT (2) Q − QT (1) M+T (1) Q), and Q is the projection matrix on to the
eigenspace of M corresponding to eigenvalue zero. Therefore, we only need to obtain an expansion of M̂n

and calculate λ(1) and λ(2).
By Hoeffding decomposition, the expansion of M̂n in (A1) holds with

T (1) = n−1/2
n∑

i=1

{M1(xi , yi ) − 2M},

T (2) = n

(
n

2

)−1 ∑
i< j

1
2 {M2(xi , yi , x j , y j ) − M1(xi , yi ) − M1(x j , y j ) + 2M}

+ E
{

c00

(
σ 2

ω Ip + X0 XT
0

)} − M,

where

M1(xi , yi ) = E(X0,Y0)

{
ci0

(
2σ 2

ω Ip + axi XT
0 + aX0xT

i − bxi x
T
i − bX0 XT

0

)}
,

M2(xi , yi , x j , y j ) = ci j

(
2σ 2

ω Ip + axi x
T
j + ax j x

T
i − bxi x

T
i − bx j x

T
j

)
.

We know that λ(1) = 0, which follows from QM1(xi , yi )Q = 0 for any (xi , yi ). For λ(2), because

QT (2) Q = n

(
n

2

)−1 ∑
i< j

1
2 QM2(xi , yi , x j , y j )Q + E(c00)

(
σ 2

ω + 1
)

Q,

QM1(xi )P = (
2σ 2

ω + 1
)
τi Qxi

(
ηi − σ 2

ω

σ 2
ω + 1

ϑi Pxi

)T

,
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we can obtain n−1λ(2) as follows:

n−1tr
(

QT (2) Q − QT (1) M+T (1) Q
)

=
(

n

2

)−1 ∑
i< j

1

2
ci j

{
2σ 2

ω(p − d) + 2axT
j Qxi − bxT

i Qxi − bxT
j Qx j

} + n−1 E(c00)
(
σ 2

ω + 1
)
(p − d)

− n−2
(
2σ 2

ω + 1
)2

n∑
i=1

n∑
j=1

τiτ j x
T
j Qxi

(
ηi − σ 2

ω

σ 2
ω + 1

ϑi Pxi

)T

M+
(

η j − σ 2
ω

σ 2
ω + 1

ϑ j Px j

)
.

Finally, �̂d = λ(2) + op(1) and we obtain an expansion of �̂d as stated in Theorem 1. �

Proof of Theorem 2. It can be checked that

Un =
(

n

2

)−1 ∑
i< j

U (xi , yi , x j , y j )

is a U -statistic with kernel U (xi , yi , x j , y j ) such that

E{U (X1, Y1, X2, Y2)} = E{U (X1, Y1, X2, Y2)|(X1 = x1, Y1 = y1)} = 0.

According to Theorem 1 in Lee (1990, p. 79), the normalized statistic nUn converges in distribution to a ran-
dom variable of the form

∑∞
i=1 vi (z2

i − 1), where z1, z2, . . . are independent standard normal random vari-
ables, and the vi ’s are eigenvalues of the integral equation (5). Note that

∑∞
i=1 vi = E{U (X0, Y0, X0, Y0)},

so that the limiting distribution of �̂d is the same as
∑∞

i=1 vi χ2
i (1). �

Proof of Theorem 3 The distance measure can be expressed as.

D(Ŝ,S) = 1 − d−1tr(P̂ P) = d−1tr(P̂ − P)P(P̂ − P).

Applying Lemma 4·1 in Tyler (1981), we know that

Q̂ = Q − Q(M̂n − M)M+ − M+(M̂n − M)Q + op

(
n−1/2

)
.

Since Q P = 0 and M+ P = M+, then (P̂ − P)P = Q(M̂n − M)M+ + op(n−1/2). The estimator M̂n has
the following expansion by Hoeffding decomposition:

M̂n = M + n−1
n∑

i=1

{M1(xi , yi ) − 2M} + op

(
n−1/2

)
,

where M1(xi , yi ) is given in the proof of Theorem 1. Since QM+ = 0 and Qxi is independent of M+xi ,
we have

QM1(xi , yi )M+ = (
2σ 2

ω + 1
)
τi Qxi

(
ηi − σ 2

ω

σ 2
ω + 1

ϑi xi

)T

M+.

Therefore,

D(Ŝ,S) = d−1tr{Q(M̂n − M)M+M+(M̂n − M)T Q} + op(n−1)

= d−1tr

[{
n−1

n∑
i=1

QM1(xi , yi )M+
}

×
{

n−1
n∑

i=1

M+M1(xi , yi )
T Q

}]
+ op(n−1),

and E{D(Ŝ,S)} can be obtained as in the theorem. �
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