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Abstract

Given a multiresolution analysis with one generator in L2(Rd), we give a characteri-
zation in closed form and in the frequency domain, of all orthonormal wavelets associated
to this MRA. Examples are given. This theorem corrects a previous result of the author.

1 Introduction

In what follows Z will denote the set of integers, and R the set of real numbers. We will
always assume that A is a dilation matrix preserving the lattice Zd; that is, AZd ⊂ Zd
and all its eigenvalues have modulus greater than 1; A∗ will denote the transpose of
A and B := (A∗)−1. The underlying space will be L2(Rd), where d ≥ 1 is an integer
and I will stand for the identity matrix. Boldface lowcase letters will denote elements
of Rd, which will be represented as column vectors; x · y will stand for the standard dot
product of the vectors x and y; ||x||2 := x · x.

Let A ∈ Rd×d and a := |detA|. For every j ∈ Z and k ∈ Zd the dilation operator
DA and the translation operator Tk are defined on L2(Rd) by

DAf(t) := a1/2f(At) and Tkf(t) := f(t + k)

respectively.
Let u = {u1, . . . , um} ⊂ L2(Rd); then T (u1, . . . , um) = T (u), S(u1, . . . , um) = S(u)

and S(A;u1, . . . , um) = S(A;u) are respectively defined by

T (u) := {Tku;u ∈ u,k ∈ Zd}, S(u) := spanT (u),

and
S(A,u) := span {DATku;u ∈ u,k ∈ Zd}.

In [5] we formulated a representation theorem for multiresolution analyses having
an arbitrary set u1, . . . , un of scaling functions, i.e., the set of translates of all these
functions constitutes an orthonormal basis of V0. However the proof was based on the
implicit (and incorrect) assumption that any such function u` is contained in S(A, u`),
and it is therefore not valid. The purpose of this paper is to apply the method of proof
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employed in [5] to prove a representation theorem for MRA’s having a single scaling
function, and to provide some examples.

A function f will be called Zd–periodic if it is defined on Rd and Tkf = f for every
k ∈ Zd .

The Fourier transform of a function f will be denoted by f̂ or F(f). If f ∈ L(Rd),

f̂(x) :=

∫
Rd

e−i2πx·tf(t) dt.

The Fourier transform is extended to L2(Rd) in the usual way.
Our starting point and motivation is the following well known characterization in

Fourier space of affine MRA orthonormal wavelets in L2(R) (see e.g. Hernández and
Weiss [2], Wojtaszczyk [4]) which, with the definition of Fourier transform we have
adopted, may be stated as follows.

Theorem A. Let ϕ be a scaling function for a multiresolution analysis M with associated
low pass filter p. The following propositions are equivalent:
(a) ψ is an MRA orthonormal wavelet associated with M .
(b) There is a measurable unimodular Z–periodic function µ(x) such that

ψ̂(2x) = ei2πxµ(2x)p(x+ 1/2)ϕ̂(x) a.e.

Recall that a multiresolution analysis (MRA) in L2(Rd) (generated by A) is a se-
quence {Vj ; j ∈ Z} of closed linear subspaces of L2(Rd) such that:

(i) Vj ⊂ Vj+1 for every j ∈ Z.

(ii) For every j ∈ Z, f(t) ∈ Vj if and only if f(At) ∈ Vj+1.

(iii)
⋃
j∈Z Vj is dense in L2(Rd).

(iv)
⋂
j∈Z Vj = ∅.

(v) There is a function u (called the scaling function of the MRA) such that T (u) is an
orthonormal basis of V0.

A finite set of functions ψ = {ψ1, · · · , ψm} ∈ L2(Rd) is called an orthonormal wavelet
system if the affine sequence

{DA
j Tkψ`; j ∈ Z,k ∈ Zd, ` = 1, · · · ,m}

is an orthonormal basis of L2(Rd).
Let ψ := {ψ1, · · · , ψm} be an orthonormal wavelet system in L2(Rd) generated by a

matrix A; for j ∈ Z we define

Vj =
∑
r<j

S(Ar;ψ).



We say that ψ is associated with an MRA, if M := {Vj ; j ∈ Z} is a multiresolution
analysis. If this is the case, we also say that ψ is associated with M . Let Wj denote the
orthogonal complement of Vj in Vj+1. Then it is easily seen that ψ is an orthonormal
wavelet associated with M if and only if T (ψ) is an orthonormal basis of W0.

Let e := (1, 0, · · · , 0)T ∈ Rm and let diag {−eiω, 1, · · · , 1}m denote the m ×m diag-
onal matrix with −eiω, 1, · · · , 1 as its diagonal entries. The following proposition was
implicitly established by Jia and Shen in the discussion that follows the proof of [3,
Lemma 3.3] (we adopt the convention that Arg 0 = 0).

Theorem B. Let b = (b1, · · · , bm)T ∈ Cm be unimodular, ω := Arg b1 and q := b+eiωe.
Then the matrix

Q = (qr,k)
m
r,k=1 := diag {−eiω, 1, · · · , 1}m

[
I− 2qq∗/q∗q

]
is unitary. Moreover

qr,k =



bk if r = 1, 1 ≤ k ≤ m

−breiω if 1 < r ≤ m, k = 1

δr,k −
brbk

1 + |b1|
if 1 < r ≤ m, 1 < k ≤ m,

where δr,k is Krönecker’s delta.
The following proposition is a particular case of [5, Theorem 3].

Lemma C. Let u ∈ L2(Rd) and assume that T (u) is an orthonormal sequence. Let
A be a dilation matrix preserving the lattice Zd, let {j1, . . . , ja} be a full collection of
representatives of Zd/AZd, and let

vk(t) := a1/2u(At+ jk), k = 1, . . . a. (1)

Then T (v1, · · · , va) is an orthonormal basis of S(A;u).
Since v̂k(x) = ei2πBx·jk û(Bx), a straightforward consequence of Lemma C and [5,

Lemma E] is the following

Corollary 1. Let u ∈ L2(Rd) and assume that T (u) is an orthonormal sequence. Let
A be a dilation matrix preserving the lattice Zd, B := (A∗)−1, let {j1, . . . , ja} be a full
collection of representatives of Zd/AZd, and let vk(t) be defined by (1). If u ∈ S(A, u),
then there are Zd–periodic functions qk ∈ L2(Td) such that

a∑
k=1

|qk(x)|2 = 1 a.e., (2)

and

û(x) =
a∑
k=1

qk(x)v̂k(x) =
a∑
k=1

qk(x)ei2πBx·jk û(Bx) = p(Bx)û(Bx), (3)



where

p(x) := a−1/2
a∑
k=1

qk(A
∗x)ei2πx·jk .

We can now prove

Theorem 1. Let M be a multiresolution analysis generated by A with scaling function
u, let vk(t) be defined by (1), B := (A∗)−1, and let the functions qk(x) be Zd–periodic,
in L2(Td), and satisfy (2) and (3). Let

α(x) := Arg q1(x), (4)

wr,k(x) :=



qk(x) if r = 1, 1 ≤ k ≤ a

−qr(x)eiα(x) if 1 < r ≤ a, k = 1

δr,k −
qr(x)qk(x)

1 + |q1(x)|
if 1 < r ≤ a, 1 < k ≤ a

(5)

and

ẑr(x) :=

a∑
k=1

wr,k(x)v̂k(x),

and let
Z(x) := (ẑ2(x), . . . , ẑa(x))T .

Then
{ψ1, . . . , ψ(a−1)}

is an orthonormal wavelet system associated with M if and only if there exists an (a −
1)× (a− 1) unitary matrix function U(x) such that

(ψ̂1(x), . . . , ψ̂(a−1)(x))T = U(x)Z(x).

Proof. The existence of functions qk(x) satisfying (2) and (3) is a consequence of Corol-
lary 1. Setting

v̂(x) := (v̂1(x), · · · , v̂a(x))T

and applying Theorem B, we see that

(ẑ1(x), · · · ẑa(x))T = Q(x)v̂(x),

and that Q(x) has (q1(x), · · · , qa(x)) as its first row. Therefore [5, Theorem 8] implies
that {z2, . . . za} is an orthonormal wavelet system associated with M , which is equivalent
to saying that S(z2, . . . za) is an orthonormal basis generator of W0. Applying now [5,
Theorem 5], the assertion follows.



Example 1. Let us verify that Theorem A is a particular case of Theorem 1.
For d = 1 and A = 2 we have j1 = 0 and j2 = 1, and Corollary 1 implies that

p(x) = 2−1/2[q1(2x) + ei2πxq2(2x)],

whence the periodicity of q1(x) and q2(x) implies that

p(x+ 1/2) = 2−1/2[q1(2x)− ei2πxq2(2x)].

On the other hand, since |q1(x)|2+|q2(x)|2 = 1 a.e., (5) implies that w2,1(x) = −q2(x)eiα(x)

and

w2,2(x) = 1− |q2(x)|2

1 + |q1(x)|
= 1− |q2(x)|2(1− |q1(x)|)

|q2(x)|2
= |q1(x)|.

Since B = 1/2, it follows that v̂1(x) = 2−1/2û(x/2) and v̂2(x) = 2−1/2e−iπxû(x/2), and
Theorem 1 implies that

ẑ2(x) = 2−1/2[−eiα(x)q2(x) + eiπx|q1(x)|]û(x/2) =

2−1/2eiπxeiα(x)[−q2(x)e−iπx + e−iα(x)|q1(x)|]û(x/2) =

2−1/2e−iπxeiα(x)[q1(x)− eiπxq2(x)]û(x/2),

and therefore

ẑ2(2x) = 2−1/2e−i2πxeiα(2x)[q1(2x)− ei2πxq2(2x)]û(x) = e−i2πxµ(2x)p(x+ 1/2)û(x),

where µ(x) := eiα(x) is unimodular and Z-periodic.

Example 2. Let

A :=

(
0 2
−1 0

)
and let φ(t) be the characteristic function of [0, 1] × [0, 1]. Gröchenig and Madych [1]
have shown that φ is a scaling function of an MRA generated by the dilation matrix A
and that the function ψ defined by

ψ(t) :=


1 if t ∈ [0, 1]× [0, 1/2]

−1 if t ∈ [0, 1]× [1/2, 1]

0 otherwise

is a wavelet associated with this MRA. Let us see how this assertion follows from Theorem
1.

Since {(0, 0)T , (1, 0)T } is a a full collection of representatives of A/AZ2, from Lemma
C we deduce that if v1(t) := 2−1/2φ(At) and v2(t) := 2−1/2φ(At+(1, 0)T ), then T (v1, v2)
is an orthonormal basis of S(A, φ), and a straightforward computation shows that

φ(t) = 2−1/2
(
v1(t− (1, 0)T ) + v2(t− (1, 1)T

)
,

which implies that if x = (x1, x2)
T , then

φ̂(x) = 2−1/2
(
e−i2πx1 v̂1(x) + e−i2π(x1+x2)v̂2(x)

)
.



Thus q1(x) = 2−1/2e−i2πx1 , q2(x) = 2−1/2e−i2π(x1+x2) and α(x) = i2πx1, and proceeding
as in Example 1 we see that

w2,1(x) = −q2(x)eiα(x) = 2−1/2e−i2πx2 and w2,2(x) = |q1(x)| = 2−1/2.

Thus,

ẑ2(x) = w2,1(x)v̂1(x) + w2,2(x)v̂2(x) = 2−1/2
(
v̂2(x)− e−i2πx2 v̂1(x)

)
,

which by Theorem 1 implies that σ(t) is a wavelet associated with A if and only if there
is a measurable unimodular Z2–periodic function µ(x) such that

σ̂(x) = µ(x)ẑ2(x).

In particular, ψ̂(x) = e−i2πx1 ẑ2(x).

Example 3. Gröchenig and Madych have also shown in [1] that the characteristic
function φ of [0, 1]× [0, 1] which we considered in the previous example is also a scaling
function of an MRA generated by the dilation matrix

A := 2I =

(
2 0
0 2

)
.

Since a = 4, from e.g. [5, Theorem H] we know that any orthonormal wavelet associated
with this MRA has exactly three generators.. Let us construct an orthonormal wavelet
basis using Theorem 1. The vectors j1 := (0, 0)T , j2 := (1, 0)T , j3 := (0, 1)T and j4 :=
(1, 1)T are a full collection of representatives of A/AZ2. Let

vk(t) := 2φ(At + jk) = 2φ(2t + jk).

Lemma C implies that T (v1, v2, v3, v4) is an orthonormal basis of S(A, φ). Moreover, it
is easily verified that

φ(t) =

4∑
k=1

φ(2t− jk) = (1/2)

4∑
k=1

vk(t− jk).

Since
F{vk(· − jk)}(x) = e−i2πx·jk v̂k(x)

we see that

φ̂(x) = (1/2)

4∑
k=1

e−i2πx·jk v̂k(x),

and therefore
qk(x) = (1/2)e−i2πx·jk , k = 1, . . . 4.



Since α(x) = 0, (5) implies that

wr,k(x) :=



1
2e
−i2πx·jk if r = 1, 1 ≤ k ≤ 4

−1
2e
i2πx·jr if 1 < r ≤ 4, k = 1

−1
6e
i2πx·(jk−jr) if 1 < r ≤ 4, 1 < k ≤ 4, k 6= r.

5
6 if 1 < r ≤ 4, 1 < k ≤ 4, k = r.

Thus,

ẑ2(x) = −1

2
ei2πx·j2 v̂1(x) +

5

6
v̂2(x)− 1

6
ei2πx·(j3−j2)v̂3(x)− 1

6
ei2πx·(j4−j2)v̂4(x)

ẑ3(x) = −1

2
ei2πx·j3 v̂1(x)− 1

6
ei2πx·(j2−j3)v̂2(x) +

5

6
v̂3(x)− 1

6
ei2πx·(j4−j3)v̂4(x)

and

ẑ4(x) = −1

2
ei2πx·j4 v̂1(x)− 1

6
ei2πx·(j2−j4)v̂2(x)− 1

6
ei2πx·(j3−j4)v̂3(x) +

5

6
v̂4(x).

i.e.,

z2(t) = −1

2
v1(t + j2) +

5

6
v2(t)−

1

6
v3(t + (j3 − j2))−

1

6
v4(t + (j4 − j2)),

z3(t) = −1

2
v1(t + j3)−

1

6
v2(t + (j2 − j3)) +

5

6
v3(t)−

1

6
v4(t + (j4 − j3)),

and

z4(t) = −1

2
v1(t + j4)−

1

6
v2(t + (j2 − j4))−

1

6
v3(t + (j3 − j4)) +

5

6
v4(t).

Applying Theorem 1 we conclude that {z2, z3, z4} is an orthonormal wavelet system
associated with the dilation matrix A, and that {ψ1, ψ2, ψ3} is an orthonormal wavelet
system associated with A if and only if there exists a 3×3 unitary matrix function U(x)
such that

(ψ̂1(x), ψ̂2(x), ψ̂3(x))T = U(x)(ẑ2(x), ẑ3(x), ẑ4(x))T .
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