On Orthonormal Wavelet Bases

Richard A. Zalik *

Abstract

Given a multiresolution analysis with one generator in $L^{2}\left(\mathbb{R}^{d}\right)$, we give a characterization in closed form and in the frequency domain, of all orthonormal wavelets associated to this MRA. Examples are given. This theorem corrects a previous result of the author.

1 Introduction

In what follows \mathbb{Z} will denote the set of integers, and \mathbb{R} the set of real numbers. We will always assume that \mathbf{A} is a dilation matrix preserving the lattice \mathbb{Z}^{d}; that is, $\mathbf{A} \mathbb{Z}^{d} \subset \mathbb{Z}^{d}$ and all its eigenvalues have modulus greater than $1 ; \mathbf{A}^{*}$ will denote the transpose of \mathbf{A} and $\mathbf{B}:=\left(A^{*}\right)^{-1}$. The underlying space will be $L^{2}\left(\mathbb{R}^{d}\right)$, where $d \geq 1$ is an integer and \mathbf{I} will stand for the identity matrix. Boldface lowcase letters will denote elements of \mathbb{R}^{d}, which will be represented as column vectors; $\mathbf{x} \cdot \mathbf{y}$ will stand for the standard dot product of the vectors \mathbf{x} and $\mathbf{y} ;\|\mathbf{x}\|^{2}:=\mathbf{x} \cdot \mathbf{x}$.

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ and $a:=|\operatorname{det} \mathbf{A}|$. For every $j \in \mathbb{Z}$ and $\mathbf{k} \in \mathbb{Z}^{d}$ the dilation operator $D^{\mathbf{A}}$ and the translation operator $T_{\mathbf{k}}$ are defined on $L^{2}\left(\mathbb{R}^{d}\right)$ by

$$
D^{\mathbf{A}} f(\mathbf{t}):=a^{1 / 2} f(\mathbf{A t}) \quad \text { and } \quad T_{\mathbf{k}} f(\mathbf{t}):=f(\mathbf{t}+\mathbf{k})
$$

respectively.
Let $\mathbf{u}=\left\{u_{1}, \ldots, u_{m}\right\} \subset L^{2}\left(\mathbb{R}^{d}\right)$; then $T\left(u_{1}, \ldots, u_{m}\right)=T(\mathbf{u}), S\left(u_{1}, \ldots, u_{m}\right)=S(\mathbf{u})$ and $S\left(\mathbf{A} ; u_{1}, \ldots, u_{m}\right)=S(\mathbf{A} ; \mathbf{u})$ are respectively defined by

$$
T(\mathbf{u}):=\left\{T_{\mathbf{k}} u ; u \in \mathbf{u}, \mathbf{k} \in \mathbb{Z}^{d}\right\}, \quad S(\mathbf{u}):=\overline{\operatorname{span}} T(\mathbf{u}),
$$

and

$$
S(\mathbf{A}, \mathbf{u}):=\overline{\operatorname{span}}\left\{D^{\mathbf{A}} T_{\mathbf{k}} u ; u \in \mathbf{u}, \mathbf{k} \in \mathbb{Z}^{d}\right\} .
$$

In [5] we formulated a representation theorem for multiresolution analyses having an arbitrary set u_{1}, \ldots, u_{n} of scaling functions, i.e., the set of translates of all these functions constitutes an orthonormal basis of V_{0}. However the proof was based on the implicit (and incorrect) assumption that any such function u_{ℓ} is contained in $S\left(\mathbf{A}, u_{\ell}\right)$, and it is therefore not valid. The purpose of this paper is to apply the method of proof

[^0]employed in [5] to prove a representation theorem for MRA's having a single scaling function, and to provide some examples.

A function f will be called \mathbb{Z}^{d}-periodic if it is defined on \mathbb{R}^{d} and $T_{\mathbf{k}} f=f$ for every $\mathrm{k} \in \mathbb{Z}^{d}$.

The Fourier transform of a function f will be denoted by \widehat{f} or $\mathfrak{F}(f)$. If $f \in L\left(\mathbb{R}^{d}\right)$,

$$
\widehat{f}(\mathbf{x}):=\int_{\mathbb{R}^{d}} e^{-i 2 \pi \mathbf{x} \cdot \mathbf{t}} f(\mathbf{t}) d \mathbf{t} .
$$

The Fourier transform is extended to $L^{2}\left(\mathbb{R}^{d}\right)$ in the usual way.
Our starting point and motivation is the following well known characterization in Fourier space of affine MRA orthonormal wavelets in $L^{2}(\mathbb{R})$ (see e.g. Hernández and Weiss [2], Wojtaszczyk [4]) which, with the definition of Fourier transform we have adopted, may be stated as follows.

Theorem A. Let φ be a scaling function for a multiresolution analysis M with associated low pass filter p. The following propositions are equivalent:
(a) ψ is an MRA orthonormal wavelet associated with M.
(b) There is a measurable unimodular \mathbb{Z}-periodic function $\mu(x)$ such that

$$
\widehat{\psi}(2 x)=e^{i 2 \pi x} \mu(2 x) \overline{p(x+1 / 2)} \widehat{\varphi}(x) \quad \text { a.e. }
$$

Recall that a multiresolution analysis (MRA) in $L^{2}\left(\mathbb{R}^{d}\right)$ (generated by A) is a sequence $\left\{V_{j} ; j \in \mathbb{Z}\right\}$ of closed linear subspaces of $L^{2}\left(\mathbb{R}^{d}\right)$ such that:
(i) $V_{j} \subset V_{j+1}$ for every $j \in \mathbb{Z}$.
(ii) For every $j \in \mathbb{Z}, f(\mathbf{t}) \in V_{j}$ if and only if $f(\mathbf{A t}) \in V_{j+1}$.
(iii) $\bigcup_{j \in \mathbb{Z}} V_{j}$ is dense in $L^{2}\left(\mathbb{R}^{d}\right)$.
(iv) $\bigcap_{j \in \mathbb{Z}} V_{j}=\emptyset$.
(v) There is a function u (called the scaling function of the MRA) such that $T(u)$ is an orthonormal basis of V_{0}.

A finite set of functions $\boldsymbol{\psi}=\left\{\psi_{1}, \cdots, \psi_{m}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ is called an orthonormal wavelet system if the affine sequence

$$
\left\{D_{j}^{\mathbf{A}} T_{\mathbf{k}} \psi_{\ell} ; j \in \mathbb{Z}, \mathbf{k} \in \mathbb{Z}^{d}, \ell=1, \cdots, m\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.
Let $\boldsymbol{\psi}:=\left\{\psi_{1}, \cdots, \psi_{m}\right\}$ be an orthonormal wavelet system in $L^{2}\left(\mathbb{R}^{d}\right)$ generated by a matrix \mathbf{A}; for $j \in \mathbb{Z}$ we define

$$
V_{j}=\sum_{r<j} S\left(\mathbf{A}^{r} ; \boldsymbol{\psi}\right) .
$$

We say that $\boldsymbol{\psi}$ is associated with an MRA, if $M:=\left\{V_{j} ; j \in \mathbb{Z}\right\}$ is a multiresolution analysis. If this is the case, we also say that $\boldsymbol{\psi}$ is associated with M. Let W_{j} denote the orthogonal complement of V_{j} in V_{j+1}. Then it is easily seen that ψ is an orthonormal wavelet associated with M if and only if $T(\boldsymbol{\psi})$ is an orthonormal basis of W_{0}.

Let $\mathbf{e}:=(1,0, \cdots, 0)^{T} \in \mathbb{R}^{m}$ and let diag $\left\{-\mathrm{e}^{\mathrm{i} \omega}, 1, \cdots, 1\right\}_{\mathrm{m}}$ denote the $m \times m$ diagonal matrix with $-e^{i \omega}, 1, \cdots, 1$ as its diagonal entries. The following proposition was implicitly established by Jia and Shen in the discussion that follows the proof of [3, Lemma 3.3] (we adopt the convention that $\operatorname{Arg} 0=0$).

Theorem B. Let $\mathbf{b}=\left(b_{1}, \cdots, b_{m}\right)^{T} \in \mathbb{C}^{m}$ be unimodular, $\omega:=\operatorname{Arg} b_{1}$ and $\mathbf{q}:=\mathbf{b}+e^{i \omega} \mathbf{e}$. Then the matrix

$$
\mathbf{Q}=\left(q_{r, k}\right)_{r, k=1}^{m}:=\operatorname{diag}\left\{-\mathrm{e}^{\mathrm{i} \omega}, 1, \cdots, 1\right\}_{\mathrm{m}}\left[\overline{\mathbf{I}-2 \mathbf{q} \mathbf{q}^{*} / \mathbf{q}^{*} \mathbf{q}}\right]
$$

is unitary. Moreover

$$
q_{r, k}= \begin{cases}b_{k} & \text { if } r=1,1 \leq k \leq m \\ -\overline{b_{r}} e^{i \omega} & \text { if } 1<r \leq m, k=1 \\ \delta_{r, k}-\frac{\overline{b_{r}} b_{k}}{1+\left|b_{1}\right|} & \text { if } 1<r \leq m, 1<k \leq m,\end{cases}
$$

where $\delta_{r, k}$ is Krönecker's delta.
The following proposition is a particular case of [5, Theorem 3].
Lemma C. Let $u \in L^{2}\left(\mathbb{R}^{d}\right)$ and assume that $T(u)$ is an orthonormal sequence. Let A be a dilation matrix preserving the lattice \mathbb{Z}^{d}, let $\left\{j_{1}, \ldots, j_{a}\right\}$ be a full collection of representatives of $\mathbb{Z}^{d} / \mathbf{A} \mathbb{Z}^{d}$, and let

$$
\begin{equation*}
v_{k}(\mathbf{t}):=a^{1 / 2} u\left(\mathbf{A} t+j_{k}\right), \quad k=1, \ldots a . \tag{1}
\end{equation*}
$$

Then $T\left(v_{1}, \cdots, v_{a}\right)$ is an orthonormal basis of $S(\mathbf{A} ; u)$.
Since $\widehat{v}_{k}(\mathbf{x})=e^{i 2 \pi \mathbf{B} \mathbf{x} \cdot j_{k}} \widehat{u}(\mathbf{B x})$, a straightforward consequence of Lemma C and $[5$, Lemma E$]$ is the following

Corollary 1. Let $u \in L^{2}\left(\mathbb{R}^{d}\right)$ and assume that $T(u)$ is an orthonormal sequence. Let A be a dilation matrix preserving the lattice $\mathbb{Z}^{d}, B:=\left(A^{*}\right)^{-1}$, let $\left\{j_{1}, \ldots, j_{a}\right\}$ be a full collection of representatives of $\mathbb{Z}^{d} / \mathbf{A} \mathbb{Z}^{d}$, and let $v_{k}(\mathbf{t})$ be defined by (1). If $u \in S(A, u)$, then there are \mathbb{Z}^{d}-periodic functions $q_{k} \in L^{2}\left(\mathbb{T}^{d}\right)$ such that

$$
\begin{equation*}
\sum_{k=1}^{a}\left|q_{k}(\mathbf{x})\right|^{2}=1 \quad \text { a.e. } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{u}(\mathbf{x})=\sum_{k=1}^{a} q_{k}(\mathbf{x}) \widehat{v}_{k}(\mathbf{x})=\sum_{k=1}^{a} q_{k}(\mathbf{x}) e^{i 2 \pi \mathbf{B} \cdot \cdot j_{k}} \widehat{u}(\mathbf{B} \mathbf{x})=p(B \mathbf{x}) \widehat{u}(B \mathbf{x}), \tag{3}
\end{equation*}
$$

where

$$
p(\mathbf{x}):=a^{-1 / 2} \sum_{k=1}^{a} q_{k}\left(A^{*} \mathbf{x}\right) e^{i 2 \pi \mathbf{x} \cdot j_{k}} .
$$

We can now prove
Theorem 1. Let M be a multiresolution analysis generated by \mathbf{A} with scaling function u, let $v_{k}(\mathbf{t})$ be defined by (1), B:= $\left(A^{*}\right)^{-1}$, and let the functions $q_{k}(\mathbf{x})$ be \mathbb{Z}^{d}-periodic, in $L^{2}\left(\mathbb{T}^{d}\right)$, and satisfy (2) and (3). Let

$$
\begin{gather*}
\alpha(\mathbf{x}):=\operatorname{Arg} q_{1}(\mathbf{x}), \tag{4}\\
w_{r, k}(\mathbf{x}):= \begin{cases}q_{k}(\mathbf{x}) & \text { if } r=1,1 \leq k \leq a \\
-\overline{q_{r}(\mathbf{x})} e^{i \alpha(\mathbf{x})} & \text { if } 1<r \leq a, k=1 \\
\delta_{r, k}-\frac{\overline{q_{r}(\mathbf{x})} q_{k}(\mathbf{x})}{1+\left|q_{1}(\mathbf{x})\right|} & \text { if } 1<r \leq a, 1<k \leq a\end{cases} \tag{5}
\end{gather*}
$$

and

$$
\widehat{z}_{r}(\mathbf{x}):=\sum_{k=1}^{a} w_{r, k}(\mathbf{x}) \widehat{v}_{k}(\mathbf{x})
$$

and let

$$
\mathbf{Z}(\mathbf{x}):=\left(\widehat{z}_{2}(\mathbf{x}), \ldots, \widehat{z}_{a}(\mathbf{x})\right)^{T} .
$$

Then

$$
\left\{\psi_{1}, \ldots, \psi_{(a-1)}\right\}
$$

is an orthonormal wavelet system associated with M if and only if there exists an ($a-$ 1) $\times(a-1)$ unitary matrix function $\mathbf{U}(x)$ such that

$$
\left(\widehat{\psi}_{1}(\mathbf{x}), \ldots, \widehat{\psi}_{(a-1)}(\mathbf{x})\right)^{T}=\mathbf{U}(\mathbf{x}) \mathbf{Z}(\mathbf{x}) .
$$

Proof. The existence of functions $q_{k}(\mathbf{x})$ satisfying (2) and (3) is a consequence of Corollary 1. Setting

$$
\widehat{\mathbf{v}}(\mathbf{x}):=\left(\widehat{v}_{1}(\mathbf{x}), \cdots, \widehat{v}_{a}(\mathbf{x})\right)^{T}
$$

and applying Theorem B, we see that

$$
\left(\widehat{z}_{1}(\mathbf{x}), \cdots \widehat{z}_{a}(\mathbf{x})\right)^{T}=\mathbf{Q}(\mathbf{x}) \widehat{\mathbf{v}}(\mathbf{x})
$$

and that $\mathbf{Q}(\mathbf{x})$ has $\left(q_{1}(\mathbf{x}), \cdots, q_{a}(\mathbf{x})\right)$ as its first row. Therefore [5, Theorem 8] implies that $\left\{z_{2}, \ldots z_{a}\right\}$ is an orthonormal wavelet system associated with M, which is equivalent to saying that $S\left(z_{2}, \ldots z_{a}\right)$ is an orthonormal basis generator of W_{0}. Applying now [5 , Theorem 5], the assertion follows.

Example 1. Let us verify that Theorem A is a particular case of Theorem 1.
For $d=1$ and $A=2$ we have $j_{1}=0$ and $j_{2}=1$, and Corollary 1 implies that

$$
p(x)=2^{-1 / 2}\left[q_{1}(2 x)+e^{i 2 \pi x} q_{2}(2 x)\right],
$$

whence the periodicity of $q_{1}(x)$ and $q_{2}(x)$ implies that

$$
p(x+1 / 2)=2^{-1 / 2}\left[q_{1}(2 x)-e^{i 2 \pi x} q_{2}(2 x)\right] .
$$

On the other hand, since $\left|q_{1}(x)\right|^{2}+\left|q_{2}(x)\right|^{2}=1$ a.e., (5) implies that $w_{2,1}(x)=-\overline{q_{2}(x)} e^{i \alpha(x)}$ and

$$
w_{2,2}(x)=1-\frac{\left|q_{2}(x)\right|^{2}}{1+\left|q_{1}(x)\right|}=1-\frac{\left|q_{2}(x)\right|^{2}\left(1-\left|q_{1}(x)\right|\right)}{\left|q_{2}(x)\right|^{2}}=\left|q_{1}(x)\right| .
$$

Since $\mathbf{B}=1 / 2$, it follows that $\widehat{v}_{1}(x)=2^{-1 / 2} \widehat{u}(x / 2)$ and $\widehat{v}_{2}(x)=2^{-1 / 2} e^{-i \pi x} \widehat{u}(x / 2)$, and Theorem 1 implies that

$$
\begin{aligned}
& \widehat{z}_{2}(x)=2^{-1 / 2}\left[-e^{i \alpha(x)} \overline{q_{2}(x)}+e^{i \pi x}\left|q_{1}(x)\right|\right] \widehat{u}(x / 2)= \\
& 2^{-1 / 2} e^{i \pi x} e^{i \alpha(x)}\left[-\overline{q_{2}(x)} e^{-i \pi x}+e^{-i \alpha(x)}\left|q_{1}(x)\right|\right] \widehat{u}(x / 2)= \\
& \quad 2^{-1 / 2} e^{-i \pi x} e^{i \alpha(x)}\left[\overline{q_{1}(x)}-e^{i \pi x} \overline{q_{2}(x)}\right] \widehat{u}(x / 2),
\end{aligned}
$$

and therefore

$$
\widehat{z}_{2}(2 x)=2^{-1 / 2} e^{-i 2 \pi x} e^{i \alpha(2 x)}\left[\overline{q_{1}(2 x)}-e^{i 2 \pi x} \overline{q_{2}(2 x)}\right] \widehat{u}(x)=e^{-i 2 \pi x} \mu(2 x) \overline{p(x+1 / 2)} \widehat{u}(x),
$$

where $\mu(x):=e^{i \alpha(x)}$ is unimodular and \mathbb{Z}-periodic.
Example 2. Let

$$
\mathbf{A}:=\left(\begin{array}{cc}
0 & 2 \\
-1 & 0
\end{array}\right)
$$

and let $\phi(\mathbf{t})$ be the characteristic function of $[0,1] \times[0,1]$. Gröchenig and Madych [1] have shown that ϕ is a scaling function of an MRA generated by the dilation matrix \mathbf{A} and that the function ψ defined by

$$
\psi(\mathbf{t}):= \begin{cases}1 & \text { if } \mathbf{t} \in[0,1] \times[0,1 / 2] \\ -1 & \text { if } \mathbf{t} \in[0,1] \times[1 / 2,1] \\ 0 & \text { otherwise }\end{cases}
$$

is a wavelet associated with this MRA. Let us see how this assertion follows from Theorem 1.

Since $\left\{(0,0)^{T},(1,0)^{T}\right\}$ is a a full collection of representatives of $A / A \mathbb{Z}^{2}$, from Lemma C we deduce that if $v_{1}(\mathbf{t}):=2^{-1 / 2} \phi(A \mathbf{t})$ and $v_{2}(\mathbf{t}):=2^{-1 / 2} \phi\left(A \mathbf{t}+(1,0)^{T}\right)$, then $T\left(v_{1}, v_{2}\right)$ is an orthonormal basis of $S(A, \phi)$, and a straightforward computation shows that

$$
\phi(\mathbf{t})=2^{-1 / 2}\left(v_{1}\left(\mathbf{t}-(1,0)^{T}\right)+v_{2}\left(\mathbf{t}-(1,1)^{T}\right),\right.
$$

which implies that if $\mathbf{x}=\left(x_{1}, x_{2}\right)^{T}$, then

$$
\widehat{\phi}(\mathbf{x})=2^{-1 / 2}\left(e^{-i 2 \pi x_{1}} \widehat{v}_{1}(\mathbf{x})+e^{-i 2 \pi\left(x_{1}+x_{2}\right)} \widehat{v}_{2}(\mathbf{x})\right) .
$$

Thus $q_{1}(\mathbf{x})=2^{-1 / 2} e^{-i 2 \pi x_{1}}, q_{2}(\mathbf{x})=2^{-1 / 2} e^{-i 2 \pi\left(x_{1}+x_{2}\right)}$ and $\alpha(\mathbf{x})=i 2 \pi x_{1}$, and proceeding as in Example 1 we see that

$$
w_{2,1}(\mathbf{x})=-\overline{q_{2}(x)} e^{i \alpha(x)}=2^{-1 / 2} e^{-i 2 \pi x_{2}} \quad \text { and } \quad w_{2,2}(\mathbf{x})=\left|q_{1}(\mathbf{x})\right|=2^{-1 / 2}
$$

Thus,

$$
\widehat{z_{2}}(\mathbf{x})=w_{2,1}(\mathbf{x}) \widehat{v}_{1}(\mathbf{x})+w_{2,2}(\mathbf{x}) \widehat{v}_{2}(\mathbf{x})=2^{-1 / 2}\left(\widehat{v}_{2}(\mathbf{x})-e^{-i 2 \pi x_{2}} \widehat{v}_{1}(\mathbf{x})\right)
$$

which by Theorem 1 implies that $\sigma(\mathbf{t})$ is a wavelet associated with A if and only if there is a measurable unimodular \mathbb{Z}^{2}-periodic function $\mu(\mathbf{x})$ such that

$$
\widehat{\sigma}(\mathbf{x})=\mu(\mathbf{x}) \widehat{z_{2}}(\mathbf{x})
$$

In particular, $\widehat{\psi}(\mathbf{x})=e^{-i 2 \pi x_{1}} \widehat{z_{2}}(\mathbf{x})$.
Example 3. Gröchenig and Madych have also shown in [1] that the characteristic function ϕ of $[0,1] \times[0,1]$ which we considered in the previous example is also a scaling function of an MRA generated by the dilation matrix

$$
\mathbf{A}:=2 I=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Since $a=4$, from e.g. [5, Theorem H$]$ we know that any orthonormal wavelet associated with this MRA has exactly three generators.. Let us construct an orthonormal wavelet basis using Theorem 1. The vectors $j_{1}:=(0,0)^{T}, j_{2}:=(1,0)^{T}, j_{3}:=(0,1)^{T}$ and $j_{4}:=$ $(1,1)^{T}$ are a full collection of representatives of $A / A \mathbb{Z}^{2}$. Let

$$
v_{k}(\mathbf{t}):=2 \phi\left(A \mathbf{t}+j_{k}\right)=2 \phi\left(2 \mathbf{t}+j_{k}\right)
$$

Lemma C implies that $T\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is an orthonormal basis of $S(A, \phi)$. Moreover, it is easily verified that

$$
\phi(\mathbf{t})=\sum_{k=1}^{4} \phi\left(2 \mathbf{t}-j_{k}\right)=(1 / 2) \sum_{k=1}^{4} v_{k}\left(\mathbf{t}-j_{k}\right)
$$

Since

$$
\mathfrak{F}\left\{v_{k}\left(\cdot-j_{k}\right)\right\}(\mathbf{x})=e^{-i 2 \pi \mathbf{x} \cdot j_{k}} \widehat{v_{k}}(\mathbf{x})
$$

we see that

$$
\widehat{\phi}(\mathbf{x})=(1 / 2) \sum_{k=1}^{4} e^{-i 2 \pi \mathbf{x} \cdot j_{k}} \widehat{v}_{k}(\mathbf{x})
$$

and therefore

$$
q_{k}(\mathbf{x})=(1 / 2) e^{-i 2 \pi \mathbf{x} \cdot j_{k}}, k=1, \ldots 4
$$

Since $\alpha(\mathbf{x})=0$, (5) implies that

$$
w_{r, k}(\mathbf{x}):= \begin{cases}\frac{1}{2} e^{-i 2 \pi \mathbf{x} \cdot j_{k}} & \text { if } r=1,1 \leq k \leq 4 \\ -\frac{1}{2} e^{i 2 \pi \mathbf{x} \cdot j_{r}} & \text { if } 1<r \leq 4, k=1 \\ -\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{k}-j_{r}\right)} & \text { if } 1<r \leq 4,1<k \leq 4, k \neq r . \\ \frac{5}{6} & \text { if } 1<r \leq 4,1<k \leq 4, k=r .\end{cases}
$$

Thus,

$$
\begin{aligned}
& \widehat{z}_{2}(\mathbf{x})=-\frac{1}{2} e^{i 2 \pi \mathbf{x} \cdot j_{2}} \widehat{v}_{1}(\mathbf{x})+\frac{5}{6} \widehat{v}_{2}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{3}-j_{2}\right)} \widehat{v}_{3}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{4}-j_{2}\right)} \widehat{v}_{4}(\mathbf{x}) \\
& \widehat{z}_{3}(\mathbf{x})=-\frac{1}{2} e^{i 2 \pi \mathbf{x} \cdot j_{3}} \widehat{v}_{1}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{2}-j_{3}\right)} \widehat{v}_{2}(\mathbf{x})+\frac{5}{6} \widehat{\widehat{3}}_{3}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{4}-j_{3}\right)} \widehat{v}_{4}(\mathbf{x})
\end{aligned}
$$

and

$$
\widehat{z}_{4}(\mathbf{x})=-\frac{1}{2} e^{i 2 \pi \mathbf{x} \cdot j_{4}} \widehat{v}_{1}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{2}-j_{4}\right)} \widehat{v}_{2}(\mathbf{x})-\frac{1}{6} e^{i 2 \pi \mathbf{x} \cdot\left(j_{3}-j_{4}\right)} \widehat{v}_{3}(\mathbf{x})+\frac{5}{6} \widehat{v}_{4}(\mathbf{x})
$$

i.e.,

$$
\begin{aligned}
& z_{2}(t)=-\frac{1}{2} v_{1}\left(\mathbf{t}+j_{2}\right)+\frac{5}{6} v_{2}(\mathbf{t})-\frac{1}{6} v_{3}\left(\mathbf{t}+\left(j_{3}-j_{2}\right)\right)-\frac{1}{6} v_{4}\left(\mathbf{t}+\left(j_{4}-j_{2}\right)\right), \\
& z_{3}(\mathbf{t})=-\frac{1}{2} v_{1}\left(\mathbf{t}+j_{3}\right)-\frac{1}{6} v_{2}\left(\mathbf{t}+\left(j_{2}-j_{3}\right)\right)+\frac{5}{6} v_{3}(\mathbf{t})-\frac{1}{6} v_{4}\left(\mathbf{t}+\left(j_{4}-j_{3}\right)\right),
\end{aligned}
$$

and

$$
z_{4}(\mathbf{t})=-\frac{1}{2} v_{1}\left(\mathbf{t}+j_{4}\right)-\frac{1}{6} v_{2}\left(\mathbf{t}+\left(j_{2}-j_{4}\right)\right)-\frac{1}{6} v_{3}\left(\mathbf{t}+\left(j_{3}-j_{4}\right)\right)+\frac{5}{6} v_{4}(\mathbf{t}) .
$$

Applying Theorem 1 we conclude that $\left\{z_{2}, z_{3}, z_{4}\right\}$ is an orthonormal wavelet system associated with the dilation matrix \mathbf{A}, and that $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ is an orthonormal wavelet system associated with \mathbf{A} if and only if there exists a 3×3 unitary matrix function $\mathbf{U}(x)$ such that

$$
\left(\widehat{\psi}_{1}(\mathbf{x}), \widehat{\psi}_{2}(\mathbf{x}), \widehat{\psi}_{3}(\mathbf{x})\right)^{T}=\mathbf{U}(\mathbf{x})\left(\widehat{z}_{2}(\mathbf{x}), \widehat{z}_{3}(\mathbf{x}), \widehat{z}_{4}(\mathbf{x})\right)^{T} .
$$

References

[1] K. Gröchenig and W. R. Madych, Multiresolution Analysis, Haar Bases, and Self-similar Tilings of R^{n}, IEEE Trans. Information Theory 38, No.2. March 1992, 556-568.
[2] E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996.
[3] R-Q. Jia and Z. Shen, Multiresolution and wavelets, Proc. Edinburgh Mat. Soc. 37 (1994) 271-300.
[4] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge University Press, Cambridge, 1997.
[5] R. A. Zalik, Bases of translates and multiresolution analyses, Appl. Comput. Harmon. Anal. 24 (2008) 41-57, Corrigendum, Appl. Comput. Harmon. Anal. 29 (2010), 121.

[^0]: *Department of Mathematics and Statistics, Auburn University, AL 36849-5310, zalik@auburn.edu

