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Abstract 

 

Two theorems on the eigenvalues of differences of idempotent matrices determine the natural 
occupation numbers and orbitals of electronic detachment, attachment or excitation that pertain to 
transitions between wavefunctions that each consist of a single Slater determinant. They also are 
applicable to spin-density matrices associated with Slater determinants. When the ranks of the matrices 
differ, unit eigenvalues occur. In addition, there are w±  pairs of eigenvalues where | | 1w ≤  whose values 
are related to overlaps, t , between the corresponding orbitals of Amos, Hall and Löwdin by the formula 

1
2 2(1 )w t= ± − . Generalized overlap amplitudes, including Dyson orbitals and their probability factors, 

may be inferred from these eigenvalues, which provide numerical criteria for: classifying transitions 
according to the number of holes and particles in final states with respect to initial states,  identifying the 
most important effects of orbital relaxation produced by self-consistent fields and the analysis of Fukui 
functions. Two similar theorems that apply to sums of idempotent matrices regenerate formulae for the 
natural orbitals and occupation numbers of an unrestricted Slater determinant that were published first 
by Amos and Hall. 
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Introduction 

Slater determinants have been nearly ubiquitous in the theory and practice of quantum chemistry since 
the founding decade of this field.1 Constructing a determinant built of spin-orbitals provided an elegant 
fulfillment of Pauli’s exclusion principle and a foundation for defining and calculating self-consistent-
field (SCF), configuration-interaction and other varieties of many-electron wavefunctions.2 Many 
theories without wavefunctions3, 4 repeatedly have adopted constraints imposed by Slater determinants 
to prevent problems that arise from a lack of N-representability or deviations from Fermi-Dirac 
statistics.5  

Optimization of spin-orbitals according to a variational principle6 in Hartree-Fock or Kohn-Sham theories 
enables the calculation of electron binding energies, excitation energies and corresponding transition 
probabilities. ΔSCF methods7 have proven especially efficient, accurate and lucid in assigning and 
interpreting core photoelectron spectra of isolated molecules and ions and of cluster models of solids 
and surfaces.8, 9 A revival of interest in SCF methods for excited states is based on generalized variational 
principles10 or improved algorithms that prevent convergence to ground states.11, 12 For valence 
transitions where some of the active spin-orbitals are localized near transition-metal nuclei, ΔSCF 
methods based on density functionals may be preferable to alternatives that employ a fixed basis 
optimized only for a reference state.  Transitions that involve charge transfers over relatively long 
distances also may require a flexible approach to spin-orbital relaxation. Determination of double 
electron binding energies, such as those that are measured in Auger spectra,13 may be an even more 
demanding task in this regard than the calculation of principal, core, ionization energies. Prediction of 
spectral satellites that correspond in a qualitative sense to multiple changes in spin-orbital occupation 
numbers is likely to require a full accounting of the effects of relaxation from initial to final states.  

To produce reasonable approximations of excited states in SCF calculations, control must be exercised 
over the spin-orbitals through symmetry restrictions, overlap matching, imposition of additional 
constraints on Lagrangian functions or other means.14, 15 Fulfillment of stationarity conditions, usually of 
the Brillouin type,16 is the usual criterion of self-consistency, but in some cases this standard cannot be 
applied.17, 18  Initial-state and final-state canonical spin-orbitals that satisfy Brillouin and Koopmans19 
conditions may bear little resemblance to each other.  The formally canonical spin-orbitals of 
unrestricted Hartree-Fock theory20, 21 also may present interpretive challenges that stem from spin 
contamination. Simple comparisons of canonical spin-orbitals may complicate rather than simplify the 
task of understanding how electronic structure has changed from one state to another.  

The invariance of Slater determinants with respect to linear transformations of their occupied spin-
orbitals22 propitiates comparisons between different sets of one-electron functions.  Unitary 
transformations of α and β spin-orbitals produced by a singular-value decomposition of their spatial 
overlap matrix yields the corresponding orbitals of Amos, Hall and Löwdin.23, 24 Occupation numbers 
obtained from unrestricted Hartree-Fock wavefunctions serve as inclusion criteria in unrestricted-
natural-orbital, complete-active-space wavefunctions.25 The paired structure of eigenvalues resembles 
that of perfect-pairing, generalized-valence-bond wavefunctions.26 Corresponding orbitals derived from 
overlaps obtained for different molecules or for different states of the same molecule have provided 
succinct generalizations27 of the Slater-Condon rules,1, 28 facilitated energetic analysis of rotational 
barriers27 and clarified substituent29 and relaxation30 effects that appear in photoelectron spectra.  
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Corresponding orbitals are closely related to natural orbitals of an unrestricted, determinantal 
wavefunction with occupation numbers that may equal unity or may occur in 1 | |t±  pairs, where t  is a 
nonvanishing spatial overlap integral between α and β corresponding orbitals. Natural orbitals with unit 
occupation numbers equal corresponding orbitals that have no nonvanishing overlaps. Natural orbitals 
with paired occupation numbers equal normalized sums or differences of pairs of corresponding orbitals 
with nonvanishing overlaps. Because the α and β spin-orbital-density matrices are guaranteed to have 
eigenvalues that equal zero or unity by the Slater-determinant Ansatz, the task of obtaining the natural 
orbitals is equivalent to diagonalizing the sum of two idempotent matrices.   

When corresponding orbitals are calculated to enable comparisons between wavefunctions or between 
the α and β orbitals of a different-orbitals-for-different-spins wavefunction, the overlaps of paired 
orbitals are the chief criteria of similarity. In ΔSCF calculations of electron-binding energies, an unpaired 
corresponding orbital may be understood as having been added or removed, for its occupation number 
changes from zero to unity or vice versa. A more thorough analysis of differences between states, 
molecules or spin-component densities can be procured by examining differences of the corresponding 
idempotent matrices.  

Toward this end, two theorems that determine the eigenvalues of the sum of two idempotent matrices 
and that deepen and confirm the conclusions of Amos and Hall23 are followed by two additional 
theorems that perform the same function for the difference of two idempotent matrices. In both cases, 
corresponding orbitals are essential intermediates in deriving the eigenvalues.  

Eigenvalues of the sum of the idempotent α  and β  density matrices derived from a Slater determinant 
define the natural occupation numbers of this wavefunction. Theorem 1 reveals the structure of the 
eigenvalue spectrum for the overlap matrix between α  and β  corresponding orbitals.  Theorem 2 
demonstrates that these eigenvalues are also eigenvalues of the sum of the α  and β  density matrices. 
Subsequent discussion considers formulae that relate overlaps between α  and β  corresponding 

orbitals to natural orbitals, their occupation numbers, density matrices and the 2S  criterion of spin 
contamination.  Table 1 and equation 39 summarize these conclusions, which confirm those of Amos 
and Hall.  These theorems are equally applicable to any sum of idempotent matrices.  

Theorems 3 and 4 employ arguments that resemble those of Theorems 1 and 2 and consider differences 
of idempotent matrices. Theorem 3 yields the eigenvalue spectrum of a matrix with off-diagonal blocks 
that contain overlaps between two sets (e.g. α  and β , initial-state and final-state) of corresponding 
orbitals.  Theorem 4 shows that these eigenvalues are also eigenvalues of the difference of idempotent 
density matrices.  The discussion that follows explicitly relates overlaps between sets of corresponding 
orbitals and natural orbitals, occupation numbers and density matrices that characterize differences 
between initial and final states of ionization or excitation.  These relationships also are applicable to spin 
densities. Table 2 and equation 59 summarize these conclusions.  

Dyson orbitals, their probability factors, Fukui functions (ground-state, electron-density differences) and 
changes in orbital occupation numbers that accompany single-determinant descriptions of transitions in 
which an electron is detached or attached are considered next. Formulae that relate overlaps between 
sets of corresponding orbitals to probability factors and Fukui functions are given. Table 3 summarizes 
these results. Extensions of these concepts to excitations or multiple electron detachments and 
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attachments are the subject of an additional section.  The Conclusion section reviews the manifold 
implications of this study and their common origins in Theorems 3 and 4.  

Eigenvalues of the sum of two idempotent matrices 

The following two theorems provide a generalized route to the principal conclusions of Amos and Hall23 
that apply to the eigenvalues of any sum of two idempotent matrices. In addition, they suggest an 
approach to the subsequent problem that pertains to differences of idempotent matrices.  

Theorem 1 

Let ,( ; 1, , ; 1, , )i jT t i p j q= = … = …  be a p q×  matrix with p q≥  and such that i j≠  implies that 

, 0i jt = , let   and δ  respectively denote the number of 0's and 1's in the sequence 

,(| |; 1, , )j jt j q= … , let n p q= + , and let M  be one of the following n n×  matrices: 

 †1
p

q

I T
M

T I
 

=  
 

 (1) 

 †2 .p

q

I T
M

T I
− 

=  − 
 (2) 

Then: 
(a) 1 is an eigenvalue of M  with multiplicity 2p q− +  , provided that p q>  or 0> . In particular, if 

q= , then 0T = ; therefore in this case 1 is the only eigenvalue of M  and its multiplicity is n . 
(b) If 0δ > , then 0 and 2 are eigenvalues of M , each with multiplicity δ . Conversely, if either 0 or 2 
are eigenvalues of M  then 0δ > , both 0 and 2 are eigenvalues of M , and both have multiplicity δ , 
but if 0δ = , then neither 0 nor 2 are eigenvalues of M . 
(c) All eigenvalues of M  different from 0, 1 and 2, if any, are of the form  
1 , 1, ( )rs r q δ± = … − + , where the rs  are those ,| |j jt  that are not equal to 0 or 1. 

(d) All eigenvalues of M  different from 0, 1 and 2 will have multiplicity not exceeding ( )q δ− + . 
 
Proof: 
If q=  then , 0, 1,j jt j q= = … , and therefore 0T = . Let 0T ≠ , and assume first that 1M M= . 
Define 

 †1

( 1) 0p

q

I
E

T I
λ − 

=  
 

(3) 

and 1 1 1( )nF I M Eλ= − . Then, since 1E  is a block triangular matrix we have 

 1 1det( ) ( 1) det( ).p
nF I Mλ λ= − − (4) 

(cf. Horn and Johnson).31 But 
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2 †

1

( 1)
.

0 ( 1)
p

q

I TT T
F

I
λ

λ
 − − −

=   − 
(5) 

Therefore  
 2 †

1det( ) ( 1) det(( 1) ).q
pF I TTλ λ= − − − (6) 

By hypothesis we know that , 0i jt =  if i j≠ . Note that i j=  only for 1,j q= … , since that is the range 

of j . By a straightforward computation we therefore conclude that the entries ,i jc  of the p p×  matrix 
†TT  are such that , 0i jc =  if i j≠  or, if p q> , if i j=  and 1, ,j q p= + … , and that 2

, ,| |j j j jc t=  for 

1, ,j q= … .  
This implies that  
 2 † 2

,( 1) diag(( 1) ; 1, ),p j jI TT c j pλ λ− − = − − = … (7) 

and therefore that 

 2 † 2( ) 2 2
,

1

det(( 1) ) ( 1) (( 1) | | ).
q

p q
p j j

j

I TT tλ λ λ−

=

− − = − − −∏ (8) 

Thus 

 2 2 2
1 ,

1

det( ) ( 1) (( 1) | | ),
q

p q
j j

j

F tλ λ−

=

= − − −∏ (9) 

and from equation 4 we deduce that  

 
( )

2 2 2 2 2
1 ,

1 1

det( ) ( 1) (( 1) | | ) ( 1) ( 2) (( 1) ).
q q

p q p q
n j j r

j r

I M t s
δ

δ δλ λ λ λ λ λ λ
− +

− − +

= =

− = − − − = − − − −∏ ∏


 (10) 

where the rs  are those ,| |j jt  that are not equal to 0 or 1. Assume now that 2M M= , and let 

 †2

( 1) 0p

q

I
E

T I
λ − 

=  − 
(11) 

and 2 2 2( )nF I M Eλ= − . Then 

 2 2det( ) ( 1) det( ).p
nF I Mλ λ= − − (12) 

But 

 
2 †

2

( 1)
.

0 ( 1)
p

q

I TT T
F

I
λ

λ
 − −

=   − 
(13) 

Thus 2det( )F  equals the right hand side of equation 9, and therefore equation 12 implies that

2det( )nI Mλ −  equals the right-hand side of equation 10, whence the assertion follows.   
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Theorem 2 

Let A  be an m p×  matrix with no zero columns and with mutually orthogonal columns and let B  be 
an m q×  matrix with no zero columns and with mutually orthogonal columns. Assume that p q≥  and 

m n≥  and define †P AA=  and †Q BB= . Let 1 1U SV T= , where ,( )i jT t=  is a diagonal matrix, be the 

singular value decomposition of †S A B=  (whence the ,i it  are nonnegative and listed in decreasing 

order of magnitude), let   and δ  respectively denote the number of 0's and 1's in the sequence 

,( ; 1, , )j jt j q= … , and let n p q= + . Then the eigenvalues of P  are 1 with multiplicity p  and 0 with 

multiplicity m p− , the eigenvalues of Q  are 1 with multiplicity q  and 0 with multiplicity m q− , and: 
(a) 1 is an eigenvalue of M  with multiplicity 2p q− +  , provided that p q>  or 0> . In particular, if 

q= , then 0T = ; therefore in this case 1 is the only eigenvalue of M  and its multiplicity is n . 
(b) 0 is an eigenvalue of P Q+  with multiplicity m n δ− + , provided that m n>  or 0δ > . 
(c) 2 is an eigenvalue of P Q+  with multiplicity δ , provided that 0δ > . 
(d) All eigenvalues of P Q+ , different from 0, 1 and 2 are of the form 1 , 1, ( )rs r q δ± = … − + , where 

the rs  are those ,j jt  that are not equal to 0 or 1. 

(e) If in addition to the hypotheses, every column of A  is perpendicular to every column of B , then 1 is 
the only eigenvalue of P Q+ , and its multiplicity is n . 
 
Proof: 
Note that 2 † † †( )( ) pP AA AA AI A P= = =  and similarly 2Q Q= . Thus P  and Q  are idempotent and 

therefore their eigenvalues are either 0 or 1. The hypotheses imply that †
pA A I=  and †

qB B I= . Since 

(see 2, 1.3.22)31 implies that †A A  and †AA  have the same nonzero eigenvalues including multiplicities, 
and the trace of a matrix equals the sum of all its eigenvalues (cf. 2, p. 50),31 we deduce that 

† †tr( ) tr( )AA A A p= = , i.e. tr( )P p=  and similarly tr( )Q q= . Since the nonzero eigenvalues can only 
equal 1, the multiplicity follows. 
 
Let C  be the m n×  partitioned matrix defined by ( , )C A B= ; then 

 
†

† † †
†( , )

A
CC A B AA BB P Q

B
 

= = + = + 
 

(14) 

and 

 
†

†
†† ( , ) ,p

q

I SA
C C A B

S IB
  

= =   
   

(15) 

where †S A B= . Note that if in addition to the hypotheses, every column of A  is perpendicular to 
every column of B  then 0S =  and the assertion of (e) follows. In the general case we proceed as 
follows: since the p  rows of †A  are mutually orthogonal, we deduce that †rank( )A p= ; thus it has a 
nonsingular p p×  submatrix 1A .31 We deduce that 1rank( ) rank( )A B B q= = .31 Therefore, 

† †rank( ) rank( )B A A B q= = .31 Note that †B A  is a q p×  matrix. Since p q≥ , applying the theorem 
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in Amos and Hall’s Appendix23 or Theorem 2.6.3 of Horn and Johnson,31 we obtain the singular value 
decomposition of S : there are unitary matrices U  and V  such that USV T= , where ,( )i jT t=  is 

such that i j≠  implies that , 0i jt = . If the diagonal elements of T  are listed in decreasing order, this 
representation is unique. Thus 
 

 
†

† ††

00
,

00
p p

q q

I S I TUU
S I T IVV
      

=      
     

(16) 

Since †CC  and †C C  have the same nonzero eigenvalues including multiplicities,31 the assertion follows 
from Theorem 1.   

Discussion  

Amos and Hall23 were concerned with unrestricted Hartree-Fock wavefunctions20, 21 wherein Nαα  

orbitals and Nβ β  orbitals (with N Nα β≥ ) are expressed in an orthonormal basis of m  functions ( 

, 1, ,s s mω = … ) such that 

 
1

, 1, ,
m

r s sr
s

A r Nα
αψ ω

=

= = …∑ (17) 

 
1

, 1, , .
m

r s sr
s

B r Nβ
βψ ω

=

= = …∑ (18) 

The α and β orbital-density matrices, P  and Q , 

 †=P AA (19) 

 †=Q BB (20) 

are idempotent such that  

 2 =P P (21) 

 2 =Q Q (22) 

and their traces equal the number of electrons of each spin, where 

 Tr p Nα= =P (23) 

 .Tr q Nβ= =Q (24) 

The orthonormality of the spin-orbitals implies that  

 †
p=A A I (25) 

 † ,q=B B I (26) 
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but the non-orthogonality of the two sets of orbitals results in a rectangular overlap matrix, S , given by  

 † .=A B S (27) 

After defining C  to be a matrix with p q+  columns, where 

 [ ],=C A B (28) 

the product †C C  has the following block structure: 

 †
† .p

q

 
=  
 

I S
C C

S I
(29) 

Unitary transformations of the α  and β  orbitals that define the corresponding orbitals, 

 
1

N

r s sr
s

U
α

α αφ ψ
=

=∑ (30) 

 
1

,
N

r s sr
s

V
β

β βφ ψ
=

=∑ (31) 

are produced in the singular-value decomposition of the overlap matrix, 

 † ,=U SV T (32) 

where T  is a rectangular, diagonal matrix of overlaps between α  and β  corresponding orbitals. There 
are p q−  corresponding orbitals in the α  set that are orthogonal to the β  orbitals and q  pairs of α  
and β  corresponding orbitals with maximized overlaps. The elements of the new, overlap matrix in the 
corresponding-orbital basis, T , read 

 .rs rs rrT Tδ= (33) 

In the singular value decomposition of T , the nonzero ,i it ’s are the positive square roots of the nonzero 

eigenvalues of †TT , which are the same as the nonzero eigenvalues of †T T . The number of diagonal 
elements with absolute values of zero and one are denoted respectively by   and δ .  In the 
corresponding orbital basis, †C C  has fewer non-zero elements, for  

 
†

†
†† .p

q

    
=     

    

I TU 0U 0
C C

T I0 V0 V
(34) 

The eigenvalues of  †C C and their multiplicities (i.e. degeneracies) are given by Theorem 1. †CC  has 
the same eigenvalues and multiplicities and, in addition, ( )m p q− +  eigenvalues that equal zero.23  
Because  

 † † † ,= + = +CC AA BB P Q (35) 
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the eigenvalues of the sum of the idempotent α  and β  orbital-density matrices may be summarized in 
Table 1, where the last two columns refer to the paired eigenvalues that are not equal to those of the 
three preceding columns.  

INSERT TABLE 1 HERE 

Deviations of the corresponding-orbital overlaps from unity are evidence of spin contamination. In this 
basis, the difference between the exact expectation value of 2S  and its unrestricted, Hartree-Fock 
counterpart reads  

 2 2 2

1
.

N

exact UHF rr
r

S S N t
β

β
=

〈 〉 − 〈 〉 = −∑ (36) 

The deviations vanish only when all the overlaps equal unity.  

After defining the normalized sums and differences of pairs of overlapping corresponding orbitals 
according to 

 
1
2(1) (2 2 ) (1) (1)r rr r rt α βµ φ φ

−
 = + +  (37) 

 
1
2(1) (2 2 ) (1) (1) ,r rr r rt α βν φ φ

−
 = − −  (38) 

the spin-integrated density matrix reads   

 * * *

1 1
(1|1 ) (1) (1 ) (1 ) (1) (1 ) (1 ) (1) (1 ) ,

p q q

r r rr r r rr r r
r r

t tα αρ φ φ µ µ ν ν
−

= =

 ′ = ′ + + ′ + − ′ ∑ ∑ (39) 

where the ,φ µ  and ν  functions constitute an orthogonal set of natural orbitals. There are N Nα β−  

unpaired, high-spin contributions to the first term from corresponding orbitals.  Nβ  pairs of natural 

orbitals are present in the second term.  

Eigenvalues of the difference of two idempotent matrices 

Two theorems that employ similar strategies as those of the previous section apply to the eigenvalues of 
any difference of two idempotent matrices.  

Theorem 3 

Under the same assumptions and with the same definitions as in Theorem 1, let 

 †3 .
p

q

I T
M

T I
− 

=  − 
(40) 

Then: 
(a) All real eigenvalues of 3M  are on the interval [ 1,1]− . 
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(b) 1−  is an eigenvalue of 3M  with multiplicity  , provided that 0> . In particular, if q=  then 

0T =  and therefore in this case the only eigenvalues of 3M  are 1− , with multiplicity q , and 1, with 
multiplicity p . 
(c) 0  is an eigenvalue of 3M  with multiplicity 2δ , provided that 0δ > . 

(d) 1 is an eigenvalue of 3M  with multiplicity p q− +  , provided that p q>  or 0> . 

(e) All eigenvalues of 3M  different from 1− , 0 and 1, if any, may be complex-valued and are of the form 
2 1/2(1 ( ) ) , 1, ( )rs r q δ± − = … − + , where the rs  are those ,j jt  that are not equal to 0 or 1. 

(f) All eigenvalues of 3M  different from 1− , 0 and 1, if any, will have multiplicities not exceeding q . If 

1−  is an eigenvalue of 3M  its multiplicity will equal   and may not exceed q ; if 0 is an eigenvalue of 

3M  its multiplicity will equal 2δ  and may not exceed 2 q ; if 1 is an eigenvalue of 3M  its multiplicity 
will equal p q− +   and may not exceed p . 
 
Proof: 

Assume that 0T ≠ . Let 

 3 0 ( 1)
p

q

I T
E

Iλ
− 

=  − 
(41) 

and 3 3 3( )nF I M Eλ= − . Then 

 3 3det( ) ( 1) det( ).q
nF I Mλ λ= − − (42) 

But 

 † † 23

( 1) 0
.

( 1)
p

q

I
F

T T T I
λ

λ
− 

=  − + − 
(43) 

Therefore, we also have 
 † 2

3det( ) ( 1) det( ( 1) ),p
qF T T Iλ λ= − + − (44) 

 
whence 

 2 2
3 ,

1

det( ) ( 1) ( 1 | | ).
q

p
j j

j

F tλ λ
=

= − − +∏ (45) 

Thus, from equation 42 we deduce that 

 2 2 2 2 2 2
3 ,

1 1

det( ) ( 1) ( 1 | | ) ( 1) ( 1) ( 1 ( ) ).
p q

p q p q
n j j r

j r

I M t s
δ

δλ λ λ λ λ λ λ
− −

− −

= =

− = − − + = − − − +∏ ∏


 (46) 

To find the bounds for 1− , 0 and 1 in (f) note that   and δ  are bounded by q . The preceding equation 

shows that if λ  is an eigenvalue other than 1− , 0 or 1, then 2 21 ( )rsλ = − , where rs  is one of the ,j jt  

that is not equal to 0 or 1. Since 2( )rs  could be larger than 1, it follows that 2λ  could be negative and 
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that λ  may be complex--valued, whence (e) follows. The remaining assertions are straightforward 
consequences of equation 46.    

Theorem 4 

Let A  be an m p×  matrix with no zero columns and with mutually orthogonal columns and let B  be 
an m q×  matrix with no zero columns and with mutually orthogonal columns. Assume that p q≥  and 

m n≥  and define †P AA=  and †Q BB= . Let 1 1U SV T= , where ,( )i jT t=  is a diagonal matrix, be a 

singular value decomposition of †S A B=  (whence the ,i it  are nonnegative and listed in decreasing 

order of magnitude), let   and δ  respectively denote the number of 0's and 1's in the sequence 

,( ; 1, , )j jt j q= … , and let n p q= + . Then: 

(a) Every eigenvalue of P Q−  is real and is on the interval [ 1,1]− . 
(b) 1−  is an eigenvalue of P Q−  with multiplicity  , provided that 0> . In particular, if q=  then 

0T =  and therefore the only eigenvalues of P Q−  in this case are 1− , with multiplicity q , and 1, with 
multiplicity p . 
(c) 0  is an eigenvalue of P Q−  with multiplicity 2m n δ− + , provided that 2 0m n δ− + > . 
(d) 1 is an eigenvalue of P Q−  with multiplicity p q− +  , provided that p q>  or 0> . 
(e) All eigenvalues of P Q−  different from 1− , 0 and 1, if any, are of the form 

2 1/2(1 ( ) ) , 1, ( )rs r q δ± − = … − + , where the rs  are those ,j jt  that satisfy the inequalities 

,0 | | 1j jt< < . 

(f) All eigenvalues of P Q−  different from 1− , 0 and 1, if any, will have multiplicities not exceeding q . 
If 1−  is an eigenvalue of P Q−  its multiplicity will equal   and may not exceed q ; if 0 is an eigenvalue 
of P Q−  its multiplicity will equal 2δ  and may not exceed 2 q  ; if 1 is an eigenvalue of P Q−  its 
multiplicity will equal p q− +   and may not exceed p . 
(g) If in addition to the hypotheses, every column of A  is perpendicular to every column of B , then the 
only eigenvalues of P Q−  are 1−  with multiplicity q , and 1 with multiplicity p . 
 
Proof: 
Note that since P Q−  is Hermitian all its eigenvalues are real. Let  

 
†

† †
1 †( , )

A
D A B AA BB P Q

B
 

= − = − = − 
 

(47) 

and let 

 
†

†2 † ( , ) ,p

q

I SA
D A B

S IB
−  

= − =    −   
(48) 

where †S A B= . If in addition to the hypotheses, every column of A  is perpendicular to every column 
of B , then 0S =  and the assertion of (g) follows. In the general case, as in the proof of Theorem 2 we 
know that there are unitary matrices U  and V  such that USV T= , where ,( )i jT t=  is such that i j≠  

implies that , 0i jt = . Thus 
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†

† ††

00
.

00
p p

q q

I S I TUU
S I T IVV

− −      
=      − −     

(49) 

Since 1D  and 2D  have the same nonzero eigenvalues and 1D P Q= − , the assertion follows from 

Theorem 3.   In particular, note that if λ  is an eigenvalue of P Q−  other than 1− , 0 or 1, then 
2 21 ( )rsλ = − , where rs  is one of the ,j jt  that is not equal to 0 or 1. Since, as noted before, all the 

eigenvalues of P Q−  must be real, we conclude that 20 ( ) 1rs< < , and (e) follows.   

 
Discussion 

After defining 1C  and 2C  by  

 [ ]1 = −C A B (50) 

and 

 
†

2 †

 
=  
 

A
C

B
(51) 

the product 2 1C C  has the following block structure: 

 †2 1 .p

q

− 
=  − 

I S
C C

S I
(52) 

Transformation to the corresponding orbitals yields 

 
†

†2 1† .p

q

−    
=      −    

I TU 0U 0
C C

T I0 V0 V
(53) 

The eigenvalues of  2 1C C  and their multiplicities (i.e. degeneracies) are given by Theorem 3. 1 2C C  has 

the same eigenvalues and multiplicities and, in addition, ( )M p q− +  eigenvalues that equal zero.23  
Because  

 † †
1 2 ,= − = −C C AA BB P Q (54) 

the eigenvalues of the difference of the idempotent α  and β  orbital-density matrices may be 
summarized in Table 2, where the last two columns refer to the paired eigenvalues that are not equal to 
integers.  Whereas the results of the previous section pertain to the charge density, those of this section 
pertain to the spin density.  

INSERT TABLE 2 HERE 

After defining the normalized, symmetrically orthogonalized32 combinations of pairs of overlapping 
corresponding orbitals according to 
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 (1) (1) (1)r r r r ra bα βκ φ φ= + (55) 

 (1) (1) (1),r r r r rb aα βλ φ φ= + (56) 

where 

 
1 ( 1 | | 1 | |)
2r rr rra t t= + + − (57) 

 
1 ( 1 | | 1 | |),
2r rr rrb t t= + − − (58) 

the spin-integrated, density-difference matrix reads 

 * 2 * 2 *

1 1
(1|1 ) (1) (1 ) 1 (1) (1 ) 1 (1) (1 ) ,

p q q

r r rr r r rr r r
r r

t tα αρ φ φ κ κ λ λ
−

= =

 ∆ ′ = ′ + − ′ − − ′
 ∑ ∑ (59) 

where the ,φ κ  and λ  functions constitute an orthogonal set of natural orbitals. The first summation 

has N Nα β−  terms that involve unpaired, corresponding orbitals.  Nβ  pairs of natural orbitals occur in 

the second summation.  

Dyson Orbitals, Probability Factors and Fukui Functions  

Electron-binding energies calculated as differences of initial-state (N-electron) and final-state (N± 1-
electron) energies evaluated variationally with Slater determinants may be based on a fixed set of spin-
orbitals, as in Koopmans’s identity,19 or may include the effects of orbital relaxation, as in the ∆ SCF 
method.7 For final-state energies, the Koopmans result provides an upper bound to the SCF value.  The 
former approximation represents the effects of kinetic, Coulombic and exchange terms in electron-
binding energies that are associated with the electronic structure of the initial state. Differences 
between Koopmans and ∆ SCF results arise because of changes in the occupied spin-orbitals of the final 
state.  

Dyson spin-orbitals of electron detachment and attachment from an initial state (ΨI) to a final state (ΨF) 
are defined respectively by the following two equations:  

 *
1 2 3 4 1 2 3 2 3 4( ) ( , , ,..., ) ( , , ,..., ) ...Dyson

FI F N I N Nx N x x x x x x x x dx dx dx dxϕ = Ψ Ψ∫ (60) 

 *
1 2 3 4 1 1 2 3 1 2 3 4 1( ) 1 ( , , ,..., ) ( , , ,..., ) ...Dyson

IF I N F N Nx N x x x x x x x x dx dx dx dxϕ + + += + Ψ Ψ∫ ,(61) 

where zx  is the space-spin coordinate of electron z .  The norms of the Dyson spin-orbitals are called 

pole strengths, intensity factors or probability factors (P) and may vary between zero and unity such that  

20 | ( ) | 1Dyson
IF IFP dx xϕ≤ = ≤∫ .(62) 

Transition probabilities in the sudden approximation33, 34 are proportional to probability factors.  
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When a closed-shell, Hartree-Fock wavefunction approximates the initial state and the frozen-orbital 
approximation of Koopmans’s identity is made for the final state, the Dyson spin-orbital equals a 
canonical, Hartree-Fock spin-orbital and the probability factor equals unity. These conclusions may be 
extended formally to cases where an unrestricted Hartree-Fock wavefunction is chosen for the initial 
state and frozen-orbital approximations are made for final states.  When the initial and final states are 
well represented by single Slater determinants and spin contamination is low, this formal extension is 
potentially useful.  An alternative that eliminates spin contamination is provided by restricted, open-
shell Hartree-Fock (ROHF) wavefunctions and their canonical orbitals that pertain to high-spin final 
states.35, 36 In these cases, overlaps between initial and final spin-orbitals are equal to zero or unity and 
therefore there is only one natural ionization orbital37 (i.e. an eigenfunction of the density-difference 
matrix) with a non-vanishing eigenvalue. For some final states of low spin, more than one Slater 
determinant is needed to construct a spin eigenstate; a single-determinant approximation, having 
components of more than one multiplicity, will be spin-contaminated. For example, removal of an α  
electron from the 1s orbital of the doublet ROHF wavefunction of ground-state CH3 with MS=½ yields a 
final-state determinant that is half singlet and half triplet. Some expressions for orbital energies provide 
electron binding energies that are averaged over more than one final state.38  

Evaluation of the Dyson spin-orbital that pertains to ∆ SCF calculations is facilitated by expressing Slater 
determinants in terms of corresponding spin-orbitals that arise from the singular-value decomposition 
of the overlap matrix between initial-state and final-state spin-orbitals. (Note that previously discussed 
procedures for determining charge or spin densities and their sum or difference density matrices 
required overlaps between α  and β  orbitals of the Slater determinant of a single state.) The Dyson 
spin-orbital is proportional to the unpaired, corresponding spin-orbital which is also the natural 
ionization spin-orbital with an eigenvalue of unity.  Non-integer eigenvalues of differences of 
idempotent, orbital-density matrices for α  and β  spin provide information about orbital relaxation. 
The N-1 or N integrations in the two definitions of the Dyson spin-orbitals produce a non-vanishing term 
only when there are no permutationally induced mismatches between the paired, corresponding spin-
orbitals. The Dyson spin-orbital therefore equals the unpaired, corresponding spin-orbital times the 
product of the overlap matrices of the paired spin-orbitals.  For electron detachments, the probability 
factor equals the product of the squares of the N-1 overlaps between initial-state and final-state orbitals 
and is related by Theorem 4 to the N-1 ( w± ) pairs of density-difference eigenvalues by 

 
1 1

2 2

1 1

(1 ).
N N

rr r
r r

P t w
− −

= =

= = −∏ ∏ (63) 

The appearance of paired eigenvalues has been amply confirmed in numerical calculations of natural 
ionization orbitals.37 For electron-binding energies where the Koopmans description is qualitatively valid, 
values of w  will be close to zero. If one or more of the overlaps between sets of corresponding orbitals 
approaches zero, pairs of density-difference eigenvalues that approach 1±  will appear. This diagnostic is 
characteristic of a shake-up (correlation) final state for which the probability factor will be close to zero. 
Partial re-optimizations of final-state orbitals with respect to their initial-state counterparts which may 
be undertaken to analyze relaxation effects can result in corresponding-orbital overlaps of unity and 
concomitant, additional zero eigenvalues of density-difference matrices.  
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In Koopmans and ∆ SCF calculations with non-zero probability factors, the occupation number of a 
single spin-orbital (i.e. the expectation value of its number operator) changes from unity to zero for 
electron detachments and from zero to unity for electron attachments. No other changes in occupation 
numbers occur at the Koopmans level of theory, but ∆ SCF calculations allow occupation numbers of 
the other initial-state spin-orbitals to change from 1 or 0 to other values in the final state.  

These simple rules disappear when initial and final states are correlated. For example, in electron 
propagator calculations with full or diagonal (in the canonical, Hartree-Fock basis) self-energy  (Σ ) 
matrices,3, 39, 40 changes in occupation numbers associated with density-difference matrices41, 42 usually 
do not equal integers. Such calculations do not, in general, capture all of the orbital relaxation that 
occurs in ∆ SCF calculations, but aim instead for a balanced treatment of many-body effects. Self-energy 
approximations that supplement ∆ SCF results with selected terms that pertain only to initial-state and 
final-state correlation have been applied to the calculation of electron affinities.43, 44 A summary of 
Dyson orbitals expressed in terms of canonical Hartree-Fock (ψ ) or corresponding (φ )orbitals, 
probability factors and changes in occupation numbers that emerge in various levels of theory appears 
in Table 3. 

INSERT TABLE 3 HERE 

∆ SCF Dyson orbitals may be expressed as a linear combination of occupied orbitals according to 
equations 30 and 31, but exact Dyson orbitals involve summations over all (occupied or virtual) orbitals. 
Probability factors of unity and changes of ± 1 in occupation numbers at the Koopmans and ∆ SCF 
levels of theory indicate that an electron assigned to a Dyson orbital is unambiguously annihilated or 
created for final states with N-1 or N+1 electrons, respectively. Such certainty is abolished at higher 
levels of theory. Changes in occupation numbers of non-Dyson orbitals vanish only at the Koopmans (i.e. 
frozen-orbital) level. 

Whereas the Koopmans approximation produces a single, non-vanishing eigenvalue of unity for the 
density-difference matrix, the accompanying electron-density differences pertaining to the lowest 
electron detachment energy or the largest electron attachment energy, also known as Fukui functions,45 
have positive values at all points in space. Negative values of a detachment or attachment Fukui 
function,46 Fukuif , become possible in ∆ SCF calculations, for negative eigenvalues of the density-
difference matrix will usually appear. Such an outcome can become more likely when non-zero overlaps 
between paired corresponding orbitals are low due to spatial separation, leading to one or more large 
λ  terms in the summation below:  

 2 2 2 2 2

1
(1) | (1) | 1 | (1) | 1 | (1) | .

q
Fukui

rr r rr r
r

f t tφ κ λ
=

 = + − − −
 ∑ (64) 

Negative spin-densities may appear for similar reasons in SCF calculations on a single state or in ∆ SCF 
calculations wherein differences of α  or β  density matrices are evaluated. 

Other Classes of Transitions 

Double or multiple electron-binding energies corresponding to initial and final states that are well-
approximated by single Slater determinants, such as transitions to triplets with two open shells that are 
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measured in Auger spectroscopy13 on closed-shell molecules, give rise to two or more density-difference 
eigenvalues of unity. The accompanying unpaired orbitals may be used to construct Slater determinants 
that define Dyson geminals or multiple-electron-overlap amplitudes. One can expect the values of w  
that occur in the remaining pairs of w±  eigenvalues to become larger and thereby reflect the enhanced 
importance of orbital relaxation when two or more electrons are added or removed.  

Several classes of excitation energies correspond to initial-state and final-state wavefunctions that are 
well represented by lone Slater determinants. Excitations from a closed-shell initial state to a triplet with 
two open shells will produce unpaired α  natural excitation orbitals  with accompanying relaxation 
effects represented by corresponding sets of paired orbitals.  Examples include core-valence and charge-
transfer excitations. Doublet radicals with SOMO-LUMO or HOMO-SOMO (SO = singly occupied, HO = 
highest doubly occupied, LU = lowest unoccupied, MO = molecular orbital) transitions will have paired 
orbitals that pertain to eigenvalues near 1±  when relaxation effects are weak and overlaps between the 
two, main, corresponding orbitals are close to zero. The sums of positive (or negative) eigenvalues that 
pertain to the natural excitation orbitals47 (i.e. natural transition orbitals where the number of electrons 
in the transition is conserved) are qualitative indices that may distinguish between singly or doubly 
excited states.48  

Conclusions 

Unit and paired eigenvalues of spin-density and density-difference matrices that emerge from 
determinantal wavefunctions are effects of a common cause: diagonalization of the difference of two, 
idempotent matrices. Singular-value decompositions of overlap matrices between orbitals that underlie 
two, idempotent, density matrices provide pairs of maximally overlapping corresponding orbitals. These 
optimized overlaps determine the eigenvalues and eigenfunctions of the density-difference matrices. 
For changes in electronic structure that accompany detachment or attachment of a single electron, the 
eigenfunction of the density-difference matrix with a unit eigenvalue is proportional to a Dyson orbital 
and equals a corresponding orbital with no non-vanishing overlaps with other corresponding orbitals. 
The remaining pairs of density-difference-matrix eigenfunctions are Löwdin-orthogonalized 
combinations of overlapping corresponding orbitals that describe the effects of orbital relaxation.  
Probability factors and Fukui functions also are determined by the corresponding-orbital overlaps. The 
∆ SCF method changes the results of Koopmans’s identity by allowing: relaxation of orbitals in final 
states, Dyson orbitals with non-unit probability factors, negative spin densities and negative values of 
Fukui functions. Both levels of theory incorrectly produce unit changes in occupation numbers of Dyson 
orbitals between initial and final states.  The natural ionization or excitation occupation numbers 
provide qualitative indices of how many holes and particles pertain to a given transition.  Qualitative 
distinctions between primary (Koopmans-like) and correlation (i.e. shake-up) states in photoelectron 
spectra or between singly and doubly excited states can be made with these data. Ordinary versus 
charge-transfer transitions may be distinguished by the degree of spatial separation between natural 
excitation orbitals. The present proofs of the unit and paired eigenvalues that follow from 
diagonalization of the difference of two, idempotent matrices are similar in approach to proofs that 
pertain to sums of two, idempotent matrices. The latter demonstrations confirm the conclusions of 
Amos and Hall that provided justification for the concept of corresponding orbitals.  
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Appendix 

During this investigation, a related theorem also was proven. 

Theorem 5 

Under the same assumptions and with the same definitions as in Theorem 1, let 

 †4 .p

q

I T
M

T I
 

=  − 
(65) 

Then: 
(a) 1−  is an eigenvalue of 4M  with multiplicity  , provided that 0> . In particular, if q= , then 

0T = ; thus the only eigenvalues of 4M  in this case are 1−  with multiplicity q , and 1 with multiplicity 
p . 

(b) 0 is not an eigenvalue of 4M . 

(c) 2−  and 2  are eigenvalues of 4M  with multiplicity δ , provided that 0δ > . In particular, if  

qδ = , then the only eigenvalues of 4M  are 1 with multiplicity p q− , and 2−  and 2 , each with 
multiplicity q . 
(d) 1 is an eigenvalue of 4M  with multiplicity p q− +  , provided that p q>  or 0> . 

(e) All eigenvalues of 4M  different from 1− , 1, 2−  and 2 , if any, are of the form 
2 1/2(1 ) , 1, ( )rs r q δ± + = … − + , where the rs  are those ,| |j jt  that are not equal to 0 or 1. 

(f) All eigenvalues of 4M  different from 1− , 1, 2−  and 2  have multiplicities not exceeding q −  .  

If 2−  and 2  are eigenvalues of 4M  then they both have the same multiplicity, which may not 

exceed q . If 1−  is an eigenvalue of 4M  its multiplicity may not exceed q . If 1 is an eigenvalue of 4M , 
its multiplicity may not exceed p . 
 
Proof: 
Assume that 0T ≠  and define 

 4 0 ( 1)
p

q

I T
E

Iλ
 

=  − 
(66) 

and 4 4 4( )nF I M Eλ= − . Then 

 4 4det( ) ( 1) det( ).q
nF I Mλ λ= − − (67) 

But 

 † 2 †4

( 1) 0
.

( 1)
p

q

I
F

T I T T
λ

λ
− 

=  − − − 
(68) 

 
Therefore, we also have 
 2 †

4det( ) ( 1) det(( 1) ).p
qF I T Tλ λ= − − − (69) 
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Since the entries ,i jd  of the q q×  matrix †T T  are such that , 0i jd =  if i j≠  and  2
, ,| |j j j jd t= , 

1, ,j q= … , we conclude that 

 2 † 2 2
,( 1) diag(( 1) | | ).q j jI T T tλ λ− − = − − (70) 

Thus  

 2 2
4 ,

1

det( ) ( 1) ( 1 | | ),
q

p
j j

j

F tλ λ
=

= − − −∏ (71) 

and from equation 67 we deduce that 

 2 2
4 ,

1

det( ) ( 1) ( 1 | | )
q

p q
n j j

j

I M tλ λ λ−

=

− = − − −∏  

 
( )

2 2

1

( 1) ( 1) ( 2) ( 2) ( 1 ),
q

p q
r

j

s
δ

δ δλ λ λ λ λ
− +

− +

=

= − + − + − −∏


  (72) 

where the rs  are those ,| |j jt  that are not equal to 0 or 1. If qδ = , then 2 2 2p q nδ− + + = +  ; 

thus 0= . To prove that the multiplicity of 1 may not exceed p  note that q≤ ; thus p q p− + ≤ . 
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Table 1: Eigenvalues of +P Q  and Their Multiplicities 

Eigenvalue 1 0 2 1 + rrt  1 - rrt  
Multiplicity 2p q− +    m p q δ− − +  

 
δ  q δ− −  q δ− −  
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Table 2: Eigenvalues of −P Q  and Their Multiplicities 

Eigenvalue 1 -1 0  21 rrt+ −  
 

 21 rrt− −  
 

Multiplicity  p q− +      
 

2m p q δ− − +  
 

q δ− −  q δ− −  
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Table 3: Approximate and exact Dyson orbitals, probability factors and changes in occupation numbers 

Theory Dyson Orbital Probability Factor  a
Dysonn∆  

 
 a

non Dysonn −∆  
 

Koopmans ψ  1 1±  0 
∆ SCF  bPφ  

 

0 1P≤ ≤  1±  0 | | 1non Dysonn −≤ ∆ ≤  

Diagonal Σ  Pψ  0 1P≤ ≤  0 | | 1Dysonn≤ ∆ ≤  0 | | 1non Dysonn −≤ ∆ ≤  

Exact all

r r
r

cψ∑  
0 1P≤ ≤  0 | | 1Dysonn≤ ∆ ≤  0 | | 1non Dysonn −≤ ∆ ≤  

 

a Changes in occupation number for spin-orbital †p p p= ∆〈 〉 . 

b φ  may be expressed as a linear combination of canonical, Hartree-Fock orbitals (ψ ) using equations 
30 and 31.  

 


