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1. INTRODUCTION

Orthogonal bases make it possible to represent an element of a Hilbert space as an infinite
series. It is the easiest way to represent a complicated vector in terms of simpler ones. This
is a problem that appears often in many areas of mathematics, physics, and engineering, like
harmonic analysis, differential equations, quantum mechanics, scattering theory, and signal
and image processing, to name just a few. Although in theory easy to implement, expansion in
orthogonal series is sometimes problematic: It is not always easy to find a suitable orthogonal
basis, and there are cases where an expansion in orthogonal series, or even in series generated
by more general bases, may not be an adequate representation method.

Frames have many of the desirable properties of bases, while differing in a very important
aspect: they may be linearly dependent, and therefore the uniqueness of representation char-
acteristic of bases may be lost. This redundancy has important applications in, for example,
signal and image processing, because it leads to robustness: the quality of the signal is less
affected by the presence of noise, and the signal may be reconstructed from sampling done at
relatively low precision.

Let ‘H be a Hilbert space with inner product (-,-) and norm || - || := (-,-)*/*. A sequence
{fn,n € ZT} C His called a frame if there are constants A and B such that for every f € H

AlfFI2 < 22 KE Sl < BISI™

nezZt
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The constants A and B are called bounds of the frame. The supremum of all such A and the
infimum of all such B are called best bounds. If only the right-hand inequality is satisfied for all
f € H, then {f,,n € ZT} is called a Bessel sequence with bound B. Excellent introductions
to the theory of frames and Bessel sequences can be found in [3, 12, 13, 25, 39]. One of the
properties that will be used frequently is the following: {f,,,n € Z*} is a Bessel sequence with
bound M if and only if, for every finite sequence of scalars {cy},

1> cufull® < MY el (1)
k k

(cf. eg [39, p.155, Theorem 3|). As remarked by Chui and Shi in [9, Lemma 4], it is a
atraightforward consequence of this statement that {f,,n € Z} is a Bessel sequence with
bound M if and only if (1) is satisfied for every sequence {cx} in /2. A frame is called exact, or
a Riesz basis, if upon the removal of any single element of the sequence, it ceases to be a frame.
However, not every frame is a Riesz basis: As is well known, a sequence {f,,n € Z*} C H is
a Riesz basis if and only if it is the image of an orthonormal basis under a bounded invertible
linear operator U : H — H ([39]). If we say that {f,,n € Z7} is a Riesz basis with bounds
A and B, we mean that A and B are its frame bounds.

The theory of frames in Hilbert spaces has recently been generalized by S. T. Ali, J. -P.
Antoine and J. -P. Gazeau [1] to one where the basis vectors may be labelled using discrete,
continuous, or a mixture of the two types of indices.

Frames were introduced by Duffin and Schaeffer [15] to study an irregular sampling problem
(for other applications, see, e.g.[14]). In the same paper they introduced the frame algorithm,

which makes it possible to reconstruct uniquely and stably any element f € H from the
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sequence of coefficients {(f, fx),k € Z}, and the frame bounds A and B. The stability
that has just been mentioned is a theoretical stability: The algorithm works if the elements
fn are exactly known. In some cases, however, it could happen that the f,, are actually
approximated by a different set of elements. For example, for the case of wavelet frames in
R, i.e. sequences of the form {a//?¢(a’x — bk),j,k € Z}, this may happen if, because of
problems of numerical computation, ¢ is replaced by some approximation 1 or if, for reasons
having to do with sampling, measurement, or machine representation of integers, the k are
replaced by approximations {\;x}, leading to an irregular sampling problem. These issues
can be addressed by a study of the stability of the frame algorithm under small perturbations,
which is a motivation for the stability problem to be studied here: Given a sequence {gx} that
is in some sense “close” to the frame or Riesz basis {fx}, find conditions to ensure that it is
also a frame or Riesz basis. For bases, this problem has been studied for many years (cf., e.g.,
131, 32, 39], and in Section 3 we have applied some of the techniques that have been used in
that context. There is some overlap between the results in this section and those previously
and independently obtained by O. Christensen, which will discussed at the appropriate places
in the sequel.

The stability of frames in Hilbert space has been studied by C. E. Heil and O. Christensen
18] and D. Walnut [37] from the point of view of a more general stability theory for atoms in
Banach spaces. This theory was introduced by Feichtinger and Gréchenig ([17, 18, 21]), and
one of its features is the generalization of the concept of a frame to Banach spaces: Given a
Banach space X, let its norm be denoted by || - ||+ and its dual by &". Let X} be a Banach
space of scalar valued sequences indexed by Z*, F' := {f,,n € Z*} Cc X',S : X; — X.
Following e.g. [21], the ordered pair (F,S) will be called a Banach frame for X with respect
to X provided that:

(a) {fu(z),n € ZT} € X} for every z € X;
(b) There are constants A and B such that, for every x € X,

Allzllx < [{fo(z),n € Z7H|x, < Bllzlx,

and

(¢) S is bounded and linear, and for every x € X, S({fn(z),n € ZT}) = x.

Just as for Hilbert spaces, A and B are called bounds of the frame, and the supremum of all
such A and the infimum of all such B are called best bounds. S is called the reconstruction
operator.

In Section 3, stability conditions for frames and Riesz bases in Banach and Hilbert spaces
are obtained, which complement the results of Christensen. Since the present paper focuses
mainly on Hilbert spaces, direct and elementary proofs of Christensen’s results are also given,
without using the theory of atoms in Banach spaces. Then, in Section 4, a condition for
{e!kt — eib) k€ 7% to be a Bessel sequence in L?(1), where I is an interval in R/, is
found. This result, together with two of Christensen’s theorems, the multivariate version of
Chui and Shi’s Second Oversampling Theorem [9, Theorem 8|, and a variety of other theorems
and techniques, are used to study the stability of frames and Riesz bases in three concrete

cases: In Section 4 a multivariate version of Kadec’s 1/4-theorem is proved, whereas Section
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5 and Section 6 deal with wavelet (or affine) frames and Gabor (or Weyl - Heisenberg) frames
respectively. All these results include estimates for frame bounds, since they are necessary
for implementing the frame algorithm. Although the conjugate gradient acceleration method
discussed by Grochenig [22] does not use these bounds in its implementation, they are still
needed to set up stopping criteria and to estimate the speed of convergence. There are very
few references on the stability of wavelet and Gabor Riesz bases, and none seem to include
any explicit quantitative estimates for regions of stability. The key to our approach is the
application of stability results for frames. This allows us to describe regions of validity in
terms of frame bounds. Some of the theorems in the last two sections can be used to determine
under which conditions a coherent state frame or Riesz basis can be perturbed into another
coherent state frame or Riesz basis. (For a discussion of coherent states, from a variety of
perspectives, see [14, 16, 25, 29] and references thereof.)

We should point out that there are no Riesz bases of translates, i.e., if f € L?(Rl), and
{\,n € 2} C Rl then {f(- — \,),n € Z*} cannot be a Riesz basis of L?(Rl). For d =1
this was shown in [30], and the generalization for arbitrary d seems obvious. For a related
result, see [40].

2. NOTATION.

This section contains notation that has not been defined in the preceding discussion. How-
ever, notation that appears in only one section may be defined at the beginning of that section.
In the sequel, Z, Z", R and C will respectively denote the integers, the strictly positive
integers , the real numbers, and the complex numbers; d and N will always be elements of

Z*. Ifa = (ay,ay,...,a9) € RI, then |a| := (a? + a2 + ... + a2)'/?, and |a|; will denote
the taxicab norm, v.i.z. |a|i := |ay| + |ag| + ... + |ag|. If b = (b1, bo,... ,by) € RI, then
a>b(a>Db)orb<a(b< a)means that ap > bp(ar > by),k = 1,...,d. If a < b, then
la,b] = lay, by] X [ag,ba] X -+ X |ag, by is called an interval with endpoints a and b. The

following notation is also used:

d
a’:=[[ar, a¥?:=(a)? o= (a7, 1/a:=(a;' a5, a5h).
r=1
If v € R, then & := (z,,--- ,x), and 2% := [["_, 2. Also:
Z Ty, = lim Z T
kezd N=ee N

When there is no danger of ambiguity, the integral over R! will be denoted by “[”. The
Fourier transform of a function g will be denoted by § or by F}. If g € L(R/),

g(x) == /e‘Qm(zﬁg(t) dt, z e Rl

The support of the function g(x) will be denoted by supp(g). The L*(R[) norm of g will be

denoted by ||g||. For 0 < L < %, By(L) is defined recursively as follows: By(L) :=1—cosmL+
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sinwL, and for d > 1,
Ba(L) := {BY2(L) + B{”*(L)[1 + B)3(L)]}*

3. FRAMES IN BANACH AND HILBERT SPACES.
In this section X and X are Banach spaces and H, H, and He are Hilbert spaces. If
x € H, then 2/ € H is defined by 2’ := (-,z). For j = 1,2, C; : X — X|” is defined by
(Cix)(f) := f(z). The operator C} is called the canonical embedding of X} into X|H. If X and
Xc are Hilbert spaces, then e; : & — X|' is defined by e;(z) := 2’. Given a linear operator

U : Xy — Xe, its (Banach space) adjoint operator will be denoted by U'. If X, and X
are Hilbert spaces, then the Hilbert space adjoint operator of U will be denoted by U*; thus
U* = e, U ey ([28, 36]). If o := {x, k € Z*} is a scalar sequence, then P,(z) = z,,.

Three different spaces are involved in the definition of a Banach frame: X', X', and X r- The
first theorem explores what effect a linear homeomorphism has on the frame structure, when
applied to each one of these spaces:

Theorem 1. Let ({f,,n € ZT},S) be a Banach frame with respect to X; in X with best
bounds A, and B;.

(a) If U : Xoo — Xe is a linear homeomorphism, then ({(U™") fu,n € Z*},US) is a Ba-
nach frame with respect to X; in Xe, and its best bounds Az, By satisfy the inequalities

AU < A < AU, and Bi||U| ™" < B2 < Bi||U .

(b) Assume that Xs, and Xe are reflexive spaces, and let V : X., — X_ be a linear homeomor-
phism. If T := Cy*(V)~1Cy, then ({(TY) fa,n € Z*},TS) is a Banach frame with respect
to Xy in Xe, and its best bounds As, By satisfy the inequalities

AT < A < AT, and Bi|T| ™ < Bo < By T

(c) Let X, be a Banach space of scalar valued sequences indexed by Z*, and assume that
W : X; — X is an isometric isomorphism. If g,(x) := PB,W{f.(x),n € Z*}, then ({gn,n €
ZTY, SW’l) is a Banach frame with respect to X in Xso, with best bounds A; and B.

Proof. (a) Let o denote an arbitrary element of X, and let y denote an arbitrary element of
Xe. By hypothesis,
Arl|z]x. < [Hful@).n € Z7} 2, < Billz| ..
But
lyllze = VU yllxe < U Uyl
Thus,
AU yllae € A Ul < AU y)in € Z7 |,

(= 1WU™ faly)in € Z¥|x) < BuIU  yllae < Bi JUT] Iyl
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Moreover, (U™ f,(y) = fu(U™'y) € X}, (U™')'S is linear and bounded, and
US{(U_I)/fn(y)an € Z+} = US{fn(U_ly)an € Z+} = UU_ly =Y.

We have therefore established that ({(U™) f,,n € ZT},U S) is a frame with respect to X,
and that

AU < Az, B2 < Bi|[UTY
On the other hand,

Aollyllae < IH{WU™) fuly),n € ZF Y2, < Ballyl|x..
But
]| v < U U] e,

whence

AU el < A Uzllxe < {(UTY) falUz),n € Z7} | 2,

(= {fulz).n € Z7}|x)) < B2 |Uz|ac < Ba [|U|] || f]] e
This implies that
AU <AL B < B ||U]],

and the conclusion follows.

(b) Since the spaces X, Xc are reflexive, the canonical mappings are surjective, and there-
fore T' is a linear homeomorphism from X, onto Xe. Applying the conclusion of part (a), the
assertion follows.

(¢) Note that
SW_I{gn(I),TL € Z+} - SW_IW{fn(ﬁ)vn € Z+} - S{fn(ﬁ)vn € Z+} =Z.
Moreover,

Hgn(x).n € ZT}H|x, = [W{fu(z),n € Z7 3}, = [{fulz).n € Z7}x,,

and the conclusion follows. O

Let us now turn our attention to Hilbert spaces. The following consequence of Theorem 1(a)
strengthens part of [24, Lemma 6.3.2]:

Corollary 1. Let U : Hoo — He be a linear homeomorphism, and assume that {f,,n € Z*}
is a frame in Hyo with best bounds Ay and By. Then {Uf,,n € ZT} is a frame in He, and
its best bounds As, By satisfy the inequalities

AU < A < AU and - By|lU 72 < By < Bi|[U]1*
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Proof. Let V := (U™Y)*. If T denotes the frame operator associated with {fx, k € ZT}, v.i.z.

Tf:= Z <f7fk>fka

kez+
fo:=T"1f,, and S : 2 — H is defined by
S({cn,n € Z+}) = Z Cann
nezt

then, as remarked in [8], it is easy to see that ({f,,n € Z*},S) is a Banach frame in H,
with respect to 2, with best bounds Ai/ 27311/ 2, Applying Theorem 1(a) it follows that
(VY f,m € Z+},VS) is a Banach frame in He with respect to £2, with best bounds
A%/ 2, le/ ? that satisfy the inequalities

AVIVIT < AP < APV and BV < B < BIPIVEYL
However, ||[V|| = [|[U™Y], and ||V} = ||U]|. Moreover,

/

V) = (U1 = U] = ea(U)'er" = elUei™.
Since e;Uertf, = (Uf,)', the conclusion follows. O

Example 1. Let {f,,n € Z%} be a frame in L?>(RI) with bounds A and B, and let F denote
the Fourier transform operator. Since F is an isometry, ||F|| = ||[F°°|| = oo; thus Corollary
1 implies that both {F{\,\ € Z*} and {F ><{\,\ € Z*} are frames in L*(Rl) with bounds
A and B. This, of course, also follows from Plancherel’s formula. Since F and F > are
linear isomorphisms from L*(R) onto L?(R'), the sequences {f,,n € Z¢} {F{\.\ € Z*},
and {F~{\,\ € Z*} are fully equivalent (cf. [34, pp. 68-69]).

Example 2. Assume ¢ € L*(R) is such that

[l e = 1,
and let the wavelet transform 7% be defined by

wav - t - y
(T ) = [ 72w () dt
Let Hoo := LE(R), and let He := TZ'5(H ), endowed with the inner product

(£.9) = [ a7 flay) gley) dady.

From e.g. [12, p. 24, Proposition 2.4.1 and p. 31| we know that Hc is a Hilbert space,
and that 7%% is an isometric linear homeomorphism from H., onto He. Thus, as in the
preceding example, it is clear that if {f,,n € ZT} is a frame in H,, with bounds A and B,
then {7 f,,n € Z*} is a frame in He with bounds A and B.

The sequences described in the preceding examples are unitarily equivalent, i. e. there is a
unitary linear isomorphism U from H., onto He, such that U f,, = g, for all n. This and other
kinds of equivalence between frames are discussed in [1].

The following elementary result will play a pivotal role in the subsequent disscussion:
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Theorem 2. Let {f,,n € ZT} be a frame in H with bounds A and B, let {g,,n € Z"}
be a Bessel sequence in H with bound M, and let X be a complex number such that |\ <
(A/M)Y2. Then {f + Agn,n € ZTY} is a frame in H with frame bounds [(A)/? — |\|(M)'/?]?
and [(B)'? + |\|(M)'?]2.

The proof of this theorem is a straightforward consequence of the triangle inequality for
sequences in /2, and will therefore be omitted.

Setting A = —1 and replacing g,, by f, — g, in Theorem 2, we obtain a result of Christensen
([7, Corollary 2.7| or, more explicitly, |8, Corollary 6]). It was also obtained as a corollary of
a more general statement on Banach frames (c.f. e.g., [8, Theorem 1]). (See also [6, Theorem

1]).

Theorem 3. Let {f,,n € Z1} be a frame in H with bounds A and B. Assume {gn,,n €
ZT}y C H is such that {fn — gn,m € ZT} is a Bessel sequence with bound M < A. Then
{gn,n € Z*} is a frame with bounds [1 — (M/A)/?2A and [1 + (M/B)'??B.

Heil and Christensen have remarked that, since |(f, fn — gn)| < ||l | f» — gnll, Theorem 3
immediately yields another result of Christensen (cf.[5] and also [4, Proposition 2.4]):

Theorem 4. Let {f,,n € Z*} be a frame in H with bounds A and B, and assume that
M = Z £ = gnll* < A.

nezZt
Then {gn,n € Z*} is a frame in H with bounds A[l — (M/A)Y?)? and B[1 + (M/B)Y??2.
We will need the following:

Theorem 5. Let {f,} be a Riesz basis in H with bounds A and B. Assume {g,,n € ZT} C'H
is such that { fr, — gn,m € Z} is a Bessel sequence with bound M < A. Then {g,,n € Z*} is
a Riesz basis with bounds [1—(M/A)Y?2A and [1+(M/B)Y?2B. Conversely, if {fo,n € Z*}
and {gn,n € ZT} are Riesz bases in H with bounds Ay, By and Az, By respectively, and U is
a linear homeomorphism such that Uf, = gn,n € ZT, then {f, — gn,n € Z1} is a Bessel
sequence with bound M = min {By ||[I — U||*, By | — U Y||*}.

Proof. Assume first that {f,,n € Z*} is a Riesz basis with frame bounds A and B, and
{fn — gn,n € Z7} a Bessel sequence with bound M < A. Thus, as remarked in Section 1,

i Fe— gl < MY Jeul? 2)

k=1

for every finite sequence of scalars {ci,...,c,}. Theorem 3 implies that {g,,n € Z7} is a

frame with bounds [1 — (M/A)'/?]2A and [1 + (M/B)Y?|2B. To prove that {g,,n € Z*} is a

Riesz basis, it suffices to show that {f,,n € Z*} and {g,,n € Z7} in H are fully equivalent.

From [39, p. 188, Theorem 12 and p.189, Problem 2| we see that the right-hand side of

(2) is bounded by MA=L|| - cefil*. If f is an element of H, then f = Y., di fi for some
k=1

9



unique sequence of scalars {dy, k € Z*} € (2. Thus, if
G(f) == Y d(fu — ),
keZ+t

we conclude that G : H — H is a linear operator bounded by (MA~')Y/2 < 1. Setting
U := 1 — G (where I denotes the identity operator), it is clear that U : H — H is a linear
homeomorphism, and U f,, = g,,n € Z*, whence the conclusion follows.

To prove the converse, note first that

<f7 fn _gn> - <fa fn> - <fa Ufn> - <f7 fn> - <U*f7 fn> - <(I - U*)fv fn>7
and therefore

> W fa—gn)lP = 22 KT =Uf fu)l? < Bill( = UNfII* =

kez+ kez+
Bi||(I = U)*f|I* < Bu|[(T = U)|1* I £]1*.
Since also
<f7 Jn — gn> = <f7 Uﬁlgn - gn> = <f Uﬁlgn> - <f7 gn> -
<(U71)*f7 gTL> - <f7 gTL> = <[(U71)* - ]}fa gn> = <(U71 - I)*fv gTL>7
a similar argument yields
Z |<f7 fn - gn>|2 < By ||I - U71||27
keZ+

and the conclusion follows. O

Applying the Cauchy-Schwarz inequality and Theorem 5 we obtain:
Theorem 6. Let {f,,n € Z} be a Riesz basis in H with bounds A and B, and assume that

M = E: /o = gnll* < A.

nezZ+t
Then {gn,n € Z¥} is a Riesz basis in H with bounds A[1— (M/A)Y?)? and B[1+ (M/B)Y/??.
The condition M < A in the preceding four theorems cannot be improved. This follows
from the following:
Example 3. Let {f,,n € Z*} be an orthonormal basis in H, and let

)0, ifn =1,
In = fn, otherwise.

Then {f,,n € Z*} is a frame with bounds A = B =1, {f, —gn,n € Z} is a Bessel sequence
with bound 1, and
E: Hfﬁ“gnHQ::HJEHQ::l'

nezt
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However, {g,,n € Z*} is not dense in H, and therefore it can be neither a frame nor a Riesz
basis.

The statements of most of the remaining theorems have two parts, dealing with frame
stability and Riesz basis stability respectively. The proof of the first part always follows from
one of Christensen’s results, (i.e. Theorem 3 and Theorem 4), whereas the proof of the second
part always follows from either Theorem 5 or Theorem 6.

4. EXPONENTIAL FRAMES AND BASES

In this section r = (ry,re,-++ ,74) € Z% is arbitrary but fixed, k = (ky, ko, -+ , ka) € Z7,
t = (t1,to, -+ ,tqg) and Ay = (Mky, Akys -+ 5 Ak, ) are elements of R, and || - ||, denotes the norm
of L*(I,), where I, := [nr,w(r+2)].

Theorem 7. Assume that |ky — M\,| < L4 =1,-++ . d. If L < 1/4, then {e"*! — it | ¢
Z% is a Bessel sequence in L2(1,) with bound Ba(L).

Proof. Since L will remain fixed throughout the proof, the abbreviation B; will be used for
By(L). The assertion will be proved by induction on d.

For d = 1, the assertion follows from [39, pp. 42-44] by a change of variable of the form
xr—x—(r+1)m.

The inductive step is proved as follows: Let {c;} be an arbitrary sequence in ¢2, let J(d)
denote the set of all k € Z¢ for which these inequalities are satisfied, and let Hy, Hy C RI~>
be such that I, = [1ry, 7(r1 +2)| X Hy = Hy X [7rg, w(rq+ 2)]. The projection of t € R onto
RI= will be denoted by #, i.e. £ := (t;,t9,--+ ,t4_1). Also, kky will be used instead of k.

Since
Z Ck[ei(k,t> o ei(Ak,t)} _
kezd
Z Ckeikdtd[ei(,a . ei(f\k,f)} 4 Z Ckeim,a [eikdtd _ Mgt 7
kezd kezd
it follows that
| Z Cr [ei<k’t> — ei</\k’t>} |r < Ji+ Jo,

kezd
where i )
Jl = || Z Ckeikdtd [el<k,£> o ei<>\k7£>} ||'r,
kezd
and i
J2 = || Z Ckei<)\k,£> [eikdtd _ e’»\kdtd} ||r
kezd

Thus, the inductive hypothesis and Bessel’s identity imply that

w(ri+2) ' o o )
J12 :/ 1 /H | Z Z [Cfgkd ezkdtd”ez(k,t) o ez()\k,t>H2 dtdtd S
2

m kezd-1 ka€Z
11



w(r1+2)
Bd—l/ 1 Z Z |Ckk elkdtd|2 dtg = Ba Z Z |Ckkd = Bi Z |Ck|2-
™1

kezd—1kqeZ kezd-1kq€Z kezd
On the other hand the inductive hypothesis yields
w(rq+2) <
J22 _ / / (rq Z ckei<’\k’t> [eikdtd - e“‘kdtd”Q dtydi <
Ha Jmra deZkEZd 1

Bif Y1) cye Ot |2 g

H kq€Z fegd—1
An application of the triangle inequality, Bessel’s identity, and the inductive hypothesis shows

that
1/2
[ 1Y ce™opd] <
2 ega—
1/2 1/2
(/H S e, oi(R.D) dt) n (/H B> Clékd[ei<k’t> it df) <
2 fkegd-1 2 jezd-1
1/2 1/2 1/2
1/2
(Z IC;;kd|2> +(Bd—1 > IC;;kdlz) = (1+ B3 )( >, IC;;kdIQ) :
kezd-1 kezd-1 kezd-1
Thus
J2< Bi(1+ B2 S el
kezd
whence the conclusion follows. |

Applying Theorem 5 we obtain:

Corollary 2. Assume that |ky — A\,| < L,0 =1,--- ,d, and that L < 1/4. If B4(L) < 1, then
{e’wb k€ Z} is a Riesz basis in L*(1,.) with frame bounds [1—Bq(L)?]? and [1+ B4(L)Y??2.

The requirement By(L) < 1 in the statement of the preceding corollary is somewhat cum-
bersome. The following proposition, which will be useful in the sequel, gives upper and lower
bounds for By(L), as well as a sufficient (but not necessary) condition for By(L) < 1 that is
easier to verify:

Lemma 1. We have:
(a) If 0 < By(L) < 1, then By(L) |1+ By(L)Y?24=1) < By(L) < 991 By(L).

(b) Let 0 < a < 1. If
1—a9t

V2

1
0<L<nteos™( ) — 7
then B4(L) < a.

12



Proof. (a) We proceed by induction on d. The inductive steps are proved as follows:
Bas1(L) > [Ba(L)'* + Bi(L)"?Ba(L)"?)? >

By(L) {1+ Bi(L)2}* 4 By(L)2{1+ Bi(L)2}12 = By(L) [1+ Ba(L)*,
and
Busi(L) < 3 Bi(L)Y2 4+ By(L)V2(1+ 31 < (3B, (L))
(b) The hypothesis implies that cos(rL+7/4) > 27/2(1—a9'=%). Thus cos(rL) —sin(nL) >
1—a9'" i e. By(L) < @9'7 and the conclusion follows from (a). O

Remarks:

Note that for a = d = 1, the condition in Lemma 1(b) reduces to 0 < L < 1/4.

It is easy to see that the inequality A+ B+ C' < B;(L) mentioned in the proof of Theorem
7 can be established under the weaker assumption that L < 1/2. However, since 0 < L < 1/2
and Bi(L) < 1 imply that L < 1/4, and, conversely, 0 < L < 1/4 implies that By(L) < 1,
nothing is gained by it. It is also clear that, for d = 1, the condition B;(L) < 1 is redundant.

In [37, Lemma 3.1.6], it is shown that given € > 0 there is a § > 0 such that if |k — \g| <9
for every k € Z¢, then {1 — et k€ 79} is a Bessel sequence in L?(—r, ) with bound
€.

For d = 1, Corollary 2 is variously known as Kadec’s 1/4-theorem ([39]), or the theorem of
Paley-Wiener and Kadec ([19]). The latter also contains a multivariate version of the theorem
for tensor product spaces. Note, however, that none of these results give frame bounds.

The condition L < 1/4 is known as the Kadec-Levinson condition ([2]). The study of the
stability of {e™,n € Z} was initiated by Paley and Wiener who showed that {e*=',n € Z}
is a Riesz basis in L*(—n,7) provided that |\, —n| < L < 772, Eventually, Kadec showed
that 72 could be replaced by 1/4.

It is well known that for d = 1, L cannot equal 1/4. Whether this remains true if d > 1 is still
unknown: The existing one-dimensional proof ([39, p. 122]) is based on growth properties of
entire functions of one complex variable, and in particular on the fact that, with the exception
of the zero function, the zeros of such functions do not hace a finite limit point. This is not
necessarily the case for entire functions of more than one complex variable (cf. e. g. [27]),
making a straightforward generalization of the one-dimensional proof impossible.

There are a number of conditions guaranteeing that a sequence of exponentials is a frame
in L?(—m, ). For example Jaffard [26] gives a complete characterization of such sequences in
terms of properties of the sequence {\, }, thus generalizing earlier work of Duffin and Schaeffer
[15]. However, none of these results gives any information about frame bounds either. Others
do ([19, 20, 22, 23]), but are not applicable in this context.

5. WAVELET FRAMES AND BASES.

In this section a will be a fixed positive real number, whereas b will be a positive real
number which will occassionally be allowed to vary. Given a function ¢ : Rl — C, and
gk € 2% gy jn(x) == a®/?p(alx — bk), and @, := {dpx, ],k € Z}. Given a fixed sequence
Niwr gk € 24 C RI i (@) := a®2¢(aTx — bA;x), and @ = {o7) j,k € Z9}. 1f there
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is no danger of ambiguity, the subscript “b” will be omitted. By abuse of notation, ¢ will be
called the mother wavelet.

The first two theorems in this section study the effect of a perturbation to the original
sampling sequence, replacing the sequence of integers by a double sequence {\;}. Roughly
speaking these theorems say that, given a smooth ¢, the frame condition and the Riesz basis
condition are preserved under perturbation of the sampling points, if the accuracy of the
sampling is increased as the resolution is increased or decreased (i.e. as |j| increases). At first
glance one might think that this is not a very satisfactory state of affairs, since in order to
implement the frame algorithm for a frame {fi,k € Z*} in any Hilbert space, one must know
the frame operator, and therefore all the elements f;. However, as pointed out by Grochenig,
in practice one uses a truncation of the frame operator. In [22, Lemma 2| he presents a
modified frame algorithm using these truncations. (A generalization to certain operators in
Banach spaces, with error estimates, can be found in [19, p. 308|.) Thus, knowledge of an
arbitrary finite number of the f; suffices for practical purposes.

Theorem 8. Let ||¢p(z + h) — ¢(x)| < C|h|*, where 0 < a <1, and let
§:=02C" Y |k — N
j,kezd

If ® is a wavelet frame (wavelet Riesz basis) in L*>(RI) with bounds A and B, and § < A,
then ®} is a wavelet frame (wavelet Riesz basis) in L*(R) with bounds [1 — (6/A)/?]2A and
1+ (6/B)Y%%B.

Proof.
[5(x) = S5 (@) = aF|$(a’x — k) — (a’z — D) [|* =
lo(x) — p(x + bk — bAR)|* < b**C2 [k — Aju
Thus
> N95a(@) = &% (@) 0°C 37 |k = Al =6,
j,kezd j,kezd

and the assertion follows from Theorem 4 and Theorem 6. 0

In the sequel, | - |;”denotes the taxicab norm (which was defined in Section 2). The next

theorem does not require any knowledge of the constant b:
Theorem 9. Let ||¢p(x + h) — ¢(z)|| < Clh|*, where 0 < a <1, let
6y =20 [2+ (2m)¥?, O 1= w412 4|
and 40)/(4+d 4/(4+d
M — (27_‘_)711{61[ Z |k o >\',k|§ o) /(4+ )}1/2 +52[ Z |k _)\j,k|1/( + )]1/2}2’
jkezd jkezd
and assume that |k—Xj |1 <1 forj,k € Z. If M < A and ® is a wavelet frame (wavelet Riesz
basis) in L*(R") with bounds A and B, then ®} is a wavelet frame (wavelet Riesz basis) in
LA(R") with bounds [1 — (M/A)Y?2A and [1 + (M/B)Y??B.

The proof of this theorem is based on the following proposition:
14



Lemma 2. Let f € L*(RY), §,( € Rl, || € 2%, 7(8) == (em) /1B 7(8) = IT1(119),
and Arf = [ x ex, where “*” denotes the convolution product. Then

|ARf (2 + ) = Apf ()| < kD227 EDEE= £ |,
Proof. Let k be arbitrary but fixed. Since both

/ F(t)e /2 gy
RI

and
[ e i — sy, 1< <d

are uniformly convergent in RI, differentiation under the integral sign is allowed. (cf. e.g.
138, p.350, Thm.8|). Thus, by the Mean Value Theorem there is an element s € R such that

Af(z + ) — Apf(z) = k® (2m) /2 Zk% /f Rt /2, _ s dt.

J=1
But
1/2
|/f Je et )ﬁ<iﬂ{/e“”7wm%4 -
RT
1/2
”f” —(d-1) (d 1/2\/7
2k3 ’
and the conclusion follows. O

Proof of Theorem 9. Assume first that \;; # k. and let n(j, k) := |1 + |k — Aj,k|f2/(4+d)J.
(Here “|.|” means the integral part). Then
k= Xl 7 < n(G k) < 20k — Al 4.

If the convolution operators A,, are defined as in Lemma 2, then [35, p.205 Lemma 9.2.4| and
the hypotheses imply that

)4/2
e Q

Since [|o;ll = 6] = 6%, applying (3) and then Lemma 2, we see that

||¢Jk - ¢{p}|| < ||¢_7k - n(]k Qb‘y k” + ||An(]k gbjk — n(]k ]k || + ||An(]k ¢{p} {p}” <

o
G myeEne  Mnand(@) = Auadle +k = Al <
5 [n(j. k) 4429 1

+ 1olI1E = Ajklr <

{n(j, k) }o(2m)d/? (2m)d/2

15



5y [k — Aj7k|§2a)/(4+d) md/A@+ /2 A ?/(4+d)”¢” i
(27‘(‘)d/2 (27T)d/2
(2m) 281 |k — A £ D 0y ke — Agli ).

Since this inequality holds trivially if A, = k, the assertion follows from Theorem 4, Theo-
rem 6, and the triangle inequality. O

The next theorem studies the effect of perturbing the mother wavelet. This requires some
care, since even a small perturbation may destroy the frame. Indeed, if a function 1) generates
a wavelet frame, then =19 ()2 must be in L(R!) (cf. [11, 12]). Thus, if ¢ generates a wavelet
frame in L2(R[) and if, for instance, ¢ (z) := ¢(z) +ex [19_, sin ¢, then ¥ will not generate
a wavelet frame.

A double sequence { fj 1, j, k € Z%} C L*(RI) will be called semiorthogonalif for every pair of
J,m € Z% with j # m, and any arbitrary choice of k and n in Z¢, the functions f;; and f,,, are
orthogonal. (In other words, for every pair of j,m € Z¢ with j # m, and any arbitrary choice
of k and n in Z¢, the functions exp(—a72ri{z, bk)) f(a7z) and exp(—a ™2mi(z, bn)) f(a ™)
are orthogonal.) This is consistent with the definition of semiorthogonality for wavelets intro-
duced by Auscher and by Chui and Wang (cf. [11]).

Theorem 10. Let ® be a semiorthogonal sequence in L2(Rf), and let 1 be any function in
the closure of the linear span of {pox, k € Z%}. If ® is a wavelet frame (wavelet Riesz basis)
in L*(R") with bounds A and B and |[¢ — ¢|| < A3?/B, then ¥ := {1, 5,k € Z%} is a

semiorthogonal wavelet frame (wavelet Riesz basis) in L*(RI) with bounds

(1= (B/A?)]|l = )?A  and — ([L+ (B?/A)]|¢ - ¢|)°B
Proof. The semiorthogonality is trivial. Let g := ¢ — 1, and let T be the frame operator, i.e.
= Z Z (f, Djk)Djik-
jezd kezd

The hypotheses imply that, if j £ 0, then (g, ¢;,,) = 0. Thus, ¢ = > a;,¢0,,(x), where
meZd
am = (T g, po.m). Let {c;jx} be any finite sequence of scalars. Then:

”chjk.g]k”Q = ”ZZ Z amcjk¢3m+k”

Jj k mezd
BY > > lawcin> =B ) |anl? ZZ|Cyk|
J k mezd meZd

But
Yo daml> = > KT, dom)? < BT 'g|> < BA7?||g|*,
meZd meZd

where the last step follows from, e. g. [3, p. 100, Theorem 3.2]. We have therefore shown that

{djk — Vjr j, k € Z%} is a Bessel sequence with bound (B/A)?||¢ — 1||?, and the conclusion

follows from Theorem 3 and Theorem 5. 0
16



A function ¢(z) € L*(R") will be called orthogonal with respect to a, if for every pair of
j,m € Z% with j # m and any arbitrary choice of § and X in R/, the functions ¢(a’z + J) and
#(a™x+ ) are orthogonal in L?(R!). This is the same as saying that for every pair of j,m € Z¢
with j # m, and any arbitrary choice of 6 and A in R, the functions exp(a72ri(z, 8))d(az)
and exp(a~"2mi(x, \))¢(a~™z) are orthogonal in LQ(Rf)

Theorem 11. If ® := {¢;, 7,k € Z%} is a semiorthogonal sequence in L*(R!), such that ¢

18 essentially bounded and supp{qZA)} is contained in an interval I of the form [0,1/b] + h, then
¢ s orthogonal with respect to a.

Proof. Let A € R? be arbitrary. If {cy,k € Z¢} is the sequence of Fourier coefficients of
e27rz (t,\) then

~

: 27rz A ) A —2mi(t,bk) |2 _ 27rzt)\ —27bi(k,t) |2 <
]\}1_1)20/|¢ t) > e 2 dt = hm/|¢ —o(t) > e 2dt <

|k|<N |k|<N

HQASHgO lim / |e2m'(t,/\> _ Z Ck€727rbi(k,t)|2 dt = 0
N—oo JT |K|<N
This implies that ¢(t ) 2mi{t:A) is in the closure of the linear span of {¢ox, k € Z%}, and therefore

that for any j € R, qb( N7 '€m (U is in the closure of the linear span of {ng,k: k € Z4}. Since
® is semiorthogonal, the conclusion follows. O

Using Theorem 7 we can show that we may perturb a frame into a frame or a Riesz basis
into a Riesz basis, without necessarily increasing the accuracy of the sampling sequence as ||
increases: The next theorem shows that it is possible to perturb a coherent state into another
coherent state.

Theorem 12. Let ® := {¢;, 5,k € Z%} be a wavelet frame (wavelet Riesz basis) in L*(RI)
with bounds A and B such that ¢ € L*(R") is orthogonal with respect to a. Forr € Z?, let

L= [mr,w(r+2)],  Jpi=[r/(2b),(r +2)/(2b)], L= sup{lk—Nxl,5.k € 2% < 1/4,
— i L) 2 . 9 lBl 2
Sy = esssup{|p(t)|,t € J,} < o0, (27b)¢ ;Sﬂand My = ~ (2nb)d és

If ® is a wavelet frame (wavelet Riesz basis) in L*(RI) with bounds A and B, and M < A,
(in particular, if My < A,) then ®P} is a wavelet frame (wavelet Riesz basis) in L*(RI) with
bounds [1 — (M/A)Y?2A and [1 + (M/B)Y??B.

Proof. Lemma 1(a) implies that M < M. Let || -||, denote the norm of I, and let {c;x} be an
arbitrary finite sequence of scalars. The hypotheses and the isometry of the Fourier transform
imply that

135" cinlds — oD = ancmgk—(b{p} 12 = ancgkm—qb{p})n?
J k
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But
|| ch,k(q?)j,k {p} ||2 dj / | ZCJ k¢ ajt 727rza J(bk t)y e*?ﬁia7j<b/\j’k,t>}|2 dt =
k

/ | Z ¢, k¢ 72m (bk,t) 727ri(b/\j7k,t>}|2 dt — / |¢A)(t)|2 | ch,k{ei2m<bk’t> . 6*2ﬂi<b)\j,k:t>}|2 dt —
k
Z/ |¢ |2 |Z Cik {6—271'1 (bk,t) e—27ri(b)\j7k,t>}|2 dt <

rez
(@)1 5 S S exade ) — e O =
rez
(2mb)~ Z 52|| Z cj, k{e (k.t) ei<_’\j*—k’t>}||72q.
rez
Since [k — (=Xj—i)| = | =k — Xj—&| < 1, setting S := (3 S?)"/? and applying Theorem 7, we
rezZ
see that
13" cjn(in — GBI < (27b)"S?Ba(L Z el
k
Therefore
17> cinldjn — i) 1> < (2mb) 7S By(L Z Z ekl
ik
and the conclusion follows from Theorem 3 and Theorem 5. |

Example 4. Let a > 2 be an integer, and let b > 0 be given. Assume that ®, := {¢; s, 7,k €
Z} is an orthonormal basis in L?(R) such that 6 is essentially bounded and supp{qz@} is con-
tained in an interval of the form [0, 1/b] +h. Thus, Theorem 11 implies that ¢(z) is orthogonal
with respect to a. Let n > 0 be an integer relatively prime to a. By the multivariate version of
the Second Oversampling Theorem [9, Theorem 8] (see also [10]), @y, := {Pp/n k. J. k € Z}
is a wavelet frame with bounds A = B = n. Thus @, and ¢ satisfy the hypotheses of
Theorem 12.

The hypotheses of Theorem 10 seem to be applicable to a rather small class of mother

wavelets. The situation improves if a is an integer, for then the Second Oversampling Theorem
can be used:

Theorem 13. Let a > 2 be an integer, and let ¢ € L*(RV) be such that qu 15 essentially

bounded and supp{d} is contained in an interval of the form I, == [—(n/2)(1/b), (n/2)(1/b)],
where n is relatively prime to a. Let 1 € L*(R) be such that there exists a real number X\ > 0
for which

|6(t) — ()] < Ao(t)]  a.e.
If X < (A/Bn®)Y? and ® is a wavelet frame (wavelet Riesz basis) in L?(RI) with bounds A and
B, then W is a wavelet frame (wavelet Riesz basis) in L*(RI) with bounds [1 —\(n?B/A)Y/?2A
and [1 + A(n?/B)'??B.
18



Proof. Let f be an arbitrary element of L?(R'), and let p(z) be any function in L*(R) such
that supp(p) C I, and p is essentially bounded. Since {b%?2(2/n)2e=2min™ iz} j 74} ig
an orthonormal basis of L?(I,,) and f(a’t)p(t) is in L?(1,,), Plancherel’s formula and Bessel’s

identity yield:

Yo mminl? = Do KFLF( NI =

L/l
j,kezd j,kezd \/
Z a_dj Z |/f a Jt —2mia~In=1(bk,t) dt|2 _
jezd kezd
i 3 |/ (at)pE)e 27 k) g2 = 3 qdip=d(n/2) /|f P dt.
yezd kezd I jezd

By the multivariate version of the Second Oversampling Theorem {¢y/y k. 7,k € 74 is a
wavelet frame with bounds n¢A and n?B. Thus, applying the preceding identity from right to
left with p = ¢ we obtain:

S atibi(n/2) /|fa3t 0I%dt < n’B|f|>.

jezd

Applying now the same identity from left to right, but with p = ¢ — 1, we obtain:
Z |f¢byk_¢b]k|2 Z |f¢b/nyk_¢b/n]k>| —

j,kezd j,keZzd

> ab=n/2)" [ {7(@0]d(t) — d(0)]dt <

jezad

XY m/2)" [ |f@0on) d < Xn’B P

jeza

Applying Theorem 3 and Theorem 5, the conclusion follows. O

Finally, the method of proof used in the preceding theorem also allows us to prove a the-
orem on the stability of wavelet frames and Riesz bases under perturbations of the sampling
sequence, that can be used to perturb a coherent state into another coherent state:

Theorem 14. Let a > 2 be an integer, and let ¢ € L*(RV) be such that qu 18 essentially
bounded and supp{} is contained in an interval of the form I, := [—(n/2)(1/b), (n/2)(1/b)],
where n is relatively prime to a. Let |\y—k| < L, := (7 /n)4(A/B) and M := B(n/m)?By(L).
Assume that, either L < 1/4 and Bq(L) < a, or a <1 and

l—a 917d) 1
V2 4
If ® is a wavelet frame (wavelet Riesz basis) in L*(R") with bounds A and B, then ®P} is q

wavelet frame (wavelet Riesz basis) in L*(R) with bounds (1 — M/A)*A and (1+ M/B)?B
19
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Proof. If o <1 and

1—a9t? 1

T) - Z:

then Lemma 1(b) implies that By(L) < a. Let f be an arbitrary element of L?(R[). Proceeding
as in the proof of the preceding theorem, we see that

-1

L <nteos™!(

> a2 [ | f@né) at < Bl S (4)
jezd
Also
S WL g — G <D L B — by P =
Jkezd jkezd
Z dj Z |/ f ajt —27rm_1(bk,t> _6—27rm_1(b>\k,t> dt|2.
jezd kezd

But Theorem 7 implies that {e 2mn "k} _ o=2min"1bAt) I = 7Y g a Bessel sequence in
L*(I,) with bound (n/QW)db’dBd(L) Thus

Z |/ f ajt 727rz'n*1(bk,t> 6727rzn bAkt}dﬂQ (TL/Qﬂ')db dBd / |f ajt ( )|2 dt

kezd
and (4) implies that

S S, Bk — S E < M| fII.

jkezd
The conclusion now follows from Theorem 3 and Theorem 5. |

Remark:

The preceding theorem is essentially a quantitative version of a theorem of Seip ([33, Theorem
5]), for the particular case in which n is relatively prime with respect to a. Seip’s result is
that for functions ¢ satisfying certain hypotheses, if @ is a Riesz basis in L?*(R) then there is
a number € > 0 such that, if \y = k + ¢, then also 7} is a Riesz basis in L?(R). This result
in turn generalizes a theorem of Daubechies [13, Theorem 2.10, p. 985|, who assumes that the
unperturbed sequence ® is an orthonormal basis of L*(R).

6. GABOR FRAMES AND BASES.

In this section, a > 0 and b > 0 are elements of R?, j.k € Z¢ and r € Z*. Given
¢:RI - Cl and j,k € RI,
Gap,jk(T) 1= 62m<jb’x>gb(x —ka), and D@, := {Pup ik J. k€ R[},
where
ka = (kiay, koas, ...  kqaq), and  jb:= (j1b1, Jobo, ... , Jaba).
Given a fixed sequence {\;, k € Z9} c RI,

Sipl@) = V0w = ). ¢>;E"£] (@) = T o(z — ka),



1 1
O = {0 d k€ Ry @4 = (U] LI e R},
When there is no danger of ambiguity either or both of the indices a and b will be omitted.
The first theorem in this section studies the effect of perturbing the mother wavelet.

Theorem 15. Let {h,, 1< r < n} € Rl and J, := U ([0,1/b] + he). Let ¢,% € LA(R') be

such that supp(¢ — ) € J,. Let C, denote the characteristic function of J,, (% = ¢, and,
forr >0, ¥ (2) := §(x) + Co(2)[1h(2) — $(x)]. Let
M, == esssup{ Y [0 (t —na) — Tt —na)|* t € RI} < 0,

nezd
and assume that ® is a Gabor frame (Gabor Riesz basis) in L*(R') with bounds A and B. If
5= S0 MM < b2 AV,
r=1

then W is a Gabor frame (Gabor Riesz basis) in L*(RI) with bounds [1 — (62/A)/2b=4/2]2A
and [1 + (62/B)/2p=4/22 B,

Proof. Let I, :=[0,1/b] + h,,

t):= Y [t —na) = (t —na)P?,
nezd

and let f € L*(RI). Since supp(x{™ — "=t C J,, proceeding as in the proof of [3, p. 111,
Theorem 3.13] it is readily seen that

O A AU AOE S pl TR

jkeZd
Thus,
1/2 1/2
( S S bk — ¢j,k>|2) ( S e P ) <
j,kezd j,kezd
1/2

)3 ( SOl el ”>|2) <b 25 1],

r=1 \jkeZzd
and the conclusion follows from Theorem 3 and Theorem 5. O

Example 5. Let [ := [0,1], and assume that ¢ € L?*(R) and supp(¢) C I. Let p(t) :=
AL/2¢ —2\272¢2 /2

A/2=A 22 i () < ¢ < 1,
q(t) == :
0, otherwise,
and ¥ (t) := ¢(t) +q(t). By an application of the integral test as in e.g. [12, p. 65], it is readily
seen that
Yot —na) =yt —na)* = 3 |t —na)|* < 3 [p(t = na)|* <

nez nez nez
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(Aa) / T e N = (ay/T) T+ A

Thus, Theorem 15 implies that, if ® := {¢;,j,k € Z} is a Gabor frame (Gabor Riesz basis)
in L*(R) with bounds A and B, and § := (ay/7) '+ A < A, then ¥ is a Gabor frame (Gabor
Riesz basis) in L?(R) with bounds [1 — (6/A)Y/?2A and [1 + (6/B)Y/??B.

It is now time to study the effect of perturbing the sampling sequence.
Theorem 16. Let h, 3,7 € Rl and { M\, k € Z%} C Rl be such that

0<y—B<1/b, 0<h<(1/2)(1/b+B—7), —h(l/a) <X —k<h(1/a).
Moreover, let ¢ be such that supp(¢) C |B,7|, and assume there is a point ¢ € Rl such that
My, := sup{|o(t — ka) — é(t — (c+ Mp)a)|*,t € R} < o0.

If ® is a Gabor frame (Gabor Riesz basis) in L*(RI) with bounds A and B, and M :=
Sweza My < bl A, then &P} is a Gabor frame (Gabor Riesz basis) in L*(RI) with bounds
[1— (M/A)Y2b=922 A and [1 + (M/B)"*b=*?B,

Proof. Making, if necessary, the change of variable *+ — = + ca we may assume, without
essential loss of generality, that ¢ = 0. Let f(t) € L*(R!) and I := |3, 3+1/b], I, := I+r(1/b)
Since {b%2e?m®i®) j ¢ 74} is an orthonormal basis in L?(I), setting

= > flt=r(1/){olt — Mea —r(1/)] — o[t — ka —r(1/b)]},

rezd
we have
S b= afP = 3 S| [ 1060 — o ] def? =
j,kezZd kezd jezd
Y Y IY [ f@ou® - @ldr = X 3 | [ e R i,
kezd jezd rezd keZzd jezd

However, assuming that Fj, € L?(RI) for each k, Plancherel’s formula implies that
Z Z |/ —27i( bjt dt|2 . b_ Z / |Fk |2 dt.
kezd jezd kezd

Moreover, the hypotheses guarantee that the support of ¢t — ka —r(1/b)] — ¢[t — A\, — r(1/b)]
is contained in [8 — h,7y + h] + ka + r(1/b), and we therefore conclude that, for k € Z9, the
supports of the functions ¢t — A\ga —r(1/b)] — @[t — ka —r(1/b))] are mutually disjoint. Thus,

S /|Fk dt=b3 /|ft r(1/0))[(t—Asa—r(1/b))—d(t—ka—r(1/b))]]2 dt =

kezd kezdrezd

b= S [1F®I6(t ~ Ma) — olt — k)] Fdt <5~ Y My f],
kEZd kEZd
and the conclusion follows from Theorem 3 and Theorem 5. O

We also have:
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Theorem 17. Let h, 3,7 € Rl and {\¢, € Z%} € Rl be such that
0<vy—B<1l/a, 0<h<(1/2)(1/a+B-7), (y—B+h—1/a)(1/b) <A\, —k < h(1/b).
Moreover, let ¢ be such that supp(¢) € [3.7]. and assume there is a point c € R! such that

My, := sup{|o(t — kb) — ¢(t — (c + \)b) 2t € RIT < oo.
Let ® be a Gabor frame (Gabor Riesz basis) in L*>(RI) with bounds A and B, and assume
that M := Y jcpa My < a® A. Then {¢>§i},j, k € Z% is a Gabor frame (Gabor Riesz basis) in
LA(R") with bounds [1 — (M/A)Y2a=%?2A and [1 + (M/B)"2a=?|2B.
Proof. Note that

Foa ) = o157 0.

Since |27i(jb, ka)| — 1, from Plancherel’s formula we deduce that {¢y. i . k,7 € Z} is a
Gabor frame in L*(Rl) with bounds A and B, and Theorem 16 implies that {g%ﬁfkd? k,je
7%} is a Gabor frame in L?(RI) with bounds [1—(M/A)Y2a=%?2A and [1+(M/B)"/?a~%??B,
or a Gabor Riesz basis with the same bounds. However,

~ 11 —ex
leg,zﬁ—k,j _ -7:¢£|,B|,|ﬂ em(U+ADLI)

Since |e~2mAsbka)| — 1 the conclusion follows by another application of Plancherel’s formula.

O
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