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Abstract. For any dilation matrix with integral entries A ∈ Rd×d, d ≥ 1 ,

we construct two families of Parseval wavelet frames in L2(Rd). Both families
have compact support and any desired number of vanishing moments. The

first family has | detA| generators. The second family has, in addition, any
desired degree of regularity. In this case, the number of generators depends on

the dilation matrix A and the dimension d, but never exceeds |detA|+d. Our

construction involves trigonometric polynomials developed by Heller to obtain
refinable functions, the Oblique Extension Principle, and a slight generalization

of a theorem of Lai and Stöckler.

1. Introduction

We are interested in methods for constructing compactly supported wavelet
frames with good properties of approximation. Tight wavelet frames and orthonor-
mal wavelets are used, for instance, in image processing and data compression.
Indeed, tight framelets have recently become the focus of increased interest be-
cause they can be computed and applied just as easily as orthonormal wavelets,
but they are easier to construct.

In dimension 1 and with dyadic dilations, compactly supported orthonormal
wavelets with any number of vanishing moments and any degree of regularity were
constructed in [5] (see also [6]).

For the multivariate case with a dilation matrix A ∈ Rd×d, d ≥ 1, with integer
entries, the problem of constructing compactly supported wavelet frames where the
number of generators does not depend on degree of regularity nor on the number
of vanishing moments in L2(Rd) is of a different nature.

Although there is a rich literature that discusses different constructions of com-
pactly supported wavelet frames, we only mention a few results that are closely
related to our constructions. Ron and Shen [25] (see also [26]) focus on construc-
tions of compactly supported tight famelets in dimension 2, and they also describe
an algorithm for constructing compactly supported tight affine frames in any dimen-
sion d and with any dilation matrix. Gröchenig and Ron [11] construct compactly

supported framelets with any desired degree of smoothness in L2(Rd) and asso-
ciated to any dilation matrix. In these constructions, the number of generators
increase with the degree of smoothness. As far as we know, the paper by Han [16]
is the only one that provides a constructive proof of the existence of tight wavelet
frames associated to a general dilation matrix and such that their generators are
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compactly supported, with any given degree of regularity, any fixed number of van-
ishing moments, and a fixed number of generators. In particular this number of
generators is bounded by (3/2)d|detA|. The proposed method by Skopina [32] (see
also [33] and [34]) for the construction of compactly supported Parseval wavelet
frames with high approximation order is given by a simple and explicit algorithm.
The number of generators does not exceed (d+1)|detA|−d. Moreover, the number
of generators can be reduced to |detA| for a large class of dilation matrices A. In
Krivoshein [19], wavelet frame systems providing any desired approximation order
are constructed for any matrix dilation. For some particular dilation matrices there
are other types of constructions, see e.g. [2, 4, 20, 28, 29, 30, 31].

An extensive study of multivariate wavelet frames can be found in the books by
Han [12] and Krivoshein, Protasov and Skopina [18].

In this paper, for any dilation matrix A we construct two families of Parseval
wavelet frames in L2(Rd) associated to A, with compact support and any desired
number of vanishing moments. The first family has |detA| generators. For the
second family the number of generators depends on the dilation matrix and on the
dimension d, but never exceeds |detA|+d; it has the additional property of having
any given degree of regularity. Our starting point is the paper by Han [16]. In
order to construct a refinable function we will need the trigonometric polynomials
developed by Heller [17] associated to a dilation factor and we will use the Smith
normal form of A. After constructing the refinable function we will use a slight
generalization of a theorem of Lai and Stöckler [21] and the Unitary Extension
Principle to obtain our familes of Parseval wavelet frames. Our construction is
made on the Fourier transform side.

We now introduce the notation and definitions that we shall use in what follows.
The sets of strictly positive integers, integers, rational numbers and real numbers
will be denoted by N, Z, Q and R respectively. For 0 ≤ k ≤ n,

(
n
k

)
= n!

k!(n−k)! is

the usual binomial coefficient. Given a set S ⊂ Rd, χS will denote its characteristic
function.

Given a real–valued matrix A, its transpose will be denoted by A∗. The identity
matrix will be denoted by I.

We say that A ∈ Rd×d is a dilation matrix preserving the lattice Zd if all eigenval-
ues of A have modulus greater than 1 and A(Zd) ⊂ Zd. The set of all d×d dilation

matrices preserving the lattice Zd will be denoted by Ed(Z). In what follows, A will
denote a fixed element of Ed(Z),and D := |detA|. With some abuse in the nota-

tion, we will use the same letter A for a linear map Rd → Rd and for its associated
matrix with respect to the canonical basis. Note that if A ∈ Ed(Z) then |detA| is an

integer greater than 1, and the quotient groups Zd/AZd and A−1Zd/Zd are well de-

fined. By ∆A ⊂ Zd and ΓA we will denote a full collection of representatives of the
cosets of Zd/AZd and (A∗)−1Zd/Zd respectively. From [10, Lemma 2] we know that

Zd/AZd has exactly |detA| cosets, which readily implies that also A−1Zd/Zd has

exactly |detA| cosets. For a real number r, rZd := {(rk1, . . . , rkd) ; k1, . . . , kd ∈ Z}.
A sequence {φn}∞n=1 of elements in a separable Hilbert space H is a frame for H

if there exist constants C1, C2 > 0 such that

C1‖h‖2 ≤
∞∑
n=1

|〈h, φn〉|2 ≤ C2‖h‖2, ∀h ∈ H,
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where 〈·, ·〉 denotes the inner product on H. The constants C1 and C2 are called
frame bounds. The definition implies that a frame is a complete sequence of elements
of H. A frame {φn}∞n=1 is tight if we may choose C1 = C2.

Let A be any dilation matrix in Ed(Z). A set of functions Ψ = {ψ1, . . . , ψN} ⊂
L2(Rd) is called a wavelet frame or framelet associated to the dilation A, if the
system

{ψ`,j,k(x); j ∈ Z,k ∈ Zd, 1 ≤ ` ≤ N},
where ψ`,j,k(x) := |detA|j/2ψ`(Ajx + k), is a frame for L2(Rd). If this system is a
tight frame then it is called a tight wavelet frame or tight framelet. If the functions
ψ`, ` = 1, . . . N are linearly independent they are called the generators of the frame.
If the frame constant is equal to 1 it will be called a Parseval wavelet frame or a
Parseval framelet in L2(Rd). Thus we have:

N∑
`=1

∑
j∈Z

∑
k∈Zd

|〈f, ψ`,j,k〉|2 = ||f ||2 ∀f ∈ L2(Rd).

A wavelet frame Ψ = {ψ1, . . . , ψN} ⊂ L2(Rd) has vanishing moments of order

m ∈ {0, 1, · · · }, if ψ̂`, ` = 1, · · · , N has a zero of order m at the origin.

Let f̂ denote the Fourier transform of the function f . Thus, if f ∈ L1(Rd) and

x, t ∈ Rd, then

f̂(t) :=

∫
Rd
f(x)e−2πix·tdx,

where x · t denotes the dot product of vectors x and t. The Fourier transform is
extended to L2(Rd) in the usual way.

The remainder of this paper is organized as follows: in Section 2, we will con-
struct our first family of Parseval wavelet frames while the second family will be
described in Section 3.

2. First Construction

Let A ∈ Rd×d, d ≥ 1, be a dilation matrix with integer entries. In this section we
construct a family of compactly supported Parseval framelets in L2(Rd), associated
to A, with any desired number of vanishing moments and |detA| generators.

Since A is invertible and all the entries of A are integers, there exist two d × d
integer matrices U and V with |detU | = |detV | = 1, and a d× d diagonal matrix
S = diag(s1, s2, s3, . . . , sr, . . . , sd), si ∈ N, such that

(1) A = USV.

Moreover, there is an integer r ≤ d such that si > 1 when 1 ≤ i ≤ r and si = 1
when r < i. In the case r = d, all si will be larger than 1, and if i ≤ r, then si−1|si
(i.e. si is divisible by si−1), This is the Smith normal form of A (see e.g. [23]). This
number r will play an important role in this paper because it will appear in the
construction of refinable functions and in the number of generators of the family of
Parseval wavelet frame we will construct in the next section.

Now we focus on the structure of the quotient group (A∗)−1Zd/Zd. We consider
Γ, the set of d-tuples defined by

Γ = { 0

s1
,

1

s1
, . . . ,

s1 − 1

s1
} × · · · × { 0

sr
,

1

sr
, . . . ,

sr − 1

sr
} × {0} × · · · × {0}.
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Since (A∗)−1Zd = (U∗)−1S−1(V ∗)−1Zd = (U∗)−1S−1Zd, it is not hard to see that

{(U∗)−1γ : γ ∈ Γ}

is a full collection of representatives of the cosets of (A∗)−1Zd/Zd. We define ΓA
by

ΓA := {(U∗)−1γ : γ ∈ Γ},
and, when appropriate, we will also write

ΓA := {ra}| detA|−1
a=0

with r0 = 0. Let ∆A := {qa}| detA|−1
a=0 be a full collection of representatives of the

cosets of Zd/AZd with q0 = 0.
To construct a refinable function we need the following trigonometric polynomials

on R introduced by Heller [17]. Let s and m be two integers larger than one and
let

(2) ps,m(t) :=

(
1

m2

∣∣∣1 + e2πit + · · ·+ e2πi(m−1)t)
∣∣∣2)

m−1∑
j=0

qj(1− cos 2πt)j


where qj are defined as follows:

If s is even, take b = s/2 and

qj : =
∑

k1+k2+···+kb=j

{ b−1∏
c=1

(

(
2m+ kc − 1

2m− 1

)
)(1− cos(

2πc

s
))−kc

}
(3)

×
(
m+ kb − 1

m− 1

)
(1− cosπ)−kb ,

where ki, i = 1, . . . , b, are non negative integers.
If s is odd, take b = (s− 1)/2 and

qj : =
∑

k1+k2+···+kb=j

{ b∏
c=1

(

(
2m+ kc − 1

2m− 1

)
)(1− cos(

2πc

s
))−kc

}
,(4)

where ki, i = 1, . . . , b, are non negative integers.
The following is a version of Lemma 3.1 in [17].

Lemma A. Let s and m be two integers larger than one. Then the univariate
trigonometric polynomials ps,m defined by (2) are non negative and satisfy the fol-
lowing conditions:

(i)
s−1∑
j=0

ps,m(t+
j

s
) = 1;

(ii)

lim
t→0

1− ps,m(t)

|t|2m
= 0.

Since these are nonnegative trigonometric polynomials of a single variable, from
a lemma of Riesz (cf., e.g., [6, Lemma 6.1.3] or [35, Lemma 4.6]) we know that
there are non null trigonometric polynomials hs,m on R such that

(5) |hs,m(t)|2 = ps,m(t)
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The coefficients of the polynomials hs,m(t) may be obtained by spectral factorization
([9]).

Now, let s1, . . . , sr be the terms larger than 1 in the main diagonal of the matrix
S defined by (1) and let m1, . . . ,mr be integers larger than one. Let

(6) H(t) := Q(U∗t),

where

Q(t) = Q(t1, . . . , td) :=

r∏
j=1

hsj ,mj (tj).

We have the following.

Lemma 1. The trigonometric polynomial H defined in (6) satisfies

(i) ∑
r∈ΓA

|H(t + r)|2 = 1

and
(ii)

lim
‖t‖→0

1− |H(t)|2

‖t‖2m0
= 0,

where m0 = min{m1, . . . ,mr}.

Proof. We first verify (i). We have∑
r∈ΓA

|H((U∗)−1t + r)|2 =
∑
γ∈Γ

|H((U∗)−1t + (U∗)−1γ)|2 =
∑
γ∈Γ

|Q(t + γ)|2

=

s1−1∑
`1=0

· · ·
sr−1∑
`r=0

 r∏
j=1

|hsj ,mj (tj +
`j
sj

)|2


=

r∏
j=1

(
sj−1∑
`=0

|hsj ,mj (tj +
`

sj
)|2
)

= 1,

where the last equality follows from (i) in Lemma A.
Let us now verify (ii). Using (i), we have

lim
‖t‖→0

1− |H((U∗)−1t)|2

‖(U∗)−1t‖2m0
= lim
‖t‖→0

∑
r∈ΓA\{0} |H((U∗)−1t + r)|2

‖(U∗)−1t‖2m0

=
∑

γ∈Γ\{0}

lim
‖t‖→0

|Q(t + γ)|2

‖(U∗)−1t‖2m0

=
∑

(`1,··· ,`r)∈Γ\{0}

lim
‖t‖→0

(∏r
j=1 |hsj ,mj (tj +

`j
sj

)|2
)

‖t‖2m0

‖t‖2m0

‖(U∗)−1t‖2m0
.

Since (U∗)−1 is a continuous linear operator such that det(U∗)−1 6= 0 and the

unit sphere in Rd is a compact set, there is a positive constant C such that

max
t∈Rd\{0}

‖t‖2m0

‖(U∗)−1t‖2m0
= max

y∈{Rd:‖y‖=1}

1

‖(U∗)−1y‖2m0
≤ C2m0 .
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On the other hand, given (`1, · · · , `r) ∈ Γ \ {0}, there is j0 ∈ {1, 2, . . . , r} such
that `j0 6= 0. Then, from (i) in Lemma A

lim
‖t‖→0

∏r
j=1 |hsj ,mj (tj +

`j
sj

)|2

‖t‖2m0

≤ lim
‖t‖→0

|hsj0 ,mj0 (tj0 +
`j0
sj0

)|2

‖t‖2m0
≤ lim
‖t‖→0

1− |hsj0 ,mj0 (tj0)|2

‖t‖2mj0
‖t‖2mj0
‖t‖2m0

≤ lim
‖t‖→0

1− |hsj0 ,mj0 (tj0)|2

|tj0 |2mj0
‖t‖2mj0
‖t‖2m0

= 0,

where the last equality follows from (ii) in Lemma A. Combining these estimates
we have

lim
‖t‖→0

1− |H((U∗)−1t)|2

‖(U∗)−1t‖2m0
= 0

and the assertion follows. �

We need the following refinable function.

Proposition 1. Let H be the trigonometric polynomial in Rd defined by (6). Then
the infinite product

(7)

∞∏
j=1

H((A∗)−jt)

converges to a non null continuous function φ̂ in L2(Rd) that satisfies the refinement
equation

(8) φ̂(A∗t) = H(t)φ̂(t), t ∈ Rd

and such that ‖φ̂‖L2(Rd) ≤ 1 and φ̂(0) = 1. Moreover, there exist two positive
constants C and ν such that

(9) |φ̂(t)| ≤ C(1 + ‖t‖)−ν .

In addition, the function φ ∈ L2(Rd), whose Fourier transform is φ̂, is non null,
compactly supported and ‖φ‖L2(Rd) ≤ 1.

Proof. By Lemma 1 and [16, Lemma 2.1], the infinite product (7) converges to a

non null continuous function φ̂ in L2(Rd) that satisfies the refinement equation (8)

and such that ‖φ̂‖L2(Rd) ≤ 1 and φ̂(0) = 1. .

Since φ̂ is in L2(Rd) and is non null, it follows that also φ is in L2(Rd) and is

non null. Moreover, ‖φ‖L2(Rd) = ‖φ̂‖L2(Rd) ≤ 1.

Replicating an argument of Wojtaszczyk [35, p. 79] it is easy to see that φ is

compactly supported on Rd.
The existence of the constants C and ν in (9) follow by Theorem 2.2 of [16]. �

Using ideas developed in the proof of [21, Theorem 3] and using the refinable
functions of Proposition 1, we construct the following compactly supported Parseval
wavelet frames.
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Theorem 1. Let D := |detA|, let H be the trigonometric polynomial in Rd defined
by (6), and let φ be the associated function defined in Proposition 1. For ` ∈
{0, . . . , D − 1} define

ψ̂`(A
∗t) := D−1/2

[
e2πiq`·t −H(t)

(
D−1∑
a=0

e2πiq`·(t+ra)H(t + ra)

)]
φ̂(t)

and let

(10) Ψ = {ψ`(t) ; ` = 0, . . . , D − 1}

be the set of inverse Fourier transforms of the functions defined in the preceding
displayed identities. Then Ψ is a compactly supported Parseval wavelet frame in
L2(Rd) associated to the dilation matrix A with vanishing moments of order m0.

To prove Theorem 1 we need the Unitary Extension Principle (UEP) or the
Oblique Extension Principle (OEP), a more flexible method based on the UEP.
These principles are very useful tools for constructing wavelet frames. References
on different versions of these principles are e.g. Ron and Shen [24], Chui, He and
Stöckler [3], Daubechies, Han, Ron, and Shen [7], Han [15, 13], Atreas, Melas and
Stavropoulos [1], Li and Zhang [36] and [27].

The version of the OEP we will use here may be formulated as follows:
Theorem B. Let A ∈ Ed(Z). Let φ ∈ L2(Rd) be compactly supported and refinable,
i.e.

φ̂(A∗t) = P (t)φ̂(t),

where P (x) is a trigonometric polynomial. Assume moreover that |φ̂(0)| = 1. Let
S(t) be another trigonometric polynomial such that S(t) ≥ 0 and S(0) = 1. Assume
there are trigonometric polynomials or rational functions Q`, ` = 1, · · · , N , that
satisfy the OEP condition

S(A∗t)P (t)P (t + j) +

N∑
`=1

Q`(t)Q`(t + j)(11)

=

{
S(t) if j ∈ Zd, .

0 if j ∈
(

(A∗)−1(Zd)/Zd
)
\ Zd

If

ψ̂`(A
∗t) := Q`(t)φ̂(t), ` = 1, . . . , N,

then Ψ = {ψ1, . . . , ψN} is a tight framelet in L2(Rd) with dilation A and frame
constant 1.

We also need the following technical result, see e.g. [18, Lemma 2.1.5].
Lemma C. Let D = |detA|. The following equalities hold:

D−1∑
a=0

e2πiq`·ra =

{
D if ` = 0;
0 if ` ∈ {1, 2, . . . , D − 1}

and
D−1∑
`=0

e2πiq`·ra =

{
D if a = 0;
0 if a ∈ {1, 2, . . . , D − 1}.
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Proof of Theorem 1. Let ` ∈ {0, 1, . . . , D − 1}, we denote

Q`(t) := D−1/2

[
e2πiq`·t −H(t)

D−1∑
a=0

e2πiq`·(t+ra)H(t + ra)

]
.

For j ∈ ΓA we have

D−1∑
`=0

Q`(t)Q`(t + j) = D−1
D−1∑
`=0

e−2πiq`·j

−D−1H(t + j)

D−1∑
a=0

H(t + j + ra)

D−1∑
`=0

e−2πiq`·(j+ra)

−D−1H(t)

D−1∑
a=0

H(t + ra)

D−1∑
`=0

e−2πiq`·(j−ra)

+D−1H(t)H(t + j)

D−1∑
a,µ=0

H(t + ra)H(t + j + rµ)

D−1∑
`=0

e−2πiq`·(j+rµ−ra)

Since {j + ra; a = 0, · · · , D − 1} and {j− ra; a = 0, · · · , D − 1} are full collections

of representatives of (A∗)−1Zd/Zd, using Lemma C we readily see that

D−1∑
`=0

Q`(t)Q`(t + j) = D−1
D−1∑
`=0

e−2πiq`·j −H(t + j)H(t)−H(t)H(t + j)

+H(t)H(t + j)

D−1∑
µ=0

H(t + j + rµ)H(t + j + rµ).

By (i) in Lemma 1, we have

D−1∑
`=0

Q`(t)Q`(t + j) = D−1
D−1∑
`=0

e−2πiq`·j −H(t + j)H(t).

We now apply Lemma C again and distinguish two cases: if j = 0 we get

(12)

D−1∑
`=0

|Q`(t)|2 = 1− |H(t)|2,

whereas if j ∈ ΓA \ {0}, we obtain

(13)

D−1∑
`=0

Q`(t)Q`(t + j) = −H(t)H(t + j).

From (i) in Lemma 1, (12) and (13), we deduce that the conditions of Theorem
B are satisfied and therefore that Ψ defined as in (10) is a Parseval wavelet frame

in L2(Rd) associated to the dilation matrix A.
Since Q`, ` ∈ {0, 1, · · · , D−1}, is a trigonometric polynomial and φ has compact

support, we conclude that also ψ` is compactly supported.
We now verify that ψ`, ` ∈ {0, 1, · · · , D−1}, has vanishing moments of order m0.

Since A∗ is an expansive linear map, there exists C > 0 such that ‖A∗t‖ ≥ C‖t‖.
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Therefore, bearing in mind that 0 ≤ |φ̂(t)| ≤ 1 and using (12), we have:

(14) lim
t→0

|ψ̂`(A∗t)|2

‖A∗t‖2m0
≤ lim

t→0

|Q`(t)|2

C2m0‖t‖2m0
≤ lim

t→0

1− |H(t)|2

C2m0‖t‖2m0
= 0.

where the last equality holds by (ii) in Lemma 1. This finishes the proof. �

We have the following direct consequence of Theorem 1.

Corollary 1. For every dilation matrix A and any integer m > 0, there exists
a compactly supported Parseval wavelet frame in L2(Rd) associated to A with D
generators and m vanishing moments.

3. Second construction

In this section we construct a family of Parseval framelets Ψ = {ψ1, ψ2, . . . , ψN}
in L2(Rd) associated to a dilation matrix A where the generators ψ` are compactly
supported, with any desired number of vanishing moments and having any given
degree of regularity. Here, the number of generators is N = D + r. Therefore, the
number of generators will not depend on the number of vanishing moments nor on
the degree of regularity, and it will always smaller or equal to D + d.

We first construct a suitable refinable function from the refinable function in
Section 2.

Let n ∈ N and

(15) θ̂(t) := |φ̂(t)|2n

where φ̂ is the function defined in Proposition 1. Thus

(16) θ̂(A∗t) = |H(t)|2nθ̂(t) = P (t)θ̂(t),

where P (t) = |H(t)|2n and H is defined in (6).

It is easy to see that P is a trigonometric polynomial on Rd with P (0) = 1.
Moreover, from Lemma 1,

(17)

D−1∑
s=0

|P (t + rs)|2 ≤
D−1∑
s=0

|H(t + rs)|2 = 1.

We have:

Proposition 2. The function θ̂ defined by (15) is in L2(Rd). In addition, the

function θ whose Fourier transform is θ̂ is non null, refinable, compactly supported
and in L2(Rd). Moreover, ‖θ‖L2(Rd) ≤ 1 and, if 2nν−d > α > 1, θ is in continuity

class Cα.

Proof. From Proposition 1 we know that |φ̂(t)| ≤ 1, that φ̂ is nonnull, and that φ̂ ∈
L2(Rd) with ‖φ‖L2(Rd) ≤ 1. Its definition therefore implies that 0 ≤ θ̂(t) ≤ |φ̂(t)|,
that θ̂ is nonnull, and that θ̂ ∈ L2(Rd) with ‖θ̂‖L2(Rd) ≤ 1. From (8) we also know

that φ is refinable; thus also θ is refinable.
Since θ is the convolution of φ with itself and φ has compact support, we conclude

that also θ has compact support.

We now study the regularity of θ. By definition of θ̂ and (9), we have

(18) θ̂(t) = |φ̂(t)|2n ≤ C2n(1 + ‖t‖)−2nν .



10 TWO FAMILIES OF COMPACTLY SUPPORTED PARSEVAL FRAMELETS IN L2(Rd)

By the well known Sobolev embedding theorems, see e.g. [8, Theorem 9.17], we
conclude that θ is in continuity class Cα if 2nν − d > α > 1. This completes the
proof. �

At this point we need to define some auxiliary trigonometric polynomials. We
will use the integers s1, . . . , sr of the matrix S defined by (1) and the integers
m1, . . . ,mr used in (6). all these numbers sj and mj , j = 1, . . . r are larger than 1.
For e ∈ {1, . . . , r}, let hme,se be the trigonometric polynomial defined as in (5) and
let qe be a trigonometric polynomial on R such that

(19) |qe(t)|2 = 1−
se−1∑
`e=0

|hme,se(t+
`e
se

)|4n.

Since Lemma A (i) implies that

se−1∑
`e=0

|hme,se(t+
`e
se

)|4n ≤
se−1∑
`e=0

|hme,se(t+
`e
se

) = 1,

the existence of qe follows applying a lemma of Riesz (cf., e.g., [6, Lemma 6.1.3])
or [22, Lemma 10, p. 102]). Since

hme,se(t+
1

se
+
`e
se

) = hme,se(t),

we readily see that

1−
se−1∑
`e=0

|hme,se(t+
`e
se

)|4n

is 1/(se)-periodic. Thus qe can be chosen to be 1/(se)-periodic.

We now define the following trigonometric polynomials on Rd.

Ge(t) := qe(te)

r∏
b=e+1

(
sb−1∑
`b=0

|hmb,sb(t+
`b
sb

)|2n
)
, e ∈ {1, . . . , r−1}, Gr(t) = qr(tr),

and

(20) Fe(t) := Ge(U
∗t), e ∈ {1, . . . , r}.

We need the following technical lemma.

Lemma 2. Let P be the trigonometric polynomial defined in (16) and Fe, e ∈
{1, . . . , r}, be defined in (20). Then Fe is (A∗)−1Zd-periodic and

(21)

|detA|−1∑
s=0

|P (t + rs)|2 +

r∑
e=1

|Fe(t)|2 = 1.
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Proof. Assume that r > 2. Then∑
r∈ΓA

|P ((U∗)−1t + r)|2 +

r∑
e=1

|Fe((U∗)−1t)|2

=

r∏
j=1

sj−1∑
`j=0

|hsj ,mj (tj +
`j
sj

)|4n


+|q1(t1)|2
r∏
b=2

(
sb−1∑
`b=0

|hsb,mb(t+
`b
sb

)|4n
)

+

r−1∑
e=2

|qe(te)|2
r∏

b=e+1

(
sb−1∑
`e=0

|hsb,mb(t+
`b
sb

)|4n
)

+ |qr(tr)|2.

Since (
s1−1∑
`1=0

|hs1,m1(t+
`1
s1

)|4n
)

+ |q1(t1)|2 = 1,

we have ∑
r∈ΓA

|P ((U∗)−1t + r)|2 +

r∑
e=1

|Fe(((U∗)−1t)|2

=

r∏
b=2

(
sb−1∑
`b=0

|hsb,mb(t+
`b
sb

)|4n
)

+

r−1∑
e=2

|qe(te)|2
r∏

b=e+1

(
sb−1∑
`b=0

|hhsb,mb (t+
`b
sb

)|4n
)

+ |qr(tr)|2.

Repeating this procedure a finite number of times, we finally obtain∑
r∈ΓA

|P ((U∗)−1t + r)|2 +

r∑
e=1

|Fe((U∗)−1t)|2

=

(
sr−1∑
`r=0

|hsr,mr (t+
`r
sr

)|4n
)

+ |qr(tr)|2 = 1.

We now show that Fe, e ∈ {1, . . . , r}, is (A∗)−1-periodic: let k ∈ Zd, then there

exists sk ∈ {0, . . . , D − 1}, ak ∈ Zd and γk ∈ Γ such that (A∗)−1k = rsk + ak =
(U∗)−1γk +ak. Since Ge is 1/sb–periodic in each variable, b ∈ {e, . . . , r}. Therefore

Fe(t + (A∗)−1k) = Ge(U
∗(t + (A∗)−1k)) = Ge(U

∗((t + (U∗)−1γk + ak))

= Ge(U
∗t + γk) = Ge(U

∗t) = Fe(t)

and the conclusion follows. For r = 1, 2 the proof is similar but simpler and will be
omitted. �

Using the refinable function of Proposition 2 and adapting the method used in
the proof of [21, Theorem 3.4] we obtain our second family of compactly supported
Parseval wavelet frames:
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Theorem 2. Let D := |detA|, let P be the real valued trigonometric polynomial
in Rd defined by (16), and let θ be the associated function defined in Proposition 2.
Define

ψ̂`(A
∗t) := D−1/2

[
e2πiq`·t − P (t)

(
D−1∑
a=0

e2πiq`·(t+ra)P (t + ra)

)]
θ̂(t)

for ` ∈ {0, . . . , D − 1}, and

ψ̂`(A
∗t) := P (t)F`−D+1(t)θ̂(t)

for ` ∈ {D, . . . ,D + r − 1}, where the functions Fe are defined in (20). Moreover,
let

(22) Ψ = {ψ`(t) ; ` = 0, . . . , D + r − 1, }
be the set of inverse Fourier transforms of the functions defined in the preceding
displayed identities. Then Ψ is a compactly supported Parseval wavelet frame in
L2(Rd) associated to the dilation matrix A with vanishing moments of order m0.
In addition, if 2nν − d > α > 1, then ψ` is in continuity class Cα.

Proof. We first prove that Ψ is a compactly supported Parseval wavelet frame in
L2(Rd) associated to the dilation matrix A.

For ` ∈ {0, 1, . . . , D − 1} define Q`(t) by

Q`(t) := D−1/2

[
e2πiq`·t − P (t)

(
D−1∑
a=0

e2πiq`·(t+ra)P (t + ra)

)]
and for ` ∈ {D, . . . ,D + r − 1, },

Q`(t) := P (t)F`−D+1(t).

Proceeding as in the proof of Theorem 1, we see that for j ∈ ΓA,

D−1∑
`=0

Q`(t)Q`(t + j) +

D+r−1∑
`=D

Q`(t)Q`(t + j)

= D−1

(
D−1∑
`=0

e−2πiq`·j

)
− P (t + j)P (t)− P (t)P (t + j)

+P (t)P (t + j)

(
D−1∑
µ=0

|P (t + j + rµ)|2
)

+P (t)P (t + j)

(
D+r−1∑
`=D

F`−D+1(t)F`−D+1(t + j)

)
.

From Lemma 2, we know that Fe is (A∗)−1Zd–periodic and that (21) is satisfied;
therefore

D−1∑
µ=0

|P (t + j + rµ)|2 +

D+r−1∑
`=D

F`−D+1(t)F`−D+1(t + j) = 1.

Thus,

D−1∑
`=0

Q`(t)Q`(t + j) +

D+r−1∑
`=D

Q`(t)Q`(t + j) = D−1

(
D−1∑
`=0

e−2πiq`·j

)
−P (t)P (t + j).
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Proceeding now as in the proof of Theorem 1 we conclude that Ψ is a compactly
supported Parseval wavelet frame.

We now show that ψ`, ` ∈ {0, 1, · · · , D + r − 1}, has vanishing moments of

order m0. Since 0 ≤ |θ̂(t)| ≤ 1 and the precding displayed identity implies that
|Q`(t)|2 + |P (t)|2 ≤ 1 , we obtain

lim
t→0

|ψ̂`(A∗t)|2

‖A∗t‖2m0
≤ lim

t→0

|Q`(t)|2

‖A∗t‖2m0
≤ lim

t→0

1− |P (t)|2

‖A∗t‖2m0
= lim

t→0

1− |H(t)|4n

‖A∗t‖2m0
.

Since, if |H(t)|2 6= 1,

2n−1∑
µ=1

(
|H(t)|2

)µ
=
|H(t)|4n − 1

|H(t)|2 − 1
,

we readily see that

1− |H(t)|4n = (1− |H(t)|2)

2n−1∑
µ=1

(
|H(t)|2

)µ
.

Therefore

lim
t→0

1− |H(t)|4n

‖A∗t‖2m0
= lim

t→0

(
2n−1∑
µ=1

|H(t)|2µ
)

1− |H(t)|2

‖A∗‖2m0

As remarked in the proof of Theorem 1, since A∗ is an expansive linear map, there
exists C > 0 such that ‖A∗t‖ ≥ C‖t‖. Bearing in mind that |H(0)|2 = 1 and
proceeding as in (14) we see that

lim
t→0

|ψ̂`(A∗t)|2

‖A∗t‖2m0
= 0.

We have therefore shown that ψ` has vanishing moments of order m0.
It remains to find the degree of regularity of ψ`, ` ∈ {0, 1, · · · , D+ r− 1}. Since

|Q`| is bounded, from (18) we have

|ψ̂`(t)| ≤ K(1 + ‖t‖)−2nν .

Applying again the Sobolev embedding theorems we conclude that ψ` is in conti-
nuity class Cα if 2nν − d > α > 1. �

The following is a direct consequence of Theorem 2.

Corollary 2. Let m > 0 be an integer. There exists a compactly supported Parseval
wavelet frame in L2(Rd) associated to a dilation matrix A with D + r generators,
m vanishing moments and any desired degree of regularity.
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