

How Does Data Freshness Affect Real-time Supervised Learning?

Md Kamran Chowdhury Shisher and Yin Sun Dept. of ECE, Auburn University

Question 1: Does Learning Error Increase with Data Staleness?

Theoretical and Experimental Findings:

Case 1: If the feature and target data sequence is a Markov chain, then

Learning errors (Training error and Inference error) increase monotonically as feature ages.

Case 2: If The feature and target data sequence is far from Markovian (due to Communication delay, Response delay, and long-range dependence), then

Learning errors may not increase monotonically as feature becomes stale.

Age of information (AoI): Time difference between the current time and the generation time of the freshest received feature.

Theorem 1: The learning error is the difference of two increasing functions of AoI δ .

$$p(\delta) = g_1(\delta) - g_2(\delta).$$

If the data sequence is close to Markovian, function $g_2(\delta)$ is close to 0.

Theorem 1 is proved by using **information theoretic** approach.

Inference Error increases with AoI in Video Prediction

Video sequence is approximately a Markov chain.

Robot State Prediction in a Leader-follower Robotic System

0.02 U 0.015 S 0.01 0.01 0.005 Aol

Prediction of Follower Robot

Inference Error vs. Aol

Inference Error decreases in the AoI ≤ 25 and increases when AoI ≥ 25 .

Actuator State Prediction under Response Delay

Inference Error vs. Aol

- Data traces show 25-30 ms response delay.
- The data sequence is **non-Markovian**.
- The inference error becomes increasing function as the length u of feature $X_t = \{s_t, ..., s_{t-u+1}\}$ increases.

Question 2: Optimal Feature Transmission

Findings:

- Sending old feature could be better.
- Send another feature when Gittins index $\gamma(\Delta(t))$ exceeds a threshold.

Optimal Scheduling Policy

Theorem 2: The optimal policy is

$$S_{i+1} = \inf_{t \in \mathbb{Z}} \{ t \ge D_i : \gamma(\Delta(t)) \ge p_{\text{opt}} \},$$

where optimal objective value $p_{
m opt}$ is a solution of the following fixed point equation of β :

$$\beta = \frac{\mathbb{E}\left[\sum_{t=D_i(\beta)}^{D_{I+1}(\beta)-1} p(\Delta(t))\right]}{\mathbb{E}[D_{i+1}(\beta) - D_i(\beta)]}$$

Low Complexity Algorithm

The (i + 1)-th feature is sent at the earliest time slot tsatisfying two conditions:

- \succ The *i*-th feature has already been delivered by time slot t, i.e., $t \geq D_i$.
- The Gittins index $\gamma(\Delta(t))$ exceeds $p_{\rm opt}$.
- The optimal position of the buffer is constant for all and is solved analytically.

Whittle index policy is designed for Multi-source Scheduling.

Numerical Result

8 times performance gain.

References

[1] MKC Shisher and Y Sun, "How Does Data Freshness Affect Real-time Supervised Learning", ACM Mobihoc, 2022.

[2] Y Sun and B Cyr, "Sampling for Data Freshness Optimization: Non-linear Age

[3] MKC Shisher, H Qin, L Yang, F Yan, and Y Sun, "The Age of Correlated Features in Supervised Learning Based Forecasting", IEEE Infocom Aol Workshop., 2021. [4] J Gittins, K Glazebrook, and R Weber. "Multi-armed bandit allocation indices". **John** Wiley & Sons, 2011.