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Question 2: Optimal Feature

Question 1: Does Learning Error Increase with Data Staleness?
Theoretical and Experimental Findings: Transmission

ACK
Case 1: If the feature and target data sequence is a Markov chain, then :----0--1--,-,,--;3-_--1*-----------; = :
« Learning errors (Training error and Inference error) increase monotonically as feature ages. X | [~ ] |- ; X Predictor 5
Case 2: If The feature and target data sequence is far from Markovian (due to Communication delay, Response delay, R 7& 5 ’G A(t) N iy,
and long-range dependence), then : Transmission scheduler | cpannel ; ;
» Learning errors may not increase monotonically as feature becomes stale. | Transmiter Receiver
Findings:

Age of information (Aol): Time difference between the current time
and the generation time of the freshest received feature. R
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» Sending old feature could be better.

» Send another feature when Gittins index
Theorem 1: The learning error is the difference of two increasing functions of Aol 6. y( A(t)) exceeds a threshold.

p(8) = 91(6) — g2(8).
If the data sequence is close to Markovian, function g, (6) is close to 0.
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Optimal Scheduling Policy

Theorem 1 is proved by using information theoretic approach. Theorem 2: The optimal policy is

Inference Error increases with Aol in Video Prediction Siv1 = inf{t > D; : v(A(t)) > Popt }
teZ

where optimal objective value p, . is a solution
of the following fixed point equation of 3 :
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Age of Information A(¢t) Prediction by frame 7, ol Low Complexity Algorithm
Neural Network Inference Error vs. Aol
The (i + 1)-th feature is sent at the earliest time slot ¢
Video sequence is approximately a Markov chain. satisfying two conditions:

» The i-th feature has already been delivered by time slot
L, i.e., t = Di'
> The Gittins index y (A(t)) exceeds pgpt.
Leader robot Follower robot » The optimal position of the buffer is constant for all
v e / 0.025 — i and is solved analytically.
~ A’Q_' L 0.02
;@ Channel ® e w 0.0157 Whittle index policy is designed
l = 001 for Multi-source Scheduling.
Predict the follower 0.005¢
. robot’s state 0 20 40 60 80 Numerical Result
vy Neural Network Aol
Prediction of Follower Robot Inference Error vs. Aol
Inference Error decreases in the Aol < 25 and increases when Aol > 25. | ey
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8 times performance gain.
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