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Abstract—Most of the existing works on two-way frequency
division multiplexing (OFDM) relay channels was centered on
per-subcarrier decode-and-forward (DF) relaying, where each
subcarrier is treated as a separate channel, and channel coding
is performed separately over each subcarrier. In this paper, we
show that this per-subcarrier DF relay strategy is suboptimal.
More specifically, we present a multi-subcarrier DF relay strategy
which achieves a larger rate region by adopting cross-subcarrier
channel coding. Then we develop an optimal resource allocation
algorithm to characterize the achievable rate region of thepro-
posed multi-subcarrier DF relay strategy. Compared to standard
Lagrangian duality optimization algorithms, our algorith m has
a much smaller computational complexity due to the use of the
structure property of the optimal resource allocation solution.
We further prove that our multi-subcarrier DF relay strateg y
tends to achieve the capacity region of the two-way OFDM relay
channels in the low signal-to-noise ratio (SNR) regime, andthe
amplify-and-forward (AF) relay strategy tends to achieve the
multiplexing gain region of the two-way OFDM relay channels
in the high SNR regime. Our theoretical analysis and numerical
results demonstrate that DF relaying has better performance in
the low to moderate SNR regime, while AF relaying is more
appropriate in the high SNR regime.

Index Terms—Two-way relay, orthogonal frequency division
multiplexing, capacity region, decode-and-forward, amplify-and-
forward, resource allocation.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) relay-
ing is a cost-efficient technique to enhance the coverage and
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throughput of future wireless networks, and it has been widely
advocated in many 4G standards, such as IEEE 802.16m and
3GPP advanced long term evolution (LTE-Advanced) [2], [3].
In practice, a relay node operates in a half-duplex mode to
avoid strong self-interference. However, since the half-duplex
relay node can not transmit all the time (or over the entire
frequency band), the benefits provided by the relay node are
not fully exploited [4].

Recently, two-way relay technique has drawn extensive
attention, because of its potential to improve the spectrum
efficiency of one-way relay strategies [4]–[13]. If one utilizes
traditional one-way relay strategies to realize two-way commu-
nications, four phases are needed. To improve the four-phase
strategy, the two relay-to-destination phases can be combined
into one broadcast phase [5], [6], and the yielded three-phase
strategy can support the same data rates with less channel
resource by exploiting the side information at the terminal
nodes. One can further combine the two source-to-relay phases
into one multiple-access phase to yield a two-phase strategy
(see Fig. 1) [7]. Hybrid strategies with more phases have been
considered in [8]–[10] to further enlarge the achievable rate
region. The diversity-multiplexing tradeoff for two-way relay
channels was studied in [11]–[13].

Two-way relay strategies also have been in conjunction with
OFDM techniques [14]–[20]. With amplify-and-forward (AF)
relay strategy, power allocation and subcarrier permutation
have been studied in [14], [15], and its corresponding channel
estimation problem has been thoroughly discussed in [16].
Resource allocation for two-way communications in an OFDM
cellular network with both AF and decode-and-forward (DF)
relay strategies was studies in [17]. A graph-based approach
was proposed to solve the combinatorial resource allocation
problem in [18]. For practical quality of service (QoS) re-
quirements, the proportional fairness and transmission delay
have been considered for two-way DF OFDM relay networks
in [19] and [20], respectively. Most prior studies on two-
way OFDM relay channels with a DF strategy were almost
centered on a per-subcarrier DF relay strategy, which treats
each subcarrier as a separate two-way relay channel, and
performs independent channel coding over each subcarrier.
Such a per-subcarrier DF relay strategy is probably motivated
by the fact that per-subcarrier channel coding can achieve the
capacity of point-to-point OFDM channels. However, the story
is different in OFDM relay channels: per-subcarrier channel
coding can no longer attain the optimal achievable rate region
of DF relaying for two-way OFDM relay channels. In other
words, per-subcarrier DF relaying is merely a suboptimal DF
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Fig. 1. System model of a two-way OFDM relay channel, consisting of (a) a multiple-access phase and (b) a broadcast phase.

relay strategy. More details are provided in Section III, where
an example is provided to show that a novel DF relay strategy
achieves a larger rate region.

This paper focuses on the two-way OFDM relay channel
with a negligible direct link due to large path attenuation
or heavy blockage. This is motivated by the fact that the
relay node plays a more important role when the direct link
is weak than when it is strong [13]. The optimal two-way
relay strategy in this case consists of two phases, which
are illustrated in Fig. 1. We intend to answer the following
questions in this paper: What is the optimal DF relay strategy
when the direct link is negligible? Under what conditions is
the optimal DF relay strategy better than the AF relay strategy,
and vice versa? Is the optimal DF relay strategy able to
achieve the capacity region of two-way OFDM relay channels
in some special scenarios? To address these questions, we
first introduce a multi-subcarrier DF relay strategy, which
outperforms the existing per-subcarrier DF relay strategyin
terms of both achievable rate region and resource allocation
algorithm complexity. Then, we provide a performance com-
parison between this multi-subcarrier DF relay strategy and
the AF relay strategy. The main contributions of this paper
are summarized as follows:

• We present a multi-subcarrier DF relay strategy, which
has a larger achievable rate region than the widely stud-
ied per-subcarrier DF relay strategy. Though this multi-
subcarrier DF relay strategy is merely a simple extension
of the existing result [7], it is the optimal DF relay
strategy for two-way OFDM relay channels.1 To the best
of our knowledge, this multi-subcarrier DF relay strategy
has not been reported in the open literature. We develop
an optimal resource allocation algorithm to characterize
the achievable rate region of the multi-subcarrier DF relay
strategy. We show that the optimal resource allocation
solution has a low-dimension structure. By exploiting
this structure, the complexity of both primal and dual
optimizations can be significantly reduced. The relative
benefits of our multi-subcarrier DF relay strategy and its
resource allocation algorithm are summarized in Table I.

• We analyze the asymptotic performance of different relay
strategies in the low and high signal-to-noise ratio (SNR)

1A strategy is the optimal DF relay strategy, meaning that itsachievable
rate region contains the rate region of any other DF relay strategy. It is worth
mentioning that relay strategies other than DF relay strategies may have a
larger or smaller achievable rate region compared to this multi-subcarrier DF
relay strategy in certain scenarios.

TABLE I
COMPARISON OF PER-SUBCARRIER AND MULTI-SUBCARRIERDF

TWO-WAY RELAY STRATEGIES.

Strategy Achievable rate regionResource allocation complexity
per-subcarrier DF small low [17]

multi-subcarrier DF large very low

TABLE II
ASYMPTOTIC PERFORMANCE COMPARISON OFAF AND DF TWO-WAY

RELAY STRATEGIES.

Strategy Low SNR High SNR
multi-subcarrier DF achieving capacity region smaller multiplexing gain

AF lower rate achieving largest
multiplexing gain region

regimes under optimal resource allocation. First, we
show that the multi-subcarrier DF relay strategy tends
to achieve the capacity region of two-way OFDM relay
channels in the low SNR regime. Then, we characterize
the multiplexing gain regions of the two DF relay strate-
gies, the AF relay strategy, and the cut-set outer bound
under optimal resource allocation. We show that the AF
relay strategy can achieve the multiplexing gain region of
two-way OFDM relay channels in the high SNR regime.
Numerical results are provided to justify our analytical
results. The asymptotic performance comparison of AF
and DF strategies is summarized in Table II.

The rest of this paper is organized as follows. Section II
presents the system model. Section III presents the multi-
subcarrier two-way DF relay strategy and its achievable
rate region. The resource allocation algorithm of the multi-
subcarrier DF relay strategy is developed in Section IV. The
asymptotic performance analysis of different relay strategies is
provided in Section V. Some numerical results are presented
in Section VI. Finally, Section VII draws some conclusions.

Notation: Throughout this paper, we use bold lowercase
letters to denote column vectors, and we also denote ann× 1
column vector by(x1, . . . , xn). R+ and R

n
+ denote the set

of nonnegative real numbers and the set ofn × 1 column
vectors with nonnegative real components, respectively.p � 0

means that each component of column vectorp is nonnegative.
I(X ;Y ) denotes the mutual information between random
variablesX and Y , and I(X ;Y |Z) denotes the conditional
mutual information of random variablesX and Y given Z.
E[·] denotes the statistical expectation of the argument.
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II. SYSTEM MODEL

We consider a two-way OFDM relay channel withN
subcarriers, where two terminal nodesT1 and T2 exchange
messages by virtue of an intermediate relay nodeTR. The
wireless transmissions in the two-way DF relay channel is
composed of two phases: a multiple-access phase and a
broadcast phase, as illustrated in Fig. 1. In the multiple-access
phase, the terminal nodesT1 andT2 simultaneously transmit
their messages to the relay nodeTR. In the broadcast phase,
the relay nodeTR decodes its received messages, re-encodes
them into a new codeword, and broadcasts it to the terminal
nodesT1 andT2. The time proportion of the multiple-access
phase is denoted ast for 0 < t < 1, and thereby the time
proportion of the broadcast phase is1− t.

In the multiple-access phase, the received signalYRn of the
relay nodeTR over subcarriern can be expressed as

YRn = h1n

√
p1n
t

X1n + h2n

√
p2n
t

X2n + ZRn, (1)

whereXin (i∈{1, 2}) is the unit-power transmitted symbol
of the terminal nodesTi over subcarriern, hin is the channel
coefficient fromTi to TR over subcarriern, pin is the average
transmission power, andZRn is the independent complex
Gaussian noise with zero mean and varianceσ2

Rn.
In the broadcast phase, the received signals of the terminal

nodesT1 andT2 over subcarriern are given by

Y1n = h̃1n

√
pRn

1− t
XRn + Z1n, (2)

Y2n = h̃2n

√
pRn

1− t
XRn + Z2n, (3)

whereXRn andpRn denote the unit-power transmitted symbol
and the average transmission power of the relay nodeTR

over subcarriern, respectively,h̃in denotes the associated
channel coefficient fromTR to Ti over subcarriern, andZin

is the independent complex Gaussian noise with zero mean
and varianceσ2

in (i∈{1, 2}).
Each node is subject to an individual average power con-

straint, which is given by
N∑

n=1

pin ≤ Pi, i = 1, 2, R, (4)

wherePi denotes the maximum average transmission power
of node Ti. Let us useP,(P1, P2, PR) to represent the
maximum average powers of the three nodes, and useG ,

{g1n, g2n, g̃1n, g̃2n}Nn=1 to represent the channel state infor-
mation (CSI), wheregin, |hin|2/σ2

Rn and g̃in, |h̃in|2/σ2
in

(i∈{1, 2}) represent the normalized channel power gains. We
assume that the perfect CSIG is available at the network
controller to perform resource allocation throughout the paper.

III. O PTIMAL TWO-WAY OFDM DF RELAY STRATEGY

This section presents a multi-subcarrier DF relay strategy,
which can realize the optimal achievable rate region of the
DF relay strategy for two-way OFDM relay channels. We also
show that the per-subcarrier DF relay strategy considered in
[17]–[20] can only achieve a suboptimal rate region.

Let R12 and R21 denote the end-to-end data rates from
T1 to T2 and fromT2 to T1, respectively. When the direct
link betweenT1 and T2 is negligible, the optimal DF relay
strategy of discrete memoryless two-way relay channels was
given by Theorem 2 in [7]. By applying this theorem to
two-way parallel Gaussian relay channel and considering the
optimal channel input distribution, we can obtain the optimal
achievable rate region as stated in the following lemma:

Lemma 1 Given the maximum transmission powersP of the
three nodes and the CSIG, the optimal achievable rate region
of the two-way parallel Gaussian relay channel(1)-(3) with a
DF strategy is given by:

RDF(P ,G) =

{
(R12, R21)∈R

2
+

∣∣∣∣

R12 ≤ min

{ N∑

n=1

t log2

(
1+

g1np1n
t

)
,

N∑

n=1

(1− t) log2

(
1+

g̃2npRn

1− t

)}
,

R21 ≤ min

{ N∑

n=1

t log2

(
1+

g2np2n
t

)
,

N∑

n=1

(1− t) log2

(
1+

g̃1npRn

1− t

)}
,

R12 +R21 ≤
N∑

n=1

t log2

(
1+

g1np1n + g2np2n
t

)
,

0 < t < 1,

N∑

n=1

pin ≤ Pi,

pin ≥ 0, i = 1, 2, R, n = 1, . . . , N

}
. (5)

Proof: See Appendix A.
In fact, the optimal rate region of (5) is the intersection

of the capacity regions of a parallel multi-access channel and
a parallel broadcast channel with receiver side information2

[21]. This rate region can be achieved by the following multi-
subcarrier DF relay strategy: In the multiple-access phase,
the relay node decodes the messages from the two termi-
nal nodes by either successive cancellation decoding with
time sharing/rate-splitting, or joint decoding [22]–[24]. In
the broadcast phase, the relay node can utilize nested lattice
codes, nested and algebraic superposition codes to transmit
the messages to the intended destinations [9], [21]. Some
related information theoretical random coding techniqueswere
discussed in [6], [21], [25]. In either of the phases, channel en-
coding/decoding is performed jointly across all the subcarriers.

On the other hand, the per-subcarrier DF relay strategy
independently implements the DF relay scheme of [7] over
each subcarrier [17]–[20]. The achievable rate region of the
per-subcarrier two-way DF relay strategy is given by

Rp,DF(P ,G) =

{
(R12, R21)∈R

2
+

∣∣∣∣

2Here, the receiver side information means each user’s own transmitted
message.
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R12 ≤
N∑

n=1

min

{
t log2

(
1+

g1np1n
t

)
,

(1− t) log2

(
1+

g̃2npRn

1− t

)}
,

R21 ≤
N∑

n=1

min

{
t log2

(
1+

g2np2n
t

)
,

(1− t) log2

(
1+

g̃1npRn

1− t

)}
,

R12 +R21 ≤
N∑

n=1

t log2

(
1+

g1np1n + g2np2n
t

)
,

0 < t < 1,

N∑

n=1

pin ≤ Pi,

pin ≥ 0, i = 1, 2, R, n = 1, . . . , N

}
. (6)

The only difference betweenRDF(P ,G) andRp,DF(P ,G) lies
in the order of the functionmin{·} and the summation in (5)
and (6), implyingRp,DF(P ,G) ⊆ RDF(P ,G). Therefore, the
per-subcarrier DF relay strategy is only a suboptimal DF relay
strategy. Similar results have been reported in [26], [27] for
one-way parallel relay channels.

We now provide a toy example to compare these two DF
relay strategies. Consider a two-way OFDM relay channel with
N = 2 subcarriers. The wireless channel power gains are given
by (g11, g12, g21, g22) = (1, 15, 7, 3) and g̃in = gin for n, i ∈
{1, 2}. The power and channel resources are fixed to bepin =
0.5 and t = 0.5. According to Lemma 1, the achievable rate
region of the multi-subcarrier DF relay strategy with fixed
resource allocation is given by the set of rate pairs(R12, R21)
satisfying

R12≤min{0.5 + 2, 1.5 + 1} = 2.5 bits/s/Hz, (7a)
R21≤min{1.5 + 1, 0.5 + 2} = 2.5 bits/s/Hz, (7b)
R12 +R21≤0.5 [log2(9) + log2(19)] = 3.71 bits/s/Hz. (7c)

Similarly, by (6), the achievable rate region of the per-
subcarrier DF relay strategy with fixed resource allocationis
given by the set of rate pairs(R12, R21) satisfying

R12≤min{0.5, 1.5}+min{2, 1} = 1.5 bits/s/Hz, (8a)
R21≤min{1.5, 0.5}+min{1, 2} = 1.5 bits/s/Hz, (8b)
R12 +R21≤0.5 [log2(9) + log2(19)] = 3.71 bits/s/Hz, (8c)

where the sum-rate constraint is actually inactive. By com-
paring (7) and (8), one can easily observe that the considered
multi-subcarrier DF relay strategy has a larger achievablerate
region. An effective and computationally efficient approach for
the optimal resource allocation of the proposed two-way DF
strategy will be presented in the next section.

IV. RESOURCEALLOCATION ALGORITHM

We now develop a resource allocation algorithm to charac-
terize the boundary of the achievable rate regionRDF(P ,G) in
(5). We will show that the optimal resource allocation solution
has a low-dimension structure, and thereby the number of dual
variables to be optimized is reduced; see Propositions 1 and
2 below for more details. The complexity of our resource
allocation algorithm turns out to be much lower than that of
the standard Lagrangian dual optimization algorithm and the
existing resource allocation algorithm reported in [17].

A. Resource Allocation Problem Formulation

Let ρ ∈ (0,∞) denote the rate ratio of the two terminal
nodes, i.e.,

ρ , R21/R12. (9)

Then, a boundary point(R12, R21) = (R12, ρR12) of the
achievable rate regionRDF(P ,G) is attained by maximizing
R12 within RDF(P ,G) for a given rate ratioρ. Therefore, the
boundary point ofRDF(P ,G) is characterized by the following
resource allocation problem:

max
p1,p2,pR�0, R12, t

R12 (10a)

s.t. R12 ≤ t
N∑

n=1

log2

(
1+

g1np1n
t

)
, (10b)

R12 ≤ t

ρ

N∑

n=1

log2

(
1+

g2np2n
t

)
, (10c)

R12 ≤ t

ρ+ 1

N∑

n=1

log2

(
1+

g1np1n + g2np2n
t

)
,

(10d)

R12 ≤ (1 − t)

N∑

n=1

log2

(
1+

g̃2npRn

1− t

)
, (10e)

R12 ≤ 1− t

ρ

N∑

n=1

log2

(
1+

g̃1npRn

1− t

)
, (10f)

N∑

n=1

pin ≤ Pi, i = 1, 2, R, (10g)

0 < t < 1, (10h)

wherepi , (pi1, pi2, . . . , piN )∈R
N
+ denotes the power allo-

cation of nodeTi for i=1, 2, R. Problem (10) is a convex opti-
mization problem, which can be solved by standard interior-
point methods or by using general purpose convex solvers
such as CVX [28]. However, these methods quickly become
computationally formidable as the number of subcarriersN
increases, because their complexity grows in the order of
O(N3.5) [29], [30, p. 8 and Eq. (11.29)]. SinceN can be
quite large in practical OFDM systems, we will develop a
more efficient resource allocation algorithm for large values
of N in the sequel.

B. Phase-Wise Decomposition of Problem(10)

Let us first fix the value oft. Then, problem (10) can be
decomposed into two power allocation subproblems for the
multi-access phase and the broadcast phase, respectively.Note
that the transmission powers of the terminal nodesp1 andp2

are only involved in the rate constraints (10b)-(10d) for the
multiple-access phase, while the transmission power of the
relay nodepR is only involved in the rate constraints (10e)
and (10f) for the broadcast phase. LetRMA andRBC denote the
achievable rates for the multiple-access and broadcast phases,
respectively. For any fixedt, problem (10) can be decomposed
into the following two subproblems, one for the multiple-
access phase

R⋆
MA (t), max

p1,p2�0, RMA

RMA (11a)

s.t. RMA ≤ rk(p1,p2), k = 1, 2, 3, (11b)
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N∑

n=1

pin ≤ Pi, i = 1, 2, (11c)

and the other for the broadcast phase

R⋆
BC(t), max

pR�0, RBC

RBC (12a)

s.t. RBC ≤ rk(pR), k = 4, 5, (12b)
N∑

n=1

pRn ≤ PR, (12c)

where the rate functionsrk(p1,p2), k = 1, 2, 3, and
rk(pR), k = 4, 5, are defined by

r1(p1,p2) = t

N∑

n=1

log2

(
1+

g1np1n
t

)
, (13a)

r2(p1,p2) =
t

ρ

N∑

n=1

log2

(
1+

g2np2n
t

)
, (13b)

r3(p1,p2) =
t

ρ+ 1

N∑

n=1

log2

(
1+

g1np1n + g2np2n
t

)
, (13c)

r4(pR) = (1 − t)
N∑

n=1

log2

(
1+

g̃2npRn

1− t

)
, (13d)

r5(pR) =
1− t

ρ

N∑

n=1

log2

(
1+

g̃1npRn

1− t

)
. (13e)

Then, the optimal objective value of problem (10) is given
by

R⋆
12 = max

0<t<1
min{R⋆

MA(t), R
⋆
BC(t)} , (14)

where R⋆
MA(t) and R⋆

BC(t) are defined in (11) and (12),
respectively. Since problem (14) itself is a one-dimensional
convex optimization problem, it can be efficiently solved by
either golden section search method or the bisection method
[31, Chapter 8], withR⋆

MA (t) and R⋆
BC(t) at each search

iteration obtained by solving (11) and (12), respectively.Next,
let us show how to solve the subproblems (11) and (12),
respectively.

C. Lagrange Dual Optimization for Subproblem(11)

Let us define the partial Lagrange dual function of subprob-
lem (11) as

DMA(λ,α) , min
p1,p2�0,RMA

LMA (p1,p2, RMA ,λ,α) , (15)

whereλ = (λ1, λ2, λ3), α = (α1, α2) are nonnegative dual
variables associated with three rate inequality constraints in
(11b) and two power inequality constraints in (11c), respec-
tively, and

LMA (p1,p2, RMA ,λ,α) =−RMA+
3∑

k=1

λk

[
RMA−rk(p1,p2)

]

+

2∑

i=1

αi

( N∑

n=1

pin − Pi

)
(16)

is the partial Lagrangian of (11). Then, the corresponding dual
problem is defined as

max
λ�0,α�0

DMA (λ,α). (17)

Since the refined Slater’s condition [30, Eq. (5.27)] is satisfied
in problem (11), the duality gap between problems (11) and

(17) is zero, i.e., solving problem (17) in the dual domain will
yield the optimal solution of the primal problem (11).

1) Structure of the Optimal Dual Solutionλ⋆: Prior to the
presentation of our power allocation algorithm for solving
the problems (15) and (17), we first present an important
result that the optimal dual solutionλ⋆ satisfies the following
structural property:

Proposition 1 There exists one optimal solution(λ⋆,α⋆) to
the dual problem(17), whereλ⋆ = (1−λ⋆

3, 0, λ
⋆
3) or λ⋆ =

(0, 1−λ⋆
3, λ

⋆
3) and 0 ≤ λ⋆

3 ≤ 1.

Proof: See Appendix B. �

Proposition 1 is very useful for developing our power
allocation algorithm, because the search region forλ⋆ can
be confined to a setΛ1

⋃
Λ2, whereΛ1 andΛ2 are two one-

dimensional dual sets defined by

Λ1 , {λ∈R
3
+ | λ = (1− λ3, 0, λ3), 0 ≤ λ3 ≤ 1}, (18a)

Λ2 , {λ∈R
3
+ | λ = (0, 1− λ3, λ3), 0 ≤ λ3 ≤ 1}. (18b)

In the sequel, we will show that finding solutions to both
problems (15) and (17) can be substantially simplified by
virtue of Proposition 1.

2) Primal Solution to Problem(15): As the first important
application of Proposition 1, we show that the structure ofλ⋆

can be exploited to simplify the primal solution to problem
(15). For any given dual variables(λ,α), the optimal power
allocation solution(p⋆1n, p

⋆
2n) to problem (15) is determined

by the following Karush-Kuhn-Tucker (KKT) conditions:

∂LMA

∂p1n
= α1−

tg1nλ3/(ρ+ 1)

(t+ g1np⋆1n + g2np⋆2n) ln 2

− tg1nλ1

(t+ g1np⋆1n) ln 2

{≥ 0, if p⋆1n = 0;

= 0, if p⋆1n > 0,
(19a)

∂LMA

∂p2n
= α2−

tg2nλ3/(ρ+ 1)

(t+ g1np⋆1n + g2np⋆2n) ln 2

− tg2nλ2/ρ

(t+ g2np⋆2n) ln 2

{≥ 0, if p⋆2n = 0;

= 0, if p⋆2n > 0.
(19b)

According to Proposition 1, at least one ofλ⋆
1 and λ⋆

2 is
0, which can be utilized to simplify the KKT conditions (19).
The attained optimal(p⋆1n, p

⋆
2n) is provided in the following

four cases:
Case 1: p⋆1n > 0, p⋆2n > 0. If λ = (1−λ3, 0, λ3), then

p⋆1n =
t(1 − λ3)

(α1 − g1n
g2n

α2) ln 2
− t

g1n
, (20a)

p⋆2n =
tλ3

(ρ+ 1)α2 ln 2
− t(1− λ3)

( g2ng1n
α1 − α2) ln 2

; (20b)

otherwise, ifλ = (0, 1−λ3, λ3), then

p⋆1n =
tλ3

(ρ+ 1)α1 ln 2
− t(1 − λ3)

ρ( g1ng2n
α2 − α1) ln 2

, (21a)

p⋆2n =
t(1− λ3)

ρ(α2 − g2n
g1n

α1) ln 2
− t

g2n
. (21b)

Case 1 happens ifp⋆1np
⋆
2n > 0 is satisfied in (20) or (21).
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Case 2: p⋆1n > 0, p⋆2n = 0. Then the solutions to (19a) and
(19b) are given by

p⋆1n =
t[(ρ+ 1)λ1 + λ3]

(ρ+ 1)α1 ln 2
− t

g1n
, (22a)

p⋆2n = 0. (22b)

This case happens ifp⋆1n > 0 is satisfied in (22a).
Case 3: p⋆1n = 0, p⋆2n > 0. Then the solutions to (19a) and

(19b) are given by

p⋆1n = 0, (23a)

p⋆2n =
t[(ρ+ 1)λ2 + ρλ3]

ρ(ρ+ 1)α2 ln 2
− t

g2n
. (23b)

This case happens ifp⋆2n > 0 is satisfied in (23b).
Case 4: p⋆1n = 0, p⋆2n = 0. This is the default case when

the above 3 cases do not happen.
Remark 1 If the structural property ofλ⋆ in Proposition 1

is not available, one can still obtain an alternative closed-
form solution to (19) [1]. However, this solution involves
solving a more difficult cubic equation, which is presented
in Appendix C. Nevertheless, these two closed-form solutions
are much simpler than the iterative power allocation procedure
proposed in [17] for the per-subcarrier DF relay strategy.

Remark 2 Since the Lagrangian (16) is not strictly convex
with respect to the primal power variables at some dual points,
the power allocation solution in (20)-(23) may be non-unique
at those dual points. Nevertheless, any one of the optimal
primal power solutions can be used to derive the subgradient
for solving the dual problem (17) [32, Section 6.1]. After the
optimal dual point(λ⋆,α⋆) is obtained, extra processing may
be needed to obtain the optimal primal solutions to (11) by
using the KKT conditions [32]–[34]. More details are given
in our online technical report [35] due to space limit.

3) Dual Solution to Problem(17): We now solve the dual
problem (17) by a two-level optimization approach [17], which
first fixesλ and searches for the optimal solutionα⋆(λ) to
the maximization problem

GMA (λ) , max
α�0

DMA (λ,α), (24)

and then optimizesλ by

λ⋆ , argmax
λ�0

GMA (λ). (25)

The inner-level optimization problem (24) is solved by an
ellipsoid method [36] summarized in Algorithm 1, where the
subgradient of the dual problemDMA(λ,α) with respect to
α is given by [32, Proposition 6.1.1]

η(λ,α) =

(
N∑

n=1

p⋆1n − P1,

N∑

n=1

p⋆2n − P2

)
, (26)

where (p⋆1n, p
⋆
2n) is the optimal power allocation solution

obtained by (20)-(23). More details about the initialization of
α and the matrixA in Algorithm 1 are given in [35].

By Proposition 1, the outer-level optimization problem (25)
can be solved by searching forλ⋆ over the setΛ1

⋃
Λ2, i.e.,

λ⋆ = arg max
λ∈Λ1

⋃
Λ2

GMA (λ). (27)

Algorithm 1 The ellipsoid method for solving the inner-level
problem (24)

1: Input CSI {g1n, g2n}Nn=1, average powers{P1, P2}, rate
ratio ρ, time proportiont, andλ.

2: Initialize α and a 2 × 2 positive definite matrixA
that define the ellipsoidE(α,A)=

{
x∈R

2
+ | (x−α)T

A
−1(x−α) ≤ 1

}
.

3: repeat
4: Compute the optimal(p⋆1n, p

⋆
2n) by (20)-(23) for given

(λ,α) andt.
5: Compute the subgradientη(λ,α) with respect toα

by (26).
6: Update the ellipsoid: (a)̃η := η/

√
ηTAη; (b) α :=

α− 1

3
Aη̃; (c) A := 4

3

(
A− 2

3
Aη̃η̃T

A
)
.

7: until α converges toα⋆(λ).
8: Output the optimal dual variableα⋆(λ) for givenλ.

In order to solve the reduced outer-level optimization
problem (27), we first need the subgradient of the objective
functionGMA (λ). According to [32] and [37, Corollary 4.5.3],
one subgradient ofGMA (λ) in (24) is given by

ξ(λ) = (R⋆
MA − r1, R

⋆
MA − r2, R

⋆
MA − r3) , (28)

whereR⋆
MA=min{r1, r2, r3}, andrk (k=1, 2, 3) are the rate

functions (13a)-(13c) associated with the optimal primal pow-
er allocation solution (20)-(23) obtained at the dual point
(λ,α⋆(λ)), respectively, andα⋆(λ) is the optimal solution
to (24).

With the subgradientξ(λ) of GMA (λ), we are ready to
solve the outer-level optimization problem (27). Instead of
searching both the setsΛ1 andΛ2, we propose a simple testing
method to determine whetherλ⋆ ∈Λ1 or λ⋆ ∈Λ2. Noticing
that Λ1

⋂
Λ2 = {(0, 0, 1)}, let us consider a testing method

at the dual pointλ0 = (0, 0, 1). By the concavity of the dual
function DMA(λ,α), GMA (λ) is also concave inλ, which
implies [32, Eq. (B.21)]

GMA (λ)≤GMA (λ
0)+(λ−λ0)T ξ(λ0), ∀ λ∈Λ1

⋃
Λ2. (29)

Suppose thatλ⋆ is an optimal solution to (27), i.e.,
GMA (λ

⋆) ≥ GMA (λ
0). Then, by (29), we must have

(λ⋆ − λ0)T ξ(λ0) ≥ 0 (30)

for the optimal dual pointλ⋆. In other words, if a dual point
λ satisfies(λ−λ0)T ξ(λ0)< 0, thenλ cannot be an optimal
solution to problem (27). Due to this and (28), we establish
the following proposition:

Proposition 2 Let rk (k=1, 2, 3) denote the values of the
terms used in the subgradientξ(λ) in (28) with λ = λ0.
If r3 ≥ r1, thenλ⋆ ∈Λ1. If r3 ≥ r2, thenλ⋆ ∈Λ2. If both
r3 ≥ r1 and r3 ≥ r2, thenλ⋆ = λ0 = (0, 0, 1).

Proof: See Appendix D. �

The procedure for solving (27) is given as follows: First,
we utilize the preceding testing method stated in Proposition 2
to determine whetherλ⋆ ∈Λ1 or λ⋆ ∈Λ2. Then, we use the
bisection method to find the optimal dual variableλ⋆. If
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Algorithm 2 Proposed duality-based algorithm for solving
subproblem (11)

1: Input CSI {g1n, g2n}Nn=1, average powers{P1, P2}, rate
ratio ρ, and time proportiont.

2: Check whetherλ⋆ ∈Λ1 or λ⋆ ∈Λ2 by Proposition 2. If
λ⋆ = λ0 = (0, 0, 1), go to Step 10; otherwise, findλ⋆ by
the bisection method in Steps 3-9.

3: Initialize λ3,min = 0, λ3,max = 1.
4: repeat
5: Updateλ3 = 1

2
(λ3,min + λ3,max).

6: Derive α⋆(λ) for the inner-level dual optimization
problem (24) by Algorithm 1.

7: Compute the subgradientξ(λ) by (28) and the
subgradientζ(λ3) by either (31) or (32).

8: If the subgradientζ(λ3) < 0, then updateλ3,max =
λ3; else updateλ3,min = λ3.

9: until λ3 converges.
10: Obtain the optimal{p⋆

1,p
⋆
2} by (20)-(23) and Remark 2.

11: Output the optimal power allocation solution{p⋆
1,p

⋆
2}

and the optimal rateR⋆
MA (t).

λ⋆=(1−λ⋆
3, 0, λ

⋆
3)∈Λ1, the directional subgradientζ(λ3) of

GMA (λ) along the direction ofΛ1 is determined by

ζ(λ3) = ξ(λ)T
∂λ

∂λ3

= ξ(λ)T (−1, 0, 1) = r1 − r3; (31)

otherwise, if λ⋆ = (0, 1 − λ⋆
3, λ

⋆
3)∈Λ2, the directional

subgradientζ(λ3) along the direction ofΛ2 is determined
by

ζ(λ3) = ξ(λ)T (0,−1, 1) = r2 − r3. (32)

SinceGMA (λ) is concave inλ, it is also concave along
the direction ofΛ1 (or Λ2). Thus, ζ(λ3) is monotonically
non-increasing with respect toλ3. Therefore, we can use the
bisection method to search for the optimal solutionλ⋆

3 to (25),
which satisfiesζ(λ⋆

3) = 0, if 0 < λ⋆
3 < 1; ζ(λ⋆

3) ≤ 0, if
λ⋆
3 = 0; or ζ(λ⋆

3) ≥ 0, if λ⋆
3 = 1. The obtained algorithm for

solving subproblem (11) is summarized in Algorithm 2.

D. Lagrange Dual Optimization for Subproblem(12)

The partial Lagrange dual function of subproblem (12) is
defined as

DBC(λ4, λ5, α3) , min
pR�0,RBC

LBC (pR, RBC, λ4, λ5, α3) , (33)

whereλ4, λ5 andα3 are the nonnegative dual variables asso-
ciated with two rate inequality constraints in (12b) and one
power inequality constraint (12c), respectively, and

LBC (pR, RBC, λ4, λ5, α3) =−RBC +

5∑

k=4

λk

[
RBC − rk(pR)

]

+α3

( N∑

n=1

pRn − PR

)
. (34)

Then, the corresponding dual optimization problem is defined
as

max
λ4≥0,λ5≥0,α3≥0

DBC(λ4, λ5, α3). (35)

Algorithm 3 Proposed duality-based algorithm for solving
subproblem (12)

1: Input CSI {g̃1n, g̃2n}Nn=1, average powerPR, rate ratioρ,
and time proportiont.

2: Initialize λ5,min = 0, λ5,max = 1.
3: repeat
4: Updateλ5 = 1

2
(λ5,min+λ5,max) and initializeα3,min,

α3,max with givenλ5.
5: repeat
6: Updateα3 = 1

2
(α3,min + α3,max).

7: Obtain the optimalp⋆
R by solving (37) at the dual

point (1− λ5, λ5, α3).
8: If

∑N
n=1

p⋆Rn < PR, then updateα3,max = α3;
else updateα3,min = α3.

9: until α3 converges toα⋆
3(λ5).

10: Obtain the optimalp⋆
R by solving (37) at the dual point

(1− λ5, λ5, α
⋆
3(λ5)).

11: If r4(p
⋆
R) < r5(p

⋆
R), then updateλ5,max = λ5; else

updateλ5,min = λ5.
12: until λ5 converges.
13: Obtain the optimalp⋆

R by solving (37).
14: Output the optimal power allocation solutionp⋆

R and the
optimal rateR⋆

BC(t).

The KKT conditions associated with (33) are given by

∂LBC

∂pRn
= α3−

(1 − t)g̃2nλ4

(1− t+ g̃2np⋆Rn) ln 2

− (1− t)g̃1nλ5

ρ(1− t+ g̃1np⋆Rn) ln 2

{≥ 0, if p⋆Rn = 0;

= 0, if p⋆Rn > 0,
(36a)

∂LBC

∂RBC
= λ⋆

4 + λ⋆
5 − 1 = 0. (36b)

If p⋆Rn > 0, then the equality in (36a) holds, and the optimal
p⋆Rn can be shown to be the positive rootx of the following
quadratic equation [17]

(1− t)g̃2nλ4

1− t+ g̃2nx
+

(1 − t)g̃1nλ5

ρ(1− t+ g̃1nx)
= α3 ln 2. (37)

If (37) has no positive root, thenp⋆Rn = 0. By (36b), we have
λ⋆
4 = 1−λ⋆

5. Thus, the optimal dual variables(α⋆
3, λ

⋆
5) can be

derived by a two-level bisection optimization method, and the
obtained algorithm for solving subproblem (12) is summarized
in Algorithm 3. More details about the initialization ofα3,min

andα3,max in Algorithm 3 are given in [35].
As previously mentioned, after solving the power allocation

subproblems (11) and (12), problem (14) can be solved by the
efficient one-dimensional search methods in [31, Chapter 8],
thereby yielding Algorithm 4 for solving problem (10).

E. Computational Complexity Analysis

The computational complexity of Algorithm 2 is given
by O (L(2)KNC1), where L(n)=O

(
2(n+1)2 ln(1/ǫ)

)
is

the number of iterations in the ellipsoid method for ann-
variable nonsmooth optimization problem [38, p. 155],ǫ is
the accuracy of the obtained solution,K =O (ln(1/ǫ)) is the
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Algorithm 4 Proposed resource allocation algorithm for solv-
ing problem (10)

1: Input CSI {g1n, g2n, g̃1n, g̃2n}Nn=1, average powers
{P1, P2, PR}, rate ratioρ.

2: repeat
3: Solve the power allocation subproblems (11) and (12)

by Algorithm 2 and Algorithm 3, respectively, where
t is a given parameter.

4: Updatet using the one-dimensional search method for
problem (14).

5: until t converges.
6: Output the optimal resource allocation{p⋆

1,p
⋆
2,p

⋆
R, t

⋆}
and the optimal rateR⋆

12.

complexity (abbreviated for the complexity order) of one-
dimensional search methods such as the bisection method,
C1 is the complexity for computing the closed-form power
allocation solution (20)-(23). The computational complexity
of Algorithm 3 is given byO

(
K2NC2

)
, whereC2 is the

complexity for computing the closed-form power allocation
solution to (37). Therefore, the overall computational complex-
ity of the proposed resource allocation algorithm (Algorithm 4)
is given byO

(
L(2)K2NC1 +K3NC2

)
.

The complexity of the resource allocation algorithm for
the per-subcarrier DF relay strategy in [17] is given by
O(L(2)L(3)KN(I + C2)), whereI is the complexity of the
iterative power allocation algorithm in Eq. (26) and (27) in
[17], C2 is the complexity of the closed-form power allocation
solution in Eq. (28) in [17]. The complexities of the algorithm
in [17] and Algorithm 4 both grow linearly with the number
of subcarriersN , and therefore they are quite appropriate for
practically large values ofN . In addition, the computational
complexity of the iterative power allocation algorithmI is
much larger than that of the closed-form power allocation
solution C1. The computational complexity of the ellipsoid
methodL(3) is much larger than that of one-dimensional
search methodsK. Therefore, the computational complexity
of Algorithm 4 is much smaller than that of the resource
allocation algorithm in [17].

V. A SYMPTOTIC PERFORMANCEANALYSIS

In this section, we analyze the asymptotic rate regions
of different relay strategies for two-way OFDM channels,
including both the per-subcarrier and the proposed multi-
subcarrier DF relay strategies, the AF relay strategy, and the
cut-set outer bound, in order to compare their achievable rate
regions in both low and high SNR regimes and their respective
performance merits.

The cut-set outer bound for the capacity region of the two-
way OFDM relay channels (1)-(3) is obtained by removing
the sum-rate constraints in (5), which is given by [7]

Rout(P ,G) =

{
(R12, R21)∈R

2
+

∣∣∣∣

R12 ≤ min

{ N∑

n=1

tlog2

(
1+

g1np1n
t

)
,

N∑

n=1

(1− t)log2

(
1+

g̃2npRn

1− t

)}
,

R21 ≤ min

{ N∑

n=1

tlog2

(
1+

g2np2n
t

)
,

N∑

n=1

(1− t)log2

(
1+

g̃1npRn

1− t

)}
,

0 < t < 1,

N∑

n=1

pin ≤ Pi,

pin ≥ 0, i = 1, 2, R, n = 1, . . . , N

}
. (38)

The achievable rate region for the AF relay strategy is given
by [17]

RAF(P ,G) =

{
(R12, R21)∈R

2
+

∣∣∣∣

R12 ≤
N∑

n=1

1

2
log2

(
1+

2p1ng1ng̃2nan
1 + g̃2nan

)
,

R21 ≤
N∑

n=1

1

2
log2

(
1+

2p2ng2ng̃1nan
1 + g̃1nan

)
,

N∑

n=1

pin ≤ Pi,

pin ≥ 0, i = 1, 2, R, n = 1, . . . , N

}
, (39)

wherean = pRn

p1ng1n+p2ng2n+1
is the amplification factor of the

relay node in subcarriern and the time proportiont is fixed
to be 0.5 due to the incompressible nature of the AF relay
strategy.

Suppose that̄P , (P̄1, P̄2, P̄R) is a column vector consti-
tuted by nominal values ofP1, P2 andPR. Then the available
transmission powers of the three nodes can be expressed as

P = xP̄ , (40)

wherex is a positive scalar variable. Note that the average
SNRs of all the wireless links are proportional tox, and so
we will analyze the achievable rate regions of the two-way
relay strategies under consideration for smallx and largex
instead.

A. Low SNR Regime

In the low SNR region (smallx), the functionlog2(1+ax)
with a > 0 can be expressed as

log2(1 + ax) =
a

ln 2
x+O(x2). (41)

Using (41), we can show the following proposition:

Proposition 3 For sufficiently small x> 0 and any
rate pair (R12, R21)∈Rout(xP̄ ,G), there exists some
(R̂12, R̂21)∈RDF(xP̄ ,G) such thatR12 = R̂12 + O(x2b)
andR21 = R̂21+O(x2b) for b ≥ 1. The regionsRDF(xP̄ ,G)
andRout(xP̄ ,G) tend to be the same asx→ 0.

Therefore, the multi-subcarrier DF relay strategy tends to
achieve the capacity region of two-way OFDM relay channels
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(1)-(3) asx→ 0. The proof of Proposition 3 is given in [35]
due to space limit. On the other hand, it can be easily shown
that the achievable rate region of the AF relay strategy will
deflate in a much faster speed than the other two-way strategies
for small x, due to the noise amplification and propagation
effects.

B. High SNR Regime

In the high SNR region (largex), the functionlog2(1+ax)
with a > 0 satisfies

log2(1 + ax) = log2(ax) +O(1/x) = log2(x) +O(1). (42)

Let us define the multiplexing gain region of the multi-
subcarrier DF relay strategy [39]:

rDF , lim
x→∞

RDF(xP̄ ,G)
log2(x)

. (43)

Using (42), we can prove the following proposition:

Proposition 4 The multiplexing gain region of the multi-
subcarrier DF relay strategy is given by

rDF =
{
(r12, r21)

∣∣∣ r12 + 2r21 ≤ N, 2r12 + r21 ≤ N,

r12, r21 ≥ 0
}
. (44)

Proof: To prove (44), it is sufficient to find two rate
regionsR1(xP̄ ,G) andR2(xP̄ ,G), such thatR1(xP̄ ,G) ⊂
RDF(xP̄ ,G) ⊂ R2(xP̄ ,G), and the corresponding multiplex-
ing gain regions ofR1(xP̄ ,G) andR2(xP̄ ,G) are both given
by (44). The detailed proof is given in [35] due to space limit.

Actually, the multiplexing gain regionrDF given by (44)
depends on the time proportion allocation but not upon the
power allocation, which can be observed from the proof of
Proposition 4 [35]. For instance, the simple equal power
allocation scheme can achieve this multiplexing gain region,
and thereby the achievable rate region gap between this
power allocation scheme and the optimal power allocation
scheme asymptotically converges to a constant region gap for
sufficiently largex.

Following similar ideas for the proof of Proposition 4, one
can derive the multiplexing gains for the per-subcarrier DF
relay strategy, the AF relay strategy, and the cut-set outer
bound as stated in the following proposition (with the proof
omitted):

Proposition 5 Let rp,DF, rAF, androut denote the multiplexing
gain regions of the per-subcarrier DF relay strategy, the
AF relay strategy and the cut-set outer bound, respectively.
Then rp,DF = rDF (given by (44)) and rAF = rout ={
(r12, r21)

∣∣∣ r12 ≤ N
2
, r21 ≤ N

2
, r12, r21 ≥ 0

}
.

Proposition 5 implies that the AF relay strategy can achieve
the multiplexing gain region of the two-way OFDM relay
channels, while the performance of both DF relay strategies
is worse than that of the AF relay strategy in the high SNR
regime. An illustrative example for these analytical results is
given in Fig. 2. To the best of our knowledge, the multiplexing
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 (
b
it
s/
s/
H
z)
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(1=3; 1=3)

rDF = rp,DF

0.6

0.6

rAF = rout

Fig. 2. Comparison of multiplexing gain regions of different two-way OFDM
relay strategies in the high SNR regime.

gain region of the cut-set outer bound was derived in [11],
while the multiplexing gain regions of the DF and AF relay
strategies have not been reported in the open literature before.
All the analytical results as presented in Propositions 3-5will
be confirmed by our numerical results in the next section.

VI. N UMERICAL RESULTS

We now provide some numerical results to compare the
performance of different two-way OFDM relay strategies
under optimal resource allocation. The wireless channels are
generated by usingM = 4 independent Rayleigh distributed
time-domain taps. The number of subcarriers in the OFDM
channel isN = 16. We assume that the wireless channels
betweenTi (i∈{1, 2}) andTR are reciprocal, i.e.,gin = g̃in,
for all i = 1, 2, n = 1, . . . , 16. The maximum average
transmission powers for all the nodes are assumed to be the
same, i.e.,P1 = P2 = PR = P . Therefore, the average SNR
of the wireless links betweenTi (i∈{1, 2}) andTR is given
by SNRi = E[gin]

P
N .

We consider the following two-way relay strategies in our
numerical comparisons: the multi-subcarrier DF relay strategy
proposed in Lemma 1, the per-subcarrier DF relay strategy
[17], the AF relay strategy [17], and the cut-set outer bound
[7]. The associated rate regions of these strategies are given
by RDF(P ,G) in (5), Rp,DF(P ,G) in (6), RAF(P ,G) in (39),
and Rout(P ,G) in (38), respectively. The optimal resource
allocation of the multi-subcarrier DF relay strategy is obtained
by Algorithm 4, the optimal resource allocation of the per-
subcarrier DF relay strategy and the AF relay strategy are
carried out based on the power allocation algorithms proposed
in [17], and the optimal resource allocation of the cut-set outer
bound is obtained by a simpler version of Algorithm 4.

Figures 3(a)-3(d) provide the rate regions of these
relay strategies for four symmetric SNR scenarios with
SNR1 =SNR2 =SNR=0, 10, 20, 30 dB, respectively. Some
observations from these figures are worth mentioning: First,
the achievable rate region of the multi-subcarrier DF relay
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Fig. 3. Achievable rate regions of four two-way OFDM relay strategies for four symmetric SNR scenarios (i.e., SNR1 =SNR2 =SNR), including (a)
SNR=0 dB, (b) SNR=10 dB, (c) SNR=20 dB, and (d) SNR=30 dB.

strategy is always larger than that of the per-subcarrier DF
relay strategy. Second, as the SNR decreases, the achievable
rate region of the multi-subcarrier DF relay strategy tendsto
reach the cut-set outer bound. Third, the achievable rate region
of the AF relay strategy grows with SNR, but it is still a
subset of those of the DF relay strategies for SNR≤ 20 dB;
this is no longer true for SNR=30 dB. Finally, in the high
SNR region, the rate regions of these strategies tend to be
dominated by the multiplexing gain region, thereby consistent
with Propositions 4 and 5. To be more specific, the shape
of the outer bound tends to be a rectangle depending on the
SNR. The achievable rate region of the AF strategy is closer
to the outer bound for the higher SNR, but that of the two
DF strategies are not. However, for the low SNR, only the
proposed multi-subcarrier DF strategy can approach the outer

bound.
Figure 4 shows the achievable rate region of the multi-

subcarrier DF relay strategy obtained by solving problem (10)
using CVX, and that obtained by using Algorithm 4, justifying
that they yield the same numerical results as expected.

Figure 5(a) and 5(b) illustrate the rate regions of these
relay strategies for two asymmetric SNR scenarios, in-
cluding (SNR1,SNR2)= (10 dB, 5 dB) and (SNR1,SNR2)=
(30 dB, 5 dB). Similar observations from Figure 3 can be seen
in Figure 5 as well.

Finally, Figure 6 shows some results (the achievable rate
versus average SNR) of these relay strategies for the symme-
tric SNR symmetric rate scenario, i.e., SNR1 =SNR2 =SNR
andR12 = R21. The numerical results in Fig. 6 were obtained
by averaging over 500 fading channel realizations. One can
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Fig. 4. Achievable rate region of the multi-subcarrier DF relay strategy
obtained by using Algorithm 4 and that obtained by solving problem (10)
using the convex solver CVX for SNR1 =SNR2 =20 dB.

see from this figure that, in the low SNR regime, the multi-
subcarrier DF relay strategy tends to have the same perform-
ance as the cut-set outer bound, and that the multi-subcarrier
DF relay strategy performs better than the AF relay strategy
in the low to moderate SNR regime, i.e., SNR≤ 24 dB. More-
over, the multi-subcarrier DF relay strategy with the optimal
resource allocation performs better than with the equal power
allocation and the optimalt⋆ used; it also outperforms the
per-subcarrier DF strategy.

By Proposition 5, in the high SNR regime, the multiplexing
gains of the AF relay strategy and the cut-set outer bound are
the same; the multiplexing gains of the two DF relay strategies
are also the same; the multiplexing gain of the AF relay
strategy is larger than that of the DF relay strategy (implying
better performance for the former than the latter for sufficiently
high SNR); both the equal power allocation and the optimal
power allocation for the multi-subcarrier DF strategy achieve
the same multiplexing gain, and the rate gap between them
tends to a constant value as SNR increases. All these analytical
results have been substantiated by the numerical results shown
in Figures 3-6.

VII. C ONCLUSION

We have analytically shown that the widely studied per-
subcarrier DF relay strategy is only a suboptimal DF relay
strategy for two-way OFDM relay channels in terms of achie-
vable rate region when the direct link is negligible. We have
presented a computationally efficient algorithm (Algorithm 4)
for obtaining the optimal resource allocation of the proposed
multi-subcarrier DF relay strategy. Then we have presented
an analysis of asymptotic performance for the above two
DF strategies, the AF strategy, and the cut-set outer bound.
Our theoretical analysis and numerical results imply that the
proposed multi-subcarrier DF relay strategy is suitable for the
low to moderate SNR regime, while the AF strategy is suitable
for the high SNR regime, thereby providing a guidance for the
design of practical two-way OFDM relay systems.

APPENDIX A
PROOF OFLEMMA 1

According to Theorem 2 of [7], the optimal achievable rate
region of discrete memoryless two-way relay channel with a
DF relay strategy is given by the set of rate pairs(R12, R21)
satisfying

R12 ≤ min{tI(X1;YR|X2), (1− t)I(XR;Y2)} , (45a)
R21 ≤ min{tI(X2;YR|X1), (1− t)I(XR;Y1)} , (45b)
R12 +R21 ≤ tI(X1, X2;YR), (45c)

whereXi andYi (i=1, 2, R) are the input and output symbols
of the channel at the terminal and relay nodes, respectively.

In the two-way parallel Gaussian relay channel, the channel
input and output symbols are given by the vectorsXi =
(Xi1, . . . , XiN ) and Yi = (Yi1, . . . , YiN ), respectively. The
mutual information terms in (45a)-(45c) can be maximized
simultaneously with the following channel input distributions
[22, Section 9.4]:

1) The elements of channel inputXin should be statistical-
ly independent for differentn;

2) The elements of channel inputXin should be Gaussian
random variables with zero mean and unit variance.

By applying these channel input distributions, and by further
considering the power and channel resource constraints, the
achievable rate region (5) is attained.

APPENDIX B
PROOF OFPROPOSITION1

The optimal primal variables(p⋆
1,p

⋆
2) and the optimal dual

variables (λ⋆,α⋆) to problem (11) must satisfy the KKT
condition ∂LMA

∂RMA
= λ⋆

1 + λ⋆
2 + λ⋆

3 − 1 = 0, (46)

and the complementary slackness conditions

λ⋆
k

[
R⋆

MA − rk(p
⋆
1,p

⋆
2)
]
= 0, k = 1, 2, 3. (47)

By (46), the optimal dual variableλ⋆ has at most two
independent variables, i.e.,λ⋆

1 = 1 − λ⋆
2 − λ⋆

3. For conven-
ience, rk(p⋆

1,p
⋆
2) is simply denoted asr⋆k for k = 1, 2, 3.

If r⋆1 6= r⋆2 , then by the complementary slackness conditions
in (47), the optimal dual variableλ⋆ must satisfy either
λ⋆ = (1−λ⋆

3, 0, λ
⋆
3) with λ⋆

2 = 0 or λ⋆ = (0, 1−λ⋆
3, λ

⋆
3) with

λ⋆
1 = 0, and the asserted statement is thus proved. Therefore,

we only need to consider the case ofr⋆1 = r⋆2 .
It can be easily seen from (13a)-(13c) that

r⋆1+ρr⋆2 = t

N∑

n=1

log2

(
1+

g1np
⋆
1n+g2np

⋆
2n

t
+

g1ng2np
⋆
1np

⋆
2n

t2

)

≥ (ρ+ 1)r⋆3 , (48)

and the equality holds in (48) if and only ifp⋆1np
⋆
2n = 0

for n = 1, . . . , N . This leads to two cases to be discussed as
follows:

Case 1: r⋆1 + ρr⋆2 > (ρ+ 1)r⋆3 .
Sincer⋆1 = r⋆2 , we have thatr⋆3 < 1

ρ+1
r⋆1 + ρ

ρ+1
r⋆2 = r⋆1 =

r⋆2 . If λ⋆
1 > 0 andλ⋆

2 > 0, then the complementary slackness
conditions in (47) implyR⋆

MA = r⋆1 = r⋆2 > r⋆3 , which
contradicts with the rate constraintR⋆

MA ≤ r⋆3 . Therefore,λ⋆
1
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Fig. 5. Achievable rate regions of four two-way OFDM relay strategies for two asymmetric SNR scenarios, including (a) SNR1 =10 dB, SNR2 =5 dB, and
(b) SNR1 =30 dB, SNR2 =5 dB.

and λ⋆
2 can not be both positive, and Proposition 1 is thus

proved in Case 1.
Case 2: r⋆1 + ρr⋆2 = (ρ+ 1)r⋆3 .
Since r⋆1 = r⋆2 , we haveR⋆

MA = r⋆1 = r⋆2 = r⋆3 . If problem
(17) has an optimal dual solution(λ⋆,α⋆) with λ⋆

1λ
⋆
2 = 0,

the optimal dual variableλ⋆ already satisfies eitherλ⋆ =
(1−λ⋆

3, 0, λ
⋆
3) or λ⋆ = (0, 1−λ⋆

3, λ
⋆
3). Suppose that there is

an optimal dual pointλ⋆ satisfyingλ⋆
1 > 0 andλ⋆

2 > 0, we
will construct another optimal dual solution with the desired
structure stated in Proposition 1.

By (48), r⋆1 + ρr⋆2 = (ρ+ 1)r⋆3 happens only if the optimal
primal solution satisfiesp⋆1np

⋆
2n = 0 for all n. Let us define

I1 ⊆ N , {1, . . . , N} as the index set of subcarriers with
p⋆1n ≥ 0, p⋆2n = 0, and I2 ⊆ N with p⋆1n = 0, p⋆2n ≥ 0.
The optimal primal variables(p⋆

1,p
⋆
2) and the optimal dual

variables(λ⋆,α⋆) to problem (11) must satisfy the following
KKT conditions:

∂LMA

∂RMA
= λ⋆

1 + λ⋆
2 + λ⋆

3 − 1 = 0 , (49a)

∂LMA

∂p1n
= α⋆

1 −
tg1n[λ

⋆
3 + (ρ+ 1)λ⋆

1]

(ρ+ 1)(t+ g1np⋆1n) ln 2{≥ 0, if p⋆1n = 0

= 0, if p⋆1n > 0
, n∈I1, (49b)

∂LMA

∂p2n
= α⋆

2 −
tg2n[ρλ

⋆
3 + (ρ+ 1)λ⋆

2]

ρ(ρ+ 1)(t+ g2np⋆2n) ln 2{≥ 0, if p⋆2n = 0

= 0, if p⋆2n > 0
, n∈I2, (49c)

λ⋆
k ≥ 0, k = 1, 2, 3, (49d)

R⋆
MA − r⋆k ≤ 0 , k = 1, 2, 3, (49e)

λ⋆
k

(
R⋆

MA − r⋆k
)
= 0 , k = 1, 2, 3, (49f)

α⋆
i ≥ 0, i = 1, 2, (49g)∑N
n=1

p⋆in − Pi ≤ 0 , i = 1, 2, (49h)

α⋆
i

(∑N
n=1

p⋆in − Pi

)
= 0 , i = 1, 2. (49i)

If λ⋆
1 ≥ 1

ρ λ
⋆
2 > 0, we define a new dual point̃λ=

(
λ⋆
1− 1

ρ λ
⋆
2,

0, λ⋆
3+

ρ+1

ρ λ⋆
2

)
. Sinceλ̃1+λ̃2+λ̃3=λ⋆

1+λ⋆
2+λ⋆

3, λ̃3+(ρ+1)λ̃1

=λ⋆
3+(ρ+1)λ⋆

1, ρλ̃3+(ρ+1)λ̃2 = ρλ⋆
3+(ρ+1)λ⋆

2, andR⋆
MA =

r⋆1 = r⋆2 = r⋆3 , the dual point(λ̃,α⋆) and the primal point
(p⋆

1,p
⋆
2) also satisfy the KKT conditions (49a)-(49i). There-

fore,λ̃ is an optimal dual solution of problem (17) that satisfies
λ̃ = (1−λ̃3, 0, λ̃3).

If 0<λ⋆
1 <

1

ρ λ
⋆
2, similarly we can define another dual

point λ̂ =
(
0, λ⋆

2−ρλ⋆
1, λ

⋆
3+(ρ+1)λ⋆

1

)
. Since λ̂1+λ̂2+λ̂3 =

λ⋆
1+λ⋆

2+λ⋆
3, λ̂3+(ρ+1)λ̂1 = λ⋆

3+(ρ+1)λ⋆
1, ρλ̂3+(ρ+1)λ̂2 =

ρλ⋆
3 + (ρ + 1)λ⋆

2, andR⋆
MA = r⋆1 = r⋆2 = r⋆3 , the dual point

(λ̂,α⋆) and the primal point(p⋆
1
,p⋆

2
) also satisfy the KKT

conditions (49a)-(49i). Therefore,̂λ is an optimal dual solution
of problem (17) that satisfieŝλ = (0, 1−λ̂3, λ̂3). Hence, the
statement of Proposition 1 has been proved for Case 2.

APPENDIX C
CLOSED-FORM SOLUTION TO (19) WITHOUT USING

PROPOSITION1 (DISCUSSED INREMARK 1)

When the structural property in Proposition 1 is not avail-
able, the primal power allocation solution is more complicated
for the case ofp⋆1n > 0, p⋆2n > 0. In this case, the KKT
conditions (19a) and (19b) both hold with equality. Therefore,
we need to solve a system of quadratic equations with two
variables. To simplify this problem, we define an auxiliary
variable

x , g1np
⋆
1n + g2np

⋆
2n. (50)

Then, by (19) and through some derivations, we obtain

p⋆1n =
t(ρ+ 1)λ1

α1(ρ+ 1) ln 2−tg1nλ3/(t+ x)
− t

g1n
, (51a)

p⋆2n =
t(ρ+ 1)λ2/ρ

α2(ρ+ 1) ln 2−tg2nλ3/(t+ x)
− t

g2n
. (51b)

By substituting (51a) and (51b) into (50), we end up with
the following cubic equation ofx:
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Fig. 6. Achievable rate performance comparison of two-way OFDM relay
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tg1n(ρ+ 1)λ1

α1(ρ+ 1) ln 2− tg1nλ3

t+x

+
tg2n(ρ+ 1)λ2/ρ

α2(ρ+ 1) ln 2− tg2nλ3

t+x

= x+ 2t.

(52)
It is widely known that the closed-form solutions of the

cubic equationx3 + ax2 + bx+ c = 0 are given by Cardano’s
formula [40], i.e.,

x1 = ejθ1 3

√
|y1|+ ejθ2 3

√
|y2| − a/3, (53a)

x2 = ωejθ1/3 3

√
|y1|+ ω2ejθ2/3 3

√
|y2| − a/3, (53b)

x3 = ω2ejθ1/3 3

√
|y1|+ ωejθ2/3 3

√
|y2| − a/3, (53c)

wherep = −a2/3 + b, q = 2a3/27− ab/3 + c, ω = −1/2 +
j
√
3/2, ∆ = p3/27+ q2/4, y1 = −q/2+

√
∆, y2 = −q/2−√

∆, θ1 = angle (y1), θ2 = angle (y2) , andangle (·) denotes
the phase angle of an complex number. If∆ ≥ 0, the cubic
equation has one real root and a pair of conjugate complex
roots; if ∆ < 0, the cubic equation has three real roots.

After obtaining the positive real rootx of (52), we can
easily obtain the optimalp⋆1n and p⋆2n by substitutingx into
(51), which is the closed-form power allocation solution.

APPENDIX D
PROOF OFPROPOSITION2

By (48), it is known thatr1 + ρr2 ≥ (ρ + 1)r3. This leads
to two cases to be discussed:

Case 1: r1 + ρr2 > (ρ+ 1)r3.
In this case, ifr3 ≥ r1, we haveρ(r2 − r3)>r3 − r1 ≥

0. Hence,r2 > r3. Assumeλ⋆ = (0, 1−λ⋆
3, λ

⋆
3)∈Λ2\{λ0},

which means0 ≤ λ⋆
3 < 1, and then we have

(1− λ⋆
3)(r3 − r2) < 0. (54)

On the other hand, sinceλ⋆ = (0, 1−λ⋆
3, λ

⋆
3) is an optimal

dual point, by (28) and (30), it must be true that

(λ⋆ − λ0)T ξ(λ0) = (1− λ⋆
3)(r3 − r2) ≥ 0, (55)

which leads to a contradiction with (54). Thus,λ⋆ /∈
Λ2\{λ0}. By Proposition 1, we must haveλ⋆ ∈Λ1.

Similarly, if r3 ≥ r2, we can show thatλ⋆ ∈Λ2.
Case 2: r1 + ρr2 = (ρ+ 1)r3.
If only one of the inequalities ofr3 ≥ r1 and r3 ≥ r2

is satisfied, similar to Case 1, we can show thatλ⋆ ∈Λ1 if
r3 ≥ r1 andλ⋆ ∈Λ2 if r3 ≥ r2.

If both r3 ≥ r1 and r3 ≥ r2, we haver1 = r2 = r3 =
R⋆

MA by the condition of Case 2. Thus, according to (28), the
subgradientξ(λ0) = 0. Substituting this into (29) yields

GMA (λ) ≤ GMA (λ
0), ∀ λ∈Λ1

⋃
Λ2, (56)

which means thatλ0 itself is an optimal solution to (27). i.e.,
λ⋆ = λ0.
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