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Abstract

We study a class of scheduling problems, where each job is divided into a batch of unit-size tasks

and these tasks can be executed in parallel on multiple servers with New-Better-than-Used (NBU) service

time distributions. While many delay optimality results are available for single-server queueing systems,

generalizing these results to the multi-server case has been challenging. This motivated us to investigate

near delay-optimal scheduling of batch jobs in multi-server queueing systems. We consider three low-

complexity scheduling policies: the Fewest Unassigned Tasks first (FUT) policy, the Earliest Due Date

first (EDD) policy, and the First-Come, First-Served (FCFS) policy. We prove that for arbitrary number,

batch sizes, arrival times, and due times of the jobs, these scheduling policies are near delay-optimal in

stochastic ordering for minimizing three classes of delay metrics among all causal and non-preemptive

policies. In particular, the FUT policy is within a constant additive delay gap from the optimum for

minimizing the mean average delay, and the FCFS policy within twice of the optimum for minimizing

the mean maximum delay and the mean p-norm of delay. The key proof tools are several novel sample-

path orderings, which can be used to compare the sample-path delay of different policies in a near-optimal

sense.
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I. INTRODUCTION

Achieving low service latency is imperative in cloud computing and data center systems. As the user

population and data volume scale up, the running times of service jobs grow quickly. In practice, long-

running jobs are broken into a batch of short tasks which can be executed separately by a number of

parallel servers [1]. We study the scheduling of such batch jobs in multi-server queueing systems. The

jobs arrive over time according to a general arrival process, where the number, batch sizes, arrival times,

and due times of the jobs are arbitrarily given. A scheduler determines how to assign the tasks of

incoming jobs to the servers, based on the casual information (the history and current information) of the

system. We assume that each task is of one unit of work and can be flexibly assigned to any server. The

service times of the tasks follow New-Better-than-Used (NBU) distributions, and are independent across

the servers and i.i.d. across the tasks assigned to the same server. Our goal is to seek for low-complexity

scheduling policies that optimize the delay performance of the jobs.

Many delay-optimal scheduling results have been established in single-server queueing systems. In

the deterministic scheduling models, the preemptive Shortest Remaining Processing Time first (SRPT)

policy, the preemptive Earliest Due Date first (EDD) policy, and the First-Come, First-Served (FCFS)

policy were proven to minimize the average delay [2], [3], maximum lateness [4], and maximum delay

[5], respectively. In addition, index policies are shown to be delay-optimal in many stochastic scheduling

problems, e.g., [6]–[10].

Unfortunately, generalizing these delay-optimal results to the parallel-server case is quite challenging. In

particular, minimizing the average delay in deterministic scheduling problems with more than one servers

is NP -hard [11]. Similarly, delay-optimal stochastic scheduling in multi-class multi-server queueing

systems is deemed to be notoriously difficult [12], [13]. Prior attempts on solving the delay-optimal

stochastic scheduling problem have met with little success, except in some limiting regions such as large

system limits, e.g., [14], and heavy traffic limits, e.g., [15], [16]. However, these results may not apply

either outside of these limiting regions, or for a non-stationary job arrival process under which the steady

state distribution of the system does not exist.

A. Our Contributions

Because of the difficulty in establishing delay optimality in the considered queueing systems, we

investigate near delay-optimal scheduling in this paper. We prove that for arbitrarily given job parameters

(including the number, batch sizes, arrival times, and due times of the jobs), the Fewest Unassigned Tasks

first (FUT) policy, the EDD policy, and the FCFS policy are near delay-optimal in stochastic ordering for

minimizing average delay, maximum lateness, and maximum delay, respectively, among all causal and
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non-preemptive1 policies. If the job parameters satisfy some additional conditions, we can further show

that these policies are near delay-optimal in stochastic ordering for minimizing three general classes of

delay metrics. In particular, we show that the FUT policy is within a constant additive delay gap from

the optimum for minimizing the mean average delay (Theorem 2)2; and the FCFS policy within twice of

the optimum for minimizing the mean maximum delay and mean p-norm of delay (Theorems 5 and 6).

We develop a unified sample-path method to establish these results, where the key proof tools are

several novel sample-path orderings for comparing the delay performance of different policies in a near-

optimal sense. These sample-path orderings are very general because they do not need to specify the

queueing system model, and hence can be potentially used for establishing near delay optimality results

in other queueing systems.

B. Organization of the Paper

We describe the system model and problem formulation in Section II, together with the notations that

we will use throughout the paper. Some near delay optimality results are introduced in Section III, which

are proven in Section IV. Finally, some conclusion discussions are presented in Section V.

II. MODEL AND FORMULATION

A. Notations and Definitions

We will use lower case letters such as x and x, respectively, to represent deterministic scalars and

vectors. In the vector case, a subscript will index the components of a vector, such as xi. We use x[i] and

x(i), respectively, to denote the i-th largest and the i-th smallest components of x. For any n-dimensional

vector x, let x↑ = (x(1), . . . , x(n)) denote the increasing rearrangement of x. Let 0 denote the vector

with all 0 components.

Random variables and vectors will be denoted by upper case letters such as X and X, respectively, with

the subscripts and superscripts following the same conventions as in the deterministic case. Throughout

the paper, “increasing/decreasing” and “convex/concave” are used in the non-strict sense. LHS and RHS

denote, respectively, “left-hand side” and “right-hand side”.

For any n-dimensional vectors x and y, the elementwise vector ordering xi ≤ yi, i = 1, . . . , n, is

denoted by x ≤ y. Further, x is said to be majorized by y, denoted by x ≺ y, if (i)
∑j

i=1 x[i] ≤
∑j

i=1 y[i],

1We consider task-level non-preemptive policies: Processing of a task cannot be interrupted until the task is completed.
However, after completing a task from one job, a server can switch to process another task from any job.

2As we will see in Section III, the FUT policy is a nice approximation of the Shortest Remaining Processing Time (SRPT)
first policy [2], [3].
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Fig. 1: A centralized queueing system, where a scheduler assigns the tasks of arrived jobs to the servers.

j = 1, . . . , n − 1 and (ii)
∑n

i=1 x[i] =
∑n

i=1 y[i] [18]. In addition, x is said to be weakly majorized by

y from below, denoted by x ≺w y, if
∑j

i=1 x[i] ≤
∑j

i=1 y[i], j = 1, . . . , n; x is said to be weakly

majorized by y from above, denoted by x ≺w y, if
∑j

i=1 x(i) ≥
∑j

i=1 y(i), j = 1, . . . , n [18]. A function

that preserves the majorization order is called a Schur convex function. Specifically, f : Rn → R is

termed Schur convex if f(x) ≤ f(y) for all x ≺ y [18]. A function f : Rn → R is termed symmetric if

f(x) = f(x↑) for all x. A function f : Rn → R is termed sub-additive if f(x+y) ≤ f(x)+f(y) for all

x,y. The composition of functions φ and f is denoted by φ◦f(x) = φ(f(x)). Define x∧y = min{x, y}.
Let A and S denote sets and events, with |S| denoting the cardinality of S. For all random variable

X and event A, let [X|A] denote a random variable whose distribution is identical to the conditional

distribution of X for given A. A random variable X is said to be stochastically smaller than another

random variable Y , denoted by X ≤st Y , if Pr(X > x) ≤ Pr(Y > x) for all x ∈ R. A set U ⊆ Rn

is called upper, if y ∈ U whenever y ≥ x and x ∈ U . A random vector X is said to be stochastically

smaller than another random vector Y , denoted by X ≤st Y , if Pr(X ∈ U) ≤ Pr(Y ∈ U) for all upper

sets U ⊆ Rn. If X ≤st Y and X ≥st Y , then X and Y follow the same distribution, denoted by

X =st Y . We remark that X ≤st Y if, and only if,

E[φ(X)] ≤ E[φ(Y )] (1)

holds for all increasing φ : Rn → R for which the expectations in (1) exist.

B. Queueing System Model

Consider a queueing system with m parallel servers, as shown in Fig. 1, which starts to operate at time

t = 0. A sequence of n jobs arrive at time instants a1, . . . , an and are stored in a job queue, where n is

an arbitrary positive integer, no matter finite or infinite, and 0 = a1 ≤ a2 ≤ · · · ≤ an. The i-th arrived

job, called job i, brings with it a batch of ki tasks. Each task is of one unit of work, and can be flexibly

assigned to any server. Job i is completed when all ki tasks of job i are completed. The maximum job
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size is3

kmax = max
i=1,...,n

ki. (2)

A scheduler assigns the tasks of arrived jobs to the servers over time. The service times of the tasks

are assumed to be independent across the servers and i.i.d. across the tasks assigned to the same server.

Let Xl represent the random service time of server l. The service rate of server l is µl = 1/E[Xl], which

may vary across the servers. Denote X = (X1, . . . , Xm). We consider the classes of NBU task service

time distributions.

Definition 1. Consider a non-negative random variable X with complementary cumulative distribution

function (CDF) F̄ (x) = Pr[X > x]. Then, X is New-Better-than-Used (NBU) if for all t, τ ≥ 0

F̄ (τ + t) ≤ F̄ (τ)F̄ (t). (3)

C. Scheduling Policies

A scheduling policy, denoted by π, determines the task assignments in the system. We consider the

class of causal policies, in which scheduling decisions are made based on the history and current state

of the system; the realization of task service time is unknown until the task is completed (unless the

service time is deterministic). In practice, service preemption is costly and may leads to complexity and

reliability issues [19], [20]. Motivated by this, we assume that preemption is not allowed. Hence, if a

server starts to process a task, it must complete this task before switching to process another task. We use

Π to denote the set of causal and non-preemptive policies. Let us define several sub-classes of policies

within Π:

A policy is said to be non-anticipative, if the scheduling decisions are made without using any

information about the future job arrivals; and is said to be anticipative, if it has access to the parameters

(ai, ki, di) of future arriving jobs. For periodic and pre-planned services, future job arrivals can be

predicted in advance. To cover these scenarios, we abuse the definition of causal policies a bit and

include anticipative policies into the policy space Π. However, the policies that we propose in this paper

are all non-anticipative.

A policy is said to be work-conserving, if no server is idle when there are tasks waiting to be processed.

3If n→∞, then the max operator in (2) is replaced by sup.
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The goal of this paper is to design low-complexity non-anticipative scheduling policies that are near

delay-optimal among all policies in Π, even compared to the anticipative policies with knowledge about

future arriving jobs.

D. Delay Metrics

Each job i has a due time di ∈ [0,∞), also called due date, which is the time that job i is promised

to be completed [21]. Completion of a job after its due time is allowed, but then a penalty is incurred.

Hence, the due time can be considered as a soft deadline.

For each job i, Ci is the job completion time, Di = Ci − ai is the delay, Li = Ci − di is the lateness

after the due time di, and Ti = max[Ci − di, 0] is the tardiness (or positive lateness). Define the vectors

a = (a1, . . . , an), d = (d1, . . . , dn), C = (C1, . . . , Cn), D = (D1, . . . , Dn), L = (L1, . . . , Ln), and

C↑=(C(1), . . . , C(n)). Let c = (c1, . . . , cn) and c↑=(c(1), . . . , c(n)), respectively, denote the realizations

of C and C↑. All these quantities are functions of the scheduling policy π.

Several important delay metrics are introduced in the following: For any policy π, the average delay

Davg : Rn → R is defined by4

Davg(C(π)) =
1

n

n∑
i=1

[Ci(π)− ai] . (4)

The maximum lateness Lmax : Rn → R is defined by

Lmax(C(π))= max
i=1,2,...,n

Li(π) = max
i=1,2,...,n

[Ci(π)− di] , (5)

if di = ai, Lmax reduces to the maximum delay Dmax : Rn → R, i.e.,

Dmax(C(π))= max
i=1,2,...,n

Di(π) = max
i=1,2,...,n

[Ci(π)− ai] . (6)

The p-norm of delay Dp : Rn → R is defined by

Dp(C(π)) = ||D(π)||p =

[
n∑
i=1

Di(π)p

]1/p

, p ≥ 1. (7)

In general, a delay metric can be expressed as a function f(C(π)) of the job completion time vector

4If n→∞, then a lim sup operator is enforced on the RHS of (4), and the max operator in (5) and (6) is replaced by sup.
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C(π), where f : Rn → R is increasing. In this paper, we consider three classes of delay metric functions:

Dsym = {f : f is symmetric and increasing},

DSch-1 = {f : f(x+ d) is Schur convex and increasing in x},

DSch-2 = {f : f(x+ a) is Schur convex and increasing in x}.

Consider two alternative expressions of the delay metric function f :

f1(L(π)) = f(L(π) + d) = f(C(π)), (8)

f2(D(π)) = f(D(π) + a) = f(C(π)). (9)

Then, f1(L(π)) is Schur convex in the lateness vector L(π) for each f ∈ DSch-1, and f2(D(π)) is Schur

convex in the delay vector D(π) for each f ∈ DSch-2. Furthermore, every convex and symmetric function

is Schur convex. Using these properties, it is easy to show that

Davg ∈ Dsym ∩ DSch-1 ∩ DSch-2,

Lmax ∈ DSch-1, Dmax ∈ DSch-2, Dp ∈ DSch-2.

E. Near Delay Optimality

Define I = {n, (ai, ki, di)ni=1} as the parameters of the jobs, which include the number, batch sizes,

arrival times, and due times of the jobs. The job parameters I and random task service times are

determined by two external processes, which are mutually independent and do not change according

to the scheduling policy. For delay metric function f and policy space Π, a policy P ∈ Π is said to be

delay-optimal in stochastic ordering, if for all π ∈ Π and I

[f(C(P ))|P, I] ≤st [f(C(π))|π, I]. (10)

or equivalently, if for all I

E[φ ◦ f(C(P ))|P, I] = min
π∈Π

E[φ ◦ f(C(π))|π, I] (11)

holds for all increasing function φ : R → R for which the conditional expectations in (11) exist. The

equivalence between (10) and (11) follows from (1). For notational simplicity, we will omit the mention

of the condition that policy π or policy P is adopted in the system in the rest of the paper. Note that

this definition of delay optimality is quite strong because the optimal policy P needs to satisfy (10) and

(11) for arbitrarily given job parameters I.
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Fig. 2: An illustration of Vi and Ci. There are 2 servers, and job i has 3 tasks denoted by (i, 1), (i, 2),
(i, 3). Tasks (i, 1) and (i, 3) are assigned to Server 1, and Task (i, 2) is assigned to Server 2. By time Vi,
all tasks of job i have started service. By time Ci, all tasks of job i have completed service. Therefore,
Vi ≤ Ci.

In multi-class multi-server queueing systems, delay optimality is extremely difficult to achieve, even

with respect to some definitions of delay optimality that are weaker than (10). In deterministic scheduling

problems, it was shown that minimizing the average delay in multi-server queueing systems is NP -hard

[11]. Similarly, delay-optimal stochastic scheduling in multi-server queueing systems with multiple job

classes is deemed to be notoriously difficult [12], [13], [15]. This motivated us to study whether there

exist policies that can come close to delay optimality. We will show that this is possible in the following

sense:

Define Vi as the earliest time that all tasks of job i have entered the servers. In other words, all tasks

of job i are either completed or under service at time Vi. One illustration of Vi is provided in Fig. 2,

from which it is easy to see

Vi ≤ Ci. (12)

Denote V = (V1, . . . , Vn), V↑= (V(1), . . . , V(n)). Let v = (v1, . . . , vn) and v↑= (v(1), . . . , v(n)) be the

realization of V and V↑, respectively. All these quantities are functions of the scheduling policy π. A

policy P ∈ Π is said to be near delay-optimal in stochastic ordering, if for all π ∈ Π and I

[f(V (P ))|I] ≤st [f(C(π))|I], (13)

or equivalently, if for all I

E[φ◦f(V (P ))|I]≤min
π∈Π

E[φ◦f(C(π))|I]≤E[φ◦f(C(P ))|I] (14)

holds for all increasing function φ for which the conditional expectations in (14) exist. There exist many

ways to approximate (10) and (11), and obtain various forms of near delay optimality. We find that the

form in (13) and (14) is convenient, because it is analytically provable and leads to tight sub-optimal

delay gap, as we will see in the subsequent sections.
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Algorithm 1: Fewest Unassigned Tasks first (FUT).
1 Q := ∅; // Q is the set of jobs in the queue
2 while the system is ON do
3 if job i arrives then
4 ξi := ki; // job i has ξi remaining tasks
5 γi := ki; // job i has γi unassigned tasks
6 Q := Q ∪ {i};
7 end
8 while

∑
i∈Q γi > 0 and there are idle servers do

9 Pick any idle server l;
10 j := arg min{γi : i ∈ Q, γi > 0};
11 Allocate a task of job j on server l;
12 γj := γj − 1;
13 end
14 if a task of job i is completed then
15 ξi := ξi − 1;
16 if ξi = 0 then Q := Q/{i};
17 end
18 end

III. MAIN RESULTS

In this section, we provide some near delay optimality results in the form of (13) and (14). These

results will be proven in Section IV by using a unified sample-path method.

A. Average Delay Davg and the Delay Metrics in Dsym

Let us first consider the following Fewest Unassigned Tasks first (FUT) policy, which is also described

in Algorithm 1: Each idle server is allocated to process a task from the job with the earliest due time

among all jobs with unassigned tasks. The delay performance of policy FUT is characterized in the

following theorem.

Theorem 1. If the task service times are NBU, independent across the servers, and i.i.d. across the tasks

assigned to the same server, then for all f ∈ Dsym, π ∈ Π, and I

[f(V (FUT))|I] ≤st [f(C(π))|I] . (15)

If there are multiple idle servers, the choices of the idle server in Step 9 of Algorithm 1 are non-unique.

The result of Theorem 1 holds for any server selection method in Step 9. In practice, one can pick the

idle server with the fastest service rate.
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Let us characterize the sub-optimality delay gap of policy FUT. For mean average delay, i.e., f(·) =

Davg(·), it follows from (15) that

E[Davg(V (FUT))|I] ≤ min
π∈Π

E [Davg(C(π)) | I] ≤ E[Davg(C(FUT))|I]. (16)

The delay gap between the LHS and RHS of (16) is given by

E[Davg(C(FUT))−Davg(V (FUT))|I]

=E
[

1

n

n∑
i=1

(
Ci(FUT)− Vi(FUT)

)∣∣∣∣I]. (17)

Recall that m is the number of servers, and ki is the number of tasks in job i. At time Vi(FUT), all

tasks of job i have started service: If ki > m, then job i has at most m incomplete tasks that are under

service at time Vi(FUT); if ki ≤ m, then job i has at most ki incomplete tasks that are under service at

time Vi(FUT). Therefore, in policy FUT, at most ki ∧m = min{ki,m} tasks of job i are under service

during the time interval [Vi(FUT), Ci(FUT)]. Using this and the property of NBU distributions, we can

obtain

Theorem 2. Let E[Xl] = 1/µl, and without loss of generality µ1 ≤ µ2 ≤ . . . ≤ µm. If the task service

times are NBU, independent across the servers, i.i.d. across the tasks assigned to the same server, then

for all I

E[Davg(C(FUT))|I]−min
π∈Π

E [Davg(C(π))|I] ≤ 1

n

n∑
i=1

ki∧m∑
l=1

1∑l
j=1 µj

(18)

≤ ln(kmax ∧m) + 1

µ1
, (19)

where kmax is the maximum job size in (2), and x ∧ y = min{x, y}.

If E[Xl] ≤ 1/µ for l = 1, . . . ,m, then the sub-optimality delay gap of policy FUT is of the order

O(ln(kmax∧m))/µ. As the number of servers m increases, this sub-optimality delay gap is upper bounded

by [ln(kmax) + 1]/µ which is independent of m.

Theorem 1 and Theorem 2 tell us that for arbitrary number, batch sizes, arrival times, and due times

of the jobs, the FUT policy is near delay-optimal for minimizing the average delay Davg in the mean.

The FUT policy is a nice approximation of the Shortest Remaining Processing Time (SRPT) first policy

[2], [3]: The FUT policy utilizes the number of unassigned tasks of a job to approximate the remaining

processing time of this job, and is within a small additive sub-optimality gap from the optimum for

minimizing the mean average delay in the scheduling problem that we consider.
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Due to the difficulty of delay minimization in multi-class multi-server queueing systems, attempts on

finding a tight additive sub-optimal delay gap in these systems has met with little success. In [12], [13],

closed-form upper bounds on the sub-optimality gaps of the Smith’s rule and the Gittin’s index rule were

established for the cases that all jobs arrive at time zero. In Corollary 2 of [15], the authors studied the

optimal control in multi-server queueing systems with stationary arrivals of multiple classes of jobs, and

used the achievable region method to obtain an additive sub-optimality delay gap, which is of the order

O(mkmax). The model and methodology in these studies are significantly different from those in this

paper.

B. Maximum Lateness Lmax and the Delay Metrics in Dsym ∪ DSch-1

Next, we investigate the maximum lateness Lmax and the delay metrics in Dsym ∪DSch-1. We consider

a Earliest Due Date first (EDD) policy: Each idle server is allocated to process a task from the job with

the earliest due time among all jobs with unassigned tasks. Policy EDD can be obtained from Algorithm

1 by revising step 10 as j := arg min{di : i ∈ Q, γi > 0}. The delay performance of policy EDD is

characterized in the following theorem.

Theorem 3. If the task service times are NBU, independent across the servers, and i.i.d. across the tasks

assigned to the same server, then for all π ∈ Π, and I

[Lmax(V (EDD))|I] ≤st [Lmax(C(π)) | I] . (20)

If the job sizes satisfy certain conditions, policy EDD is identical with policy FUT. In this case, policy

EDD is near delay-optimal in stochastic ordering for minimizing both the average delay Davg(·) and the

maximum lateness Lmax(·). Interestingly, in this case policy EDD is near delay-optimal in stochastic

ordering for minimizing all delay metrics in Dsym ∪ DSch-1, as stated in the following theorem:

Theorem 4. If k1 = . . . = kn = 1 (or d1 ≤ d2 ≤ . . . ≤ dn and k1 ≤ k2 ≤ . . . ≤ kn) and Lmax is

replaced by any f ∈ Dsym ∪ DSch-1, Theorem 3 still holds.

C. Maximum Delay Dmax and the Delay Metrics in Dsym ∪ DSch-2

We now study maximum delay Dmax and the delay metrics in Dsym ∪ DSch-2. We consider a First-

Come, First-Served (FCFS) policy: Each idle server is allocated to process a task from the job with the

earliest arrival time among all jobs with unassigned tasks. Policy FCFS can be obtained from Algorithm 1

by revising step 10 as j := arg min{ai : i ∈ Q, γi > 0}. The delay performance of FCFS is characterized

as follows:
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Corollary 1. If the task service times are NBU, independent across the servers, and i.i.d. across the tasks

assigned to the same server, then for all π ∈ Π, and I

[Dmax(V (FCFS))|I] ≤st [Dmax(C(π))|I] . (21)

In addition, if the job sizes satisfy certain conditions, policy FCFS is identical with policy FUT. Hence,

policy FCFS is near delay-optimal in stochastic ordering for minimizing both the average delay Davg(·)
and the maximum delay Dmax(·). In this case, we can further show that policy FCFS is near delay-optimal

in distribution for minimizing all delay metrics in Dsym ∪ DSch-2, as stated in the following:

Corollary 2. If k1 ≤ k2 ≤ . . . ≤ kn and Dmax is replaced by any f ∈ Dsym ∪ DSch-2, Theorem 1 still

holds.

The proofs of Corollaries 1 and 2 are omitted, because they follow directly from Theorems 3 and 4

by setting di = ai for all job i.

In the sequel, we show that policy FCFS is within twice of the optimum for minimizing the mean

maximum delay E [Dmax(C(π))|I] and mean p-norm of delay E [||D(π)||p|I] for p ≥ 1.5

Lemma 1. For arbitrarily given job parameters I, if (i) the task service times are NBU and i.i.d. across

the tasks and servers, (ii) f(x+ a) is sub-additive and increasing in x, and (iii) two policies P, π ∈ Π

satisfy

[f(V (P ))|I] ≤st [f(C(π))|I] , (22)

then

[f(C(P ))|I] ≤st [2f(C(π))|I] . (23)

Proof. See Appendix A.

By applying Lemma 1 in Corollaries 1 and 2, it is easy to obtain

5Because of the maximum operator over all jobs, E [Dmax(C(π))|I] will likely grow to infinite as the number of jobs n
increases. Hence, it is difficult to obtain an additive sub-optimality gap for minimizing E [Dmax(C(π))|I] that remains constant
for all n.
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Theorem 5. If the task service times are NBU and i.i.d. across the tasks and servers, then for all I

[Dmax(C(FCFS))|I] ≤st [2Dmax(C(π))|I], ∀ π ∈ Π.

E[Dmax(C(FCFS))|I] ≤ min
π∈Π

2E [Dmax(C(π))|I] .

Theorem 6. If (i) k1 ≤ k2 ≤ . . . ≤ kn, (ii) the task service times are NBU and i.i.d. across the tasks

and servers, (iii) f(x+ a) is sub-additive and increasing in x, (iv) f ∈ Dsym ∪ DSch-2, then for all I

[f(C(FCFS))|I] ≤st [2f(C(π))|I], ∀ π ∈ Π.

E[f(C(FCFS))|I] ≤ min
π∈Π

2E [f(C(π))|I] .

There exist a fair large class of delay metrics satisfying the conditions (iii) and (iv) of Theorem 6.

For example, consider the p-norm of delay Dp(C(π)) = Dp(D(π) + a) = ||D(π)||p for p ≥ 1. It is

known that any norm is sub-additive, i.e., ||x + y|| ≤ ||x|| + ||y||. In addition, ||D(π)||p is symmetric

and convex in the delay vector D(π), and hence is Schur-convex in D(π). Therefore, f = Dp satisfies

the conditions (iii) and (iv) of Theorem 6 for all p ≥ 1.

IV. PROOFS OF THE MAIN RESULTS

We propose a unified sample-path method to prove the main results in the previous section. This

method contains three steps:

1. Sample-Path Orderings: We first introduce several novel sample-path orderings (Propositions 2,

4, and Corollary 4). Each of these sample-path orderings can be used to obtain a delay inequality

for comparing the delay performance (i.e., average delay, maximum lateness, or maximum delay)

of different policies in a near-optimal sense.

2. Sufficient Conditions for Sample-Path Orderings: In order to minimize delay, it is important

to execute the tasks as fast as possible. Motivated by this, we introduce a weak work-efficiency

ordering to compare the efficiency of task executions in different policies. By combining this weak

work-efficiency ordering with appropriate priority rules (i.e., FUT, EDD, FCFS) for job services,

we obtain several sufficient conditions (Propositions 5-6) of the sample-path orderings in Step 1. In

addition, if more than one sufficient conditions are satisfied simultaneously, we are able to obtain

delay inequalities for comparing more general classes of delay metrics achieved by different policies

(Propositions 7-8).

3. Coupling Arguments: We use coupling arguments to prove that for NBU task service times, the

weak work-efficiency ordering is satisfied in the sense of stochastic ordering. By combining this
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with the priority rules (i.e., FUT, EDD, FCFS) for job services, we are able to prove the sufficient

conditions in Step 2 in the sense of stochastic ordering. By this, the main results of this paper are

proven.

This sample-path method is quite general. In particular, Step 1 and Step 2 do not need to specify the

queueing system model, and can be potentially used for establishing near delay optimality results in other

queueing systems. One application of this sample-path method is in [25], which considered the problem

of scheduling in queueing systems with replications.

A. Step 1: Sample-path Orderings

We first propose several sample-path orderings to compare the delay performance of different schedul-

ing policies. Let us first define the system state of any policy π ∈ Π.

Definition 2. At any time instant t ∈ [0,∞), the system state of policy π is specified by a pair of n-

dimensional vectors ξπ(t) = (ξ1,π(t), . . . , ξn,π(t)) and γπ(t) = (γ1,π(t), . . . , γn,π(t)) with non-negative

components, where n is the total number of jobs and can be either finite or infinite. The components of

ξπ(t) and γπ(t) are interpreted as follows: If job i is present in the system at time t, then ξi,π(t) is the

number of remaining tasks (which are either stored in the queue or being executed by the servers) of job

i, and γi,π(t) is the number of unassigned tasks (which are stored in the queue and not being executed

by the servers) of job i; if job i is not present in the system at time t (i.e., job i has not arrived at the

system or has departed from the system), then ξi,π(t) = γi,π(t) = 0. Hence, for all i = 1, . . . , n, π ∈ Π,

and t ∈ [0,∞)

0 ≤ γi,π(t) ≤ ξi,π(t) ≤ ki. (24)

Let {ξπ(t),γπ(t), t ∈ [0,∞)} denote the state process of policy π in a probability space (Ω,F , P ),

which is assumed to be right-continuous. The realization of the state process on a sample path ω ∈ Ω

can be expressed as {ξπ(ω, t), γπ(ω, t), t ∈ [0,∞)}. To ease the notational burden, we will omit ω

henceforth and reuse {ξπ(t),γπ(t), t ∈ [0,∞)} to denote the realization of the state process on a sample

path. Because the system starts to operate at time t = 0, there is no job in the system before time t = 0.

Hence, ξπ(0−) = γπ(0−) = 0.

The following proposition provides one condition (25) for comparing the average delay Davg(c(π)) of

different policies on a sample path, which was firstly used in [3] to prove the optimality of the preemptive

SRPT policy to minimize the average delay in single-server queueing systems.
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Proposition 1. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

n∑
i=j

ξ[i],P (t) ≤
n∑
i=j

ξ[i],π(t), ∀ j = 1, 2, . . . , n, (25)

holds for all t ∈ [0,∞),6 where ξ[i],π(t) is the i-th largest component of ξπ(t), then

c(i)(P ) ≤ c(i)(π), ∀ i = 1, 2, . . . , n, (26)

where c(i)(π) is the i-th smallest component of c(π).7 Hence,

Davg(c(P )) ≤ Davg(c(π)). (27)

Proof. Suppose that there are l unfinished jobs at time t in policy π, then
∑n

i=l+1 ξ[i],π(t) = 0. By (25),

we get
∑n

i=l+1 ξ[i],P (t) = 0 and hence there are at most l unfinished jobs in policy P . In other words,

there are at least as many unfinished jobs in policy π as in policy P at any time t ∈ [0,∞). This implies

(26), because the sequence of job arrival times a1, a2, . . . , an are invariant under any policy. In addition,

(27) follows from (26), which completes the proof.

The sample-path ordering (25) is quite insightful. According to Proposition 1, if (25) holds for all

policies π ∈ Π and all sample paths ω ∈ Ω, then policy P is sample-path delay-optimal for minimizing

the average delay Davg(c(π)). Interestingly, Proposition 1 is also necessary: If (25) does not hold at some

time t, then one can construct an arrival process after time t such that (26) and (27) do not hold [3].

The sample-path ordering (25) has been successfully used to analyze single-server queueing systems [3].

However, applying this condition in multi-server queueing systems is challenging. Due to this fundamental

difficulty, we consider an alternative method to relax the sample-path ordering (25) and seek for near

delay optimality.

Proposition 2. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

n∑
i=j

γ[i],P (t) ≤
n∑
i=j

ξ[i],π(t), ∀ j = 1, 2, . . . , n, (28)

holds for all t ∈ [0,∞), where γ[i],π(t) is the i-th largest component of γπ(t), then

v(i)(P ) ≤ c(i)(π), ∀ i = 1, 2, . . . , n, (29)

6In majorization theory [18], (25) is equivalent to “ξπ(t) is weakly supermajorized by ξP (t), i.e., ξπ(t) ≺w ξP (t)”.
7In other words, c(i)(π) is the earliest time in policy π by which i jobs have been completed.
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where v(i)(P ) is the i-th smallest component of v(P ).8 Hence,

Davg(v(P )) ≤ Davg(c(π)). (30)

Proof. See Appendix B.

Hence, by relaxing the sample-path ordering (25) as (28), a relaxed delay inequality (30) is obtained

which can be used to compare the average delay of policy P and policy π in a near-optimal sense.

Similarly, we develop two sample-path orderings in the following two lemmas to compare the maximum

lateness Lmax(·) achieved by different policies.

Proposition 3. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

∑
i:di≤τ

ξi,P (t) ≤
∑
i:di≤τ

ξi,π(t), ∀ τ ∈ [0,∞), (31)

holds for all t ∈ [0,∞), then

Lmax(c(P )) ≤ Lmax(c(π)). (32)

Proof. See Appendix C.

Proposition 4. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

∑
i:di≤τ

γi,P (t) ≤
∑
i:di≤τ

ξi,π(t), ∀ τ ∈ [0,∞), (33)

holds for all t ∈ [0,∞), then

Lmax(v(P )) ≤ Lmax(c(π)). (34)

Proof. See Appendix C.

If di = ai for all i, the maximum lateness Lmax(·) reduces to the maximum delay Dmax(·). Hence,

we can obtain

Corollary 3. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

∑
i:ai≤τ

ξi,P (t) ≤
∑
i:ai≤τ

ξi,π(t), ∀ τ ∈ [0,∞), (35)

8In other words, v(i)(P ) is the earliest time in policy P that there exist i jobs whose tasks have all started service.
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holds for all t ∈ [0,∞), then

Dmax(c(P )) ≤ Dmax(c(π)). (36)

Corollary 4. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

∑
i:ai≤τ

γi,P (t) ≤
∑
i:ai≤τ

ξi,π(t), ∀ τ ∈ [0,∞), (37)

holds for all t ∈ [0,∞), then

Dmax(v(P )) ≤ Dmax(c(π)). (38)

The proofs of Corollaries 3-4 are omitted, because they follow directly from Propositions 3-4 by setting

di = ai for all i.

The sample-path orderings in Propositions 1-4 and Corollaries 3-4 are of similar forms. Their distinct

features are

• In the sample-path orderings (25) and (28) corresponding to the average delay Davg(·), the summa-

tions are taken over the jobs with the fewest remaining/unassigned tasks;

• In the sample-path orderings (31) and (33) corresponding to the maximum lateness Lmax(·), the

summations are taken over the jobs with the earliest due times;

• In the sample-path orderings (35) and (37) corresponding to the maximum delay Dmax(·), the

summations are taken over the jobs with the earliest arrival times.

These features are tightly related to the priority rules for minimizing the corresponding delay metrics near

optimally: The priority rule for minimizing the average delay Davg(·) is FUT first; the priority rule for

minimizing the maximum lateness Lmax(·) is EDD first; the priority rule for minimizing the maximum

delay Dmax(·) is FCFS. Hence, the summations in these sample-path orderings are taken over the high

priority jobs. This is one key insight behind these sample-path orderings.

A number of popular sample-path methods — such as forward induction, backward induction, and

interchange arguments [17] — have been successfully used to establish delay optimality results in single-

server queueing systems [2], [4], [5]. However, it appears to be difficult to directly generalize these

methods and characterize the sub-optimal delay gap from the optimum. On the other hand, the sample-

path orderings (25), (28), (31), (33), (35), and (37) provide an interesting unified framework for sample-

path delay comparisons, aiming for both delay optimality and near delay optimality. To the best of our

knowledge, except for (25) developed in [3], the sample-path orderings (28), (31), (33), (35), and (37)

have not appeared before.



18

!"#$%&' ()*

τ νt

!"#$%&' j′

jπ

P

Fig. 3: Illustration of the weak work-efficiency ordering, where the service duration of a task is indicated
by a rectangle. Task j starts service at time τ and completes service at time ν in policy π, and one
corresponding task j′ starts service at time t ∈ [τ, ν] in policy P .

B. Step 2: Sufficient Conditions for Sample-path Orderings

Next, we provide several sufficient conditions for the sample-path orderings (28), (33), and (37). In

addition, we will also develop several sufficient conditions for comparing more general delay metrics in

Dsym, DSch-1, and DSch-2.

1) Weak Work-efficiency Ordering: In single-server queueing systems, the service delay is largely

governed by the work conservation law (or its generalizations): At any time, the expected total amount

of time for completing the jobs in the queue is invariant among all work-conserving policies [22]–[24].

However, this work conservation law does not hold in queueing systems with parallel servers, where it

is difficult to efficiently utilize the full service capacity (some servers can be idle if all tasks are being

processed by the remaining servers). In order to minimize delay, the system needs to execute the tasks

as fast as possible. In the sequel, we introduce an ordering to compare the efficiency of task executions

in different policies in a near-optimal sense, which is called weak work-efficiency ordering.9

Definition 3. Weak Work-efficiency Ordering: For any given job parameters I and a sample path of

two policies P, π ∈ Π, policy P is said to be weakly more work-efficient than policy π, if the following

assertion is true: For each task j executed in policy π, if

1. In policy π, task j starts service at time τ and completes service at time ν (τ ≤ ν),

2. In policy P , the queue is not empty (there exist unassigned tasks in the queue) during [τ, ν],

then there exists one corresponding task j′ in policy P which starts service during [τ, ν].

An illustration of this weak work-efficiency ordering is provided in Fig. 3. Note that the weak work-

efficient ordering requires the service starting time of task j′ in policy P to be within the service duration

of its corresponding task j in policy π. This is the key feature that enables establishing tight sub-optimality

delay gap later on.

9Work-efficiency orderings are also used in [25] to study queueing systems with replications.
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2) Sufficient Conditions for Sample-path Orderings: Using weak work-efficiency ordering, we can

obtain the following sufficient condition for the sample-path ordering (28) associated to the average

delay Davg(·).

Proposition 5. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

1. Policy P is weakly more work-efficient than policy π,

2. In policy P , each task starting service is from the job with the fewest unassigned tasks among all

jobs with unassigned tasks,

then (28)-(30) hold.

Proof. See Appendix D.

Similarly, one sufficient condition is obtained for the sample-path orderings (33) for comparing the

maximum lateness Lmax(·) of different policies.

Proposition 6. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

1. Policy P is weakly more work-efficient than policy π,

2. In policy P , each task starting service is from the job with the earliest due time among all jobs with

unassigned tasks,

then (33) and (34) hold.

Proof. See Appendix E.

3) More General Delay Metrics: We now investigate more general delay metrics in Dsym, DSch-1, and

DSch-2. First, Proposition 5 can be directly generalized to all delay metrics in Dsym.

Proposition 7. If the conditions of Proposition 5 are satisfied, then for all f ∈ Dsym

f(v(P )) ≤ f(c(π)).

Proof. See Appendix F.

In some scenarios, there exists a policy P simultaneously satisfying the sufficient conditions in Propo-

sition 5 (or Proposition 7) and Proposition 6. In this case, we can obtain a delay inequality for comparing

any delay metric in Dsym ∪ DSch-1.

Proposition 8. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

1. Policy P is weakly more work-efficient than policy π,



20

2. In policy P , each task starting service is from the job with the fewest unassigned tasks among all

jobs with unassigned tasks, and this job is also the job with the earliest due time among all jobs

with unassigned tasks,

then for all f ∈ Dsym ∪ DSch-1

f(v(P )) ≤ f(c(π)). (39)

Proof sketch of Proposition 8. For any f ∈ Dsym, (29) and (39) follow from Propositions 5 and 7. For

any f ∈ DSch-1, we construct an n-dimensional vector v′ and show that

v(P )− d ≺ v′ − d ≤ c(π)− d, (40)

where the first majorization ordering in (40) follows from the rearrangement inequality [18, Theorem

6.F.14], [26], and the second inequality in (40) is proven by using (29). This further implies

v(P )− d ≺w c(π)− d. (41)

Using this, we can show that (39) holds for all f ∈ DSch-1. The details are provided in Appendix G.

Using this proposition, we can obtain

Corollary 5. For any given job parameters I and a sample path of two policies P, π ∈ Π, if

1. k1 = . . . = kn = 1 (or d1 ≤ d2 ≤ . . . ≤ dn and k1 ≤ k2 ≤ . . . ≤ kn),

2. Policy P is weakly more work-efficient than policy π,

3. In policy P , each task starting service is from the job with the earliest due time among all jobs with

unassigned tasks,

then for all f ∈ Dsym ∪ DSch-1

f(v(P )) ≤ f(c(π)). (42)

Proof. If k1 = . . . = kn = 1, each job has only one task. Hence, the job with the earliest due time is

also one job with the fewest unassigned tasks. If d1 ≤ d2 ≤ . . . ≤ dn, k1 ≤ k2 ≤ . . . ≤ kn, and each

task starting service is from the job with the earliest due time among all jobs with unassigned tasks,

then each task starting service is also from the job with the fewest unassigned tasks among all jobs with

unassigned tasks. By using Proposition 8, Corollary 5 follows. This completes the proof.

C. Step 3: Coupling Arguments

The following coupling lemma plays one important role in the proof of our main results.
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Lemma 2. Consider two policies P, π ∈ Π. If policy P is work-conserving, the task service times are

NBU, independent across the servers, and i.i.d. across the tasks assigned to the same server, then there

exist two state processes {ξP1
(t),γP1

(t), t ∈ [0,∞)} and {ξπ1
(t),γπ1

(t), t ∈ [0,∞)} of policy P1 and

policy π1, such that

1. The state process {ξP1
(t),γP1

(t), t ∈ [0,∞)} of policy P1 has the same distribution with the state

process {ξP (t),γP (t), t ∈ [0,∞)} of policy P ,

2. The state process {ξπ1
(t),γπ1

(t), t ∈ [0,∞)} of policy π1 has the same distribution with the state

process {ξπ(t),γπ(t), t ∈ [0,∞)} of policy π,

3. Policy P1 is weakly more work-efficient than policy π1 with probability one.

Proof. See Appendix H.

Now, we are ready to prove our main results.

Proof of Theorem 1. According to lemma 2, for any policy π ∈ Π, there exist two state processes

{ξFUT1
(t),γFUT1

(t), t ∈ [0,∞)} and {ξπ1
(t),γπ1

(t), t ∈ [0,∞)} of policy FUT1 and policy π1, such

that (i) the state process {ξFUT1
(t),γFUT1

(t), t ∈ [0,∞)} of policy FUT1 has the same distribution with

the state process {ξFUT(t),γFUT(t), t ∈ [0,∞)} of policy FUT, (ii) the state process {ξπ1
(t),γπ1

(t), t ∈
[0,∞)} of policy π1 has the same distribution with the state process {ξπ(t),γπ(t), t ∈ [0,∞)} of policy

π, and (iii) policy FUT1 is weakly more work-efficient than policy π1 with probability one. By (iii) and

Proposition 7, for all f ∈ Dsym

Pr[f(V (FUT1)) ≤ f(C(π1))|I] = 1.

By (i), f(V (FUT1)) has the same distribution with f(V (FUT)). By (ii), f(C(π1)) has the same

distribution with f(C(π)). Using the property of stochastic ordering [27, Theorem 1.A.1], we can obtain

(15). This completes the proof.

Proof of Theorem 2. After Theorem 1 is established, Theorem 2 is proven in Appendix I.

Proof of Theorem 3. According to lemma 2, for any policy π ∈ Π, there exist two state processes

{ξEDD1
(t),γEDD1

(t), t ∈ [0,∞)} and {ξπ1
(t),γπ1

(t), t ∈ [0,∞)} of policy EDD1 and policy π1, such

that (i) the state process {ξEDD1
(t),γEDD1

(t), t ∈ [0,∞)} of policy EDD1 has the same distribution with

the state process {ξEDD(t),γEDD(t), t ∈ [0,∞)} of policy EDD, (ii) the state process {ξπ1
(t),γπ1

(t), t ∈
[0,∞)} of policy π1 has the same distribution with the state process {ξπ(t),γπ(t), t ∈ [0,∞)} of policy
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π, and (iii) policy EDD1 is weakly more work-efficient than policy π1 with probability one. By (iii) and

Proposition 6,

Pr[Lmax(V (EDD1)) ≤ Lmax(C(π1))|I] = 1.

By (i), Lmax(V (EDD1)) has the same distribution with Lmax(V (EDD)). By (ii), Lmax(C(π1)) has the

same distribution with Lmax(C(π)). Using the property of stochastic ordering [27, Theorem 1.A.1], we

can obtain (20). This completes the proof.

Proof of Theorem 4. By replacing Proposition 6 with Proposition 5 in the proof of Theorem 3, Theorem

4 is proven.

V. CONCLUSIONS

In this paper, we present a comprehensive study on near delay-optimal scheduling of batch jobs in

queueing systems with parallel servers. We prove that for NBU task service time distributions and for

arbitrarily given job parameters, the FUT policy, EDD policy, and the FCFS policy are near delay-optimal

in stochastic ordering for minimizing average delay, maximum lateness, and maximum delay, respectively,

among all causal and non-preemptive policies. If the job parameters satisfy some additional conditions,

we can further show that these policies are near delay-optimal in stochastic ordering for minimizing three

general classes of delay metrics.

The key tools for showing these results are some novel sample-path conditions for comparing the

delay performance of different policies. These sample-path conditions do not need to specify the queueing

system model and hence can potentially be applied to obtain near delay-optimal results for other queueing

systems. One application of these sample-path conditions is in [25], which considered the problem of

scheduling batch jobs in multi-server queueing systems with replications.
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APPENDIX A

PROOF OF LEMMA 1

We will need the following lemma:
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Lemma 3. Suppose that X1, . . . , Xm are non-negative independent random variables, χ1, . . . , χm are

arbitrarily given non-negative constants, Rl = [Xl−χl|Xl > χl] for l = 1, . . . ,m, then R1, . . . , Rm are

mutually independent.

Proof. For all constants tl ≥ 0, l = 1, . . .m, we have

Pr[Rl > tl, l = 1, . . . ,m]

= Pr[Xl − χl > tl, l = 1, . . . ,m|Xl > χl, l = 1, . . . ,m]

=
Pr[Xl > tl + χl, l = 1, . . . ,m]

Pr[Xl > χl, l = 1, . . . ,m]

=

∏m
l=1 Pr[Xl > tl + χl]∏m
l=1 Pr[Xl > χl]

=

m∏
l=1

Pr[Xl − χl > tl|Xl > χl]

=

m∏
l=1

Pr[Rl > tl]. (43)

Hence, R1, . . . , Rm are mutually independent.

Proof of lemma 1. Define a function g2(x) = f(x + a). Because g2(x) = f(x + a) is sub-additive in

x, i.e., g2(x+ y) ≤ g2(x) + g2(y), we can obtain

f(C(P ))

=g2([V (P )− a] + [C(P )− V (P )])

≤g2(V (P )− a) + g2(C(P )− V (P ))

=f(V (P )) + g2(C(P )− V (P )). (44)

At time Vi(P ), all tasks of job i have started service. If ki > m, then job i has at most m incomplete

tasks at time Vi(P ) because there are only m servers. If ki ≤ m, then job i has at most ki incomplete

tasks at time Vi(P ). Therefore, at most ki∧m tasks of job i are in service at time Vi(P ). Let Xi,l denote

the random service time of the l-th remaining task of job i. We will prove that for all I

[C(P )− V (P )|I] ≤st

[(
max

l=1,...,k1∧m
X1,l, . . . , max

l=1,...,kn∧m
Xn,l

)∣∣∣∣k1, . . . , kn

]
. (45)

Without loss of generality, suppose that at time Vi(P ), the remaining tasks of job i are being executed

by the set of servers Si ⊆ {1, . . . ,m}, which satisfies |Si| ≤ ki ∧m. Hence, the Xi,l’s are i.i.d. In policy

P , let χi,l denote the amount of time that was spent on executing the l-th remaining task of job i before
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time Vi(P ), and let Ri,l denote the remaining service time to complete this task after time Vi(P ). Then,

Ri,l can be expressed as Ri,l = [Xi,l − χi,l|Xi,l > χi,l]. Suppose that in policy P , Vji(P ) associated

with job ji is the i-th smallest component of the vector V (P ), i.e., Vji(P ) = V(i)(P ). We prove (45) by

using an inductive argument supported by Theorem 6.B.3 of [27], which contains two steps.

Step 1: We first show that for all I

[Cj1(P )− Vj1(P )|I] ≤st

[
max

l=1,...,kj1∧m
Xj1,l

∣∣∣∣I] . (46)

Because the Xi,l’s are i.i.d. NBU, for all realizations of j1 and χj1,l, we have

[Rj1,l|j1, χj1,l] ≤st [Xj1,l|j1], ∀ l ∈ Sj1 . (47)

Lemma 3 tells us that the Rj1,l’s are conditional independent for any given realization of {χj1,l, l ∈ Sj1}.
Hence, for all realizations of j1, Sj1 , and {χj1,l, l ∈ Sj1}

[Cj1(P )− Vj1(P )|j1,Sj1 , {χj1,l, l ∈ Sj1}]

= [max
l∈Sj1

Rj1,l|j1,Sj1 , {χj1,l, l ∈ Sj1}]

≤st [max
l∈Sj1

Xj1,l|j1,Sj1 ] (48)

≤ [ max
l=1,...,kj1∧m

Xj1,l|j1], (49)

where in (48) we have used (47) and Theorem 6.B.14 of [27], and in (49) we have used |Si| ≤ ki ∧m.

Because j1, Sj1 , and {χj1,l, l ∈ Sj1} are random variables which depend on the job parameters I, by

using Theorem 6.B.16(e) of [27], (46) is proven.

Step 2: We show that for all given I and {Cji(P ), Vji(P ), i = 1, . . . h}

[Cjh+1
(P )− Vjh+1

(P )|I, {Cji(P ), Vji(P ), i = 1, . . . h}] ≤st

[
max

l=1,...,kjh+1
∧m

Xjh+1,l

∣∣∣∣I
]
. (50)

Similar with (49), for all realizations of jh+1, Sjh+1
, and {χjh+1,l, l ∈ Sjh+1

}, we can get

[Cjh+1
(P )− Vjh+1

(P )|jh+1,Sjh+1
, {χjh+1,l, l ∈ Sjh+1

}] ≤st [ max
l=1,...,kjh+1

∧m
Xjh+1,l|jh+1].

Because jh+1, Sjh+1
, and {χjh+1,l, l ∈ Sjh+1

} are random variables which are determined by I and

{Cji(P ), Vji(P ), i = 1, . . . h}, by using Theorem 6.B.16(e) of [27], (50) is proven. By (46), (50), and
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Theorem 6.B.3 of [27], we have

[C(P )− V (P )|I]

≤st

[(
max

l=1,...,k1∧m
X1,l, . . . , max

l=1,...,kn∧m
Xn,l

)∣∣∣∣I]
=

[(
max

l=1,...,k1∧m
X1,l, . . . , max

l=1,...,kn∧m
Xn,l

)∣∣∣∣k1, . . . , kn

]
.

Hence, (45) holds in policy P .

In policy π, ki tasks of job i must be accomplished to complete job i. Hence, using the above arguments

again, yields [(
max

l=1,...,k1∧m
X1,l, . . . , max

l=1,...,kn∧m
Xn,l

)∣∣∣∣k1, . . . , kn

]
≤st [C(π)− a|I]. (51)

Combining (46) and (51), we have

[C(P )− V (P )|I] ≤st [C(π)− a|I].

Because g2 is increasing, by Theorem 6.B.16(a) of [27]

[g2(C(P )− V (P ))|I] ≤st [g2(C(π)− a)|I] = [f(C(π))|I]. (52)

By substituting (22) and (52) into (44), (23) is proven. This completes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

Let j be any integer chosen from {1, . . . , n}, and yj be the number of jobs that have arrived by the

time c(j)(π), where yj ≥ j. Because j jobs are completed by the time c(j)(π) in policy π, there are

exactly (yj − j) incomplete jobs in the system at time c(j)(π). By the definition of the system state, we

have ξ[i],π(c(j)(π)) = 0 for i = yj − j + 1, . . . , n. Hence,

n∑
i=yj−j+1

ξ[i],π(c(j)(π)) = 0.

Combining this with (28), yields that policy P satisfies

n∑
i=yj−j+1

γ[i],P

(
c(j)(π)

)
≤ 0. (53)
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Further, the definition of the system state tells us that γi,P (t) ≥ 0 holds for all i = 1, . . . , n and t ≥ 0.

Hence, we have

γ[i],P

(
c(j)(π)

)
= 0, ∀ i = yj − j + 1, . . . , n. (54)

Therefore, there are at most yj−j jobs which have unassigned tasks at time c(j)(π) in policy P . Because

the sequence of job arrival times a1, a2, . . . , an are invariant under any policy, yj jobs have arrived by

the time c(j)(π) in policy P . Thus, there are at least j jobs which have no unassigned tasks at the time

c(j)(π) in policy P , which can be equivalently expressed as

v(j)(P )≤ c(j)(π). (55)

Because j is arbitrarily chosen, (55) holds for all j = 1, . . . , n, which is exactly (29). In addition, (30)

follows from (29), which completes the proof.

APPENDIX C

PROOFS OF PROPOSITION 3 AND PROPOSITION 4

Proof of Proposition 3. Let wi be the index of the job associated with the job completion time c(i)(P ).

In order to prove (32), it is sufficient to show that for each j = 1, 2, . . . , n,

cwj
(P )− dwj

≤ max
i=1,2,...,n

[ci(π)− di]. (56)

We prove (56) by contradiction. For this, let us assume that

ci(π) < cwj
(P ) (57)

holds for all job i satisfying ai ≤ cwj
(P ) and di ≤ dwj

. That is, if job i arrives before time cwj
(P ) and

its due time is no later than dwj
, then job i is completed before time cwj

(P ) in policy π. Define

τj = max
i:ai≤cwj

(P ),di≤dwj

ci(π). (58)

According to (57) and (58), we can obtain

τj < cwj
(P ). (59)

On the other hand, (58) tells us that all job i satisfying di ≤ dwj
and ai ≤ cwj

(P ) are completed by
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time τj in policy π. By this, the system state of policy π satisfies

∑
i:di≤dwj

ξi,π(τj) = 0.

Combining this with (31), yields

∑
i:di≤dwj

ξi,P (τj) ≤ 0. (60)

Further, the definition of the system state tells us that ξi,P (t) ≥ 0 for all i = 1, . . . , n and t ≥ 0. Using

this and (60), we get that job wj satisfies

ξwj ,P (τj) = 0.

That is, all tasks of job wj are completed by time τj in policy P . Hence, cwj
(P ) ≤ τj , where contradicts

with (59). Therefore, there exists at least one job i satisfying the conditions ai ≤ cwj
(P ), di ≤ dwj

, and

cwj
(P ) ≤ ci(π). This can be equivalently expressed as

cwj
(P ) ≤ max

i:ai≤cwj
(P ),di≤dwj

ci(π). (61)

Hence, for each j = 1, 2, . . . , n,

cwj
(P )− dwj

≤ max
i:ai≤cwj

(P ),di≤dwj

ci(π)− dwj

≤ max
i:ai≤cwj

(P ),di≤dwj

[ci(π)− di]

≤ max
i=1,2,...,n

[ci(π)− di].

This implies (32). Hence, Proposition 3 is proven.

The proof of Proposition 4 is almost identical with that of Proposition 3, and hence is not repeated

here. The only difference is that cwj
(P ) and ξP (τj) in the proof of Proposition 3 should be replaced by

vwj
(P ) and γP (τj), respectively.

APPENDIX D

PROOF OF PROPOSITION 5

The following two lemmas are needed to prove Proposition 5:

Lemma 4. Suppose that under policy P , {ξ′P ,γ ′P } is obtained by allocating bP unassigned tasks to the

servers in the system whose state is {ξP ,γP }. Further, suppose that under policy π, {ξ′π,γ ′π} is obtained
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by completing bπ tasks in the system whose state is {ξπ,γπ}. If bP ≥ bπ, condition 2 of Proposition 5

is satisfied in policy P , and

n∑
i=j

γ[i],P ≤
n∑
i=j

ξ[i],π, ∀ j = 1, 2, . . . , n,

then

n∑
i=j

γ′[i],P ≤
n∑
i=j

ξ′[i],π, ∀ j = 1, 2, . . . , n. (62)

Proof. If
∑n

i=j γ
′
[i],P = 0, then the inequality (62) follows naturally. If

∑n
i=j γ

′
[i],P > 0, then there

exist unassigned tasks which have not been assigned to any server. In policy P , each task allocated to

the servers is from the job with the minimum positive γi,P . Hence,
∑n

i=j γ
′
[i],P =

∑n
i=j γ[i],P − bP ≤∑n

i=j ξ[i],π − bπ ≤
∑n

i=j ξ
′
[i],π.

Lemma 5. Suppose that, under policy P , {ξ′P ,γ ′P } is obtained by adding a job with b tasks to the system

whose state is {ξP ,γP }. Further, suppose that, under policy π, {ξ′π,γ ′π} is obtained by adding a job

with b tasks to the system whose state is {ξπ,γπ}. If

n∑
i=j

γ[i],P ≤
n∑
i=j

ξ[i],π, ∀ j = 1, 2, . . . , n,

then

n∑
i=j

γ′[i],P ≤
n∑
i=j

ξ′[i],π, ∀ j = 1, 2, . . . , n.

Proof. Without loss of generalization, we suppose that after the job arrival, b is the l-th largest component

of γ ′P and the m-th largest component of ξ′π, i.e., γ′[l],P = ξ′[m],π = b. We consider the following four

cases:

Case 1: l < j,m < j. We have
∑n

i=j γ
′
[i],P =

∑n
i=j−1 γ[i],P ≤

∑n
i=j−1 ξ[i],π =

∑n
i=j ξ

′
[i],π.

Case 2: l < j,m ≥ j. We have
∑n

i=j γ
′
[i],P =

∑n
i=j−1 γ[i],P ≤ b +

∑n
i=j γ[i],P ≤ b +

∑n
i=j ξ[i],π =∑n

i=j ξ
′
[i],π.

Case 3: l ≥ j,m < j. We have
∑n

i=j γ
′
[i],P = b +

∑n
i=j γ[i],P ≤

∑n
i=j−1 γ[i],P ≤

∑n
i=j−1 ξ[i],π =∑n

i=j ξ
′
[i],π.

Case 4: l ≥ j,m ≥ j. We have
∑n

i=j γ
′
[i],P = b+

∑n
i=j γ[i],P ≤ b+

∑n
i=j ξ[i],π =

∑n
i=j ξ

′
[i],π.

We now use Lemma 4 and Lemma 5 to prove Proposition 5.

Proof of Proposition 5. Assume that no task is completed at the job arrival times ai for i = 1, . . . , n.
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This does not lose any generality, because if a task is completed at time tj = ai, Proposition 5 can be

proven by first proving for the case tj = ai + ε and then taking the limit ε → 0. We prove (28) by

induction.

Step 1: We will show that (28) holds during [0, a2).10

Because ξP (0−) = γP (0−) = ξπ(0−) = γπ(0−) = 0, (28) holds at time 0−. Job 1 arrives at time

a1 = 0. By Lemma 5, (28) holds at time 0. Let t be an arbitrarily chosen time during (0, a2). Suppose

that bπ tasks start execution and also complete execution during [0, t] in policy π. We need to consider

two cases:

Case 1: The queue is not empty (there exist unassigned tasks in the queue) during [0, t] in policy P .

By the weak work-efficiency ordering condition, no fewer than bπ tasks start execution during [0, t] in

policy P . Because (28) holds at time 0, by Lemma 4, (28) also holds at time t.

Case 2: The queue is empty (all tasks in the system are in service) by time t′ ∈ [0, t] in policy P .

Because t ∈ (0, a2) and there is no task arrival during (0, a2), there is no task arrival during (t′, t].

Hence, it must hold that all tasks in the system are in service at time t. Then, the system state of policy

P satisfies
∑n

i=j γ[i],P (t) = 0 for all j = 1, 2, . . . , n at time t. Hence, (28) holds at time t.

In summary of these two cases, (28) holds for all t ∈ [0, a2).

Step 2: Assume that for some integer i ∈ {2, . . . , n}, the conditions of Proposition 5 imply that (28)

holds for all t ∈ [0, ai). We will prove that the conditions of Proposition 5 imply that (28) holds for all

t ∈ [0, ai+1).

Let t be an arbitrarily chosen time during (ai, ai+1). We modify the task completion times in policy

π as follows: For each pair of corresponding task j and task j′ mentioned in the definition of the weak

work-efficiency ordering, if

• In policy π, task j starts execution at time τ ∈ [0, ai] and completes execution at time ν ∈ (ai, t],

• In policy P , the queue is not empty (there exist unassigned tasks in the queue) during [τ, ν],

• In policy P , the corresponding task j′ starts execution at time t′ ∈ [0, ai],

then the completion time of task j is modified from ν to a−i in policy π, as illustrated in Fig. 4.

This modification satisfies the following three claims:

1. The system state of policy π at time t remains the same before and after this modification;

2. Policy P is still weakly more work-efficient than policy π after this modification;

10Note that a1 = 0.
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Fig. 4: Illustration of the modification of task completion times in policy π: If in policy π, task j starts
execution at time τ ∈ [0, ai] and completes execution at time ν ∈ (ai, t], and in policy P , task j′ starts
execution at time t′ ∈ [0, ai], then the completion time of task j is changed from ν to a−i in policy π.

3. If bπ tasks complete execution during [ai, t] on the modified sample path of policy π, and the queue

is not empty (there exist unassigned tasks in the queue) during [ai, t] in policy P , then no fewer

than bπ tasks start execution during [ai, t] in policy P .

We now prove these three claims. Claim 1 follows from the fact that the tasks completed during [0, t]

remain the same before and after this modification. It is easy to prove Claim 2 by checking the definition

of work-efficiency ordering. For Claim 3, notice that if a task j starts execution and completes execution

during [ai, t] on the modified sample path of policy π, then by Claim 2, its corresponding task j′ must

start execution during [ai, t] in policy P . On the other hand, if a task j starts execution during [0, ai]

and completes execution during [ai, t] on the modified sample path of policy π, then by the modification,

its corresponding task j′ must start execution during [ai, t] in policy P . By combining these two cases,

Claim 3 follows.

We use these three claims to prove the statement of Step 2. According to Claim 2, policy P is weakly

more work-efficient than policy π after the modification. By the assumption of Step 2, (28) holds during

[0, ai) for the modified sample path of policy π. Job j arrives at time ai. By Lemma 5, (28) holds at

time ai for the modified sample path of policy π. Suppose that bπ tasks complete execution during [ai, t]

on the modified sample path of policy π. We need to consider two cases:

Case 1: The queue is not empty (there exist unassigned tasks in the queue) during [ai, t] in policy P .

By Claim 3, no fewer than bπ tasks start execution during [ai, t] in policy P . Because (28) holds at time

ai, by Lemma 4, (28) also holds at time t for the modified sample path of policy π.

Case 2: The queue is empty (all tasks in the system are in service) at time t′ ∈ [ai, t] in policy P .

Because t ∈ (ai, ai+1) and t′ ∈ [ai, t], there is no task arrival during (t′, t]. Hence, it must hold that all

tasks in the system are in service at time t. Then, the system state of policy P satisfies
∑n

i=j γ[i],P (t) = 0

for all j = 1, 2, . . . , n at time t. Hence, (28) holds at time t for the modified sample path of policy π.

In summary of these two cases, (28) holds at time t for the modified sample path of policy π. By

Claim 1, the system state of policy π at time t remains the same before and after this modification.
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Hence, (28) holds at time t for the original sample path of policy π. Therefore, if the assumption of Step

2 is true, then (28) holds for all t ∈ [0, ai+1).

By induction, (28) holds at time t ∈ [0,∞). Then, (29) and (30) follow from Proposition 2. This

completes the proof.

APPENDIX E

PROOF OF PROPOSITION 6

The proof of Proposition 6 requires the following two lemmas:

Lemma 6. Suppose that, in policy P , {ξ′P ,γ ′P } is obtained by allocating bP unassigned tasks to the

servers in the system whose state is {ξP ,γP }. Further, suppose that, in policy π, {ξ′π,γ ′π} is obtained

by completing bπ tasks in the system whose state is {ξπ,γπ}. If bP ≥ bπ, condition 2 of Proposition 6

is satisfied in policy P , and

∑
i:di≤τ

γi,P ≤
∑
i:di≤τ

ξi,π, ∀ τ ∈ [0,∞),

then

∑
i:di≤τ

γ′i,P ≤
∑
i:di≤τ

ξ′i,π, ∀ τ ∈ [0,∞). (63)

Proof. If
∑

i:di≤τ γ
′
i,P = 0, then the inequality (63) follows naturally. If

∑
i:di≤τ γ

′
i,P > 0, then there exist

some unassigned tasks in the queue. In policy P , each task allocated to the servers is from the job with

the earliest due time. Hence,
∑

i:di≤τ γ
′
i,P =

∑
i:di≤τ γi,P − bP ≤

∑
i:di≤τ ξi,π − bπ ≤

∑
i:di≤τ ξ

′
i,π.

Lemma 7. Suppose that under policy P , {ξ′P ,γ ′P } is obtained by adding a job with b tasks and due

time d to the system whose state is {ξP ,γP }. Further, suppose that under policy π, {ξ′π,γ ′π} is obtained

by adding a job with b tasks and due time d to the system whose state is {ξπ,γπ}. If

∑
i:di≤τ

γi,P ≤
∑
i:di≤τ

ξi,π, ∀ τ ∈ [0,∞),

then

∑
i:di≤τ

γ′i,P ≤
∑
i:di≤τ

ξ′i,π, ∀ τ ∈ [0,∞).

Proof. If d ≤ τ , then
∑

i:di≤τ γ
′
i,P ≤

∑
i:di≤τ γi,P + b ≤∑i:di≤τ ξi,π + b ≤∑i:di≤τ ξ

′
i,π.

If d > τ , then
∑

i:di≤τ γ
′
i,P ≤

∑
i:di≤τ γi,P ≤

∑
i:di≤τ ξi,π ≤

∑
i:di≤τ ξ

′
i,π.
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The proof of Proposition 6 is almost identical with that of Proposition 5, and hence is not repeated

here. The only difference is that Lemma 4 and Lemma 5 in the proof of Proposition 5 should be replaced

by Lemma 6 and Lemma 7, respectively.

APPENDIX F

PROOF OF PROPOSITION 7

We have proven that (29) holds under the conditions of Proposition 7. Note that (29) can be equivalently

expressed in the following vector form:

v↑(P ) ≤ c↑(π).

Because any f ∈ Dsym is a symmetric and increasing function, we can obtain

f(v(P )) = f(v↑(P ))

≤f(c↑(π)) = f(c(π)).

This completes the proof.

APPENDIX G

PROOF OF PROPOSITION 8

In the proof of Proposition 8, we need to use the following rearrangement inequality:

Lemma 8. [18, Theorem 6.F.14] Consider two n-dimensional vectors (x1, . . . , xn) and (y1, . . . , yn). If

(xi − xj)(yi − yj) ≤ 0 for two indices i and j where 1 ≤ i < j ≤ n, then

(x1−y1, . . . , xj−yi, . . . , xi−yj , . . . , xn−yn)

≺(x1−y1, . . . , xi−yi, . . . , xj−yj , . . . , xn−yn).

Proof of Proposition 8. For f ∈ Dsym, (29) and (39) follow from Proposition 5 and Proposition 7.

For f ∈ DSch-1, (39) is proven in 3 steps, which are described as follows:

Step 1: We will show that

v(P )− d ≺w c(π)− d. (64)
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According to Eq. (1.A.17) and Theorem 5.A.9 of [18], it is sufficient to show that there exists an n-

dimensional vector v′ such that

v(P )− d ≺ v′ − d ≤ c(π)− d. (65)

Vector v′ is constructed as follows: First, the components of the vector v′ is a rearrangement (or

permutation) of the components of the vector v(P ), which can be equivalently expressed as

v′(i) = v(i)(P ), ∀ i = 1, . . . , n. (66)

Second, for each j = 1, . . . , n, if the completion time cj(π) of job j is the ij-th smallest component of

c(π), i.e.,

cj(π) = c(ij)(π), (67)

then v′j associated with job j is the ij-th smallest component of v′, i.e.,

v′j = v′(ij). (68)

Combining (29) and (66)-(68), yields

v′j = v′(ij) = v(ij)(P ) ≤ c(ij)(π) = cj(π)

for j = 1, . . . , n. This implies v′ ≤ c(π), and hence the second inequality in (65) is proven.

The remaining task is to prove the first inequality in (65). First, consider the case that the due times

d1, . . . , dn of the n jobs are different from each other. The vector v(P ) can be obtained from v′ by the

following procedure: For each j = 1, . . . , n, define a set

Sj = {i : ai ≤ vj(P ), di < dj}. (69)

If there exist two jobs i and j which satisfy i ∈ Sj and v′i > v′j , we interchange the components v′i

and v′j in vector v′. Repeat this interchange operation, until such two jobs i and j satisfying i ∈ Sj and

v′i > v′j cannot be found. Therefore, at the end of this procedure, if job i arrives before vj(P ) and job i

has an earlier due time than job j, then v′i < v′j , which is exactly the priority rule of job service satisfied

by policy P . Therefore, the vector v(P ) is obtained at the end of this procedure. In each interchange

operation of this procedure, (v′i − v′j)(di − dj) ≤ 0 is satisfied before the interchange of v′i and v′j . By

Lemma 8 and the transitivity of the ordering of majorization, we can obtain v(P )− d ≺ v′ − d, which

is the first inequality in (65).
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Fig. 5: Illustration of the weak work-efficiency ordering between policy π1 and policy P1.

Next, consider the case that two jobs i and j have identical due time di = dj . Hence, (v′i−v′j)(di−dj) =

0. In this case, the service order of job i and job j are indeterminate in policy P . Nonetheless, by Lemma

8, the service order of job i and job j does not affect the first inequality in (65). Hence, the first inequality

in (65) holds even when di = dj .

Finally, (64) follows from (65).

Step 3: We use (64) to prove Proposition 8. For any f ∈ DSch-1, f(x + d) is increasing and Schur

convex. According to Theorem 3.A.8 of [18], for all f ∈ DSch-1, we have

f(v(P ))

=f [(v(P )− d) + d]

≤f [(c(π)− d) + d]

=f(c(π)).

This completes the proof.

APPENDIX H

PROOF OF LEMMA 2

We use coupling to prove Lemma 2: We construct two policies P1 and π1 such that policy P1 satisfies

the same queueing discipline with policy P , and policy π1 satisfies the same queueing discipline with

policy π. Hence, policy P1 is work-conserving. The task and job completion times of policy P1 (policy

π1) have the same distribution with those of policy P (policy π). Because the state process is determined

by the job parameters I and the task/job completion events, the state process {ξP1
(t),γP1

(t), t ∈ [0,∞)}
of policy P1 has the same distribution with the state process {ξP (t),γP (t), t ∈ [0,∞)} of policy P , and

the state process {ξπ1
(t),γπ1

(t), t ∈ [0,∞)} of policy π1 has the same distribution with the state process

{ξπ(t),γπ(t), t ∈ [0,∞)} of policy π.
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Next, we show that policy P1 and policy π1 can be constructed such that policy P1 is weakly more

work-efficient than policy π1 with probability one. Let us consider any task j executed in policy π1.

Suppose that in policy π1 task j starts service in server l at time τ and completes service at time ν, and

the queue is not empty during [τ, ν] in policy P1. Because policy P1 is work-conserving, all servers are

busy in policy P1 during [τ, ν]. In particular, server l is busy in policy P1 during [τ, ν]. Suppose that

in policy P1, server l has spent a time duration χ (χ ≥ 0) on executing a task h before time τ . Let

Rl,P1
denote the remaining service time of server l for executing task h after time τ in policy P1. Let

Xl,π1
= ν − τ denote the service time of task j in policy π1 and Xl,P1

= χ + Rl,P1
denote the service

time of task h in policy P1. Then, the complementary CDF of Rl,P1
is given by

Pr[Rl,P1
> s] = Pr[Xl,P1

− χ > s|Xl,P1
> χ].

Because the task service times are NBU, we can obtain that for all s, χ ≥ 0

Pr[Xl,P1
− χ > s|Xl,P1

> χ] = Pr[Xl,π1
− χ > s|Xl,π1

> χ] ≤ Pr[Xl,π1
> s],

and hence Rl,P1
≤st Xl,π1

. By Theorem 1.A.1 of [27], the random variables Rl,P1
and Xl,π1

can be

constructed such that Rl,P1
≤ Xl,π1

with probability one. That is, in policy P1 server l completes

executing task h at time t = τ + Rl,P1
, which is earlier than time ν = τ + Xl,π1

with probability one.

Because in policy P1 server l is kept busy during [τ, ν], a new task, say task j′, will start execution on

server l at time t ∈ [τ, ν] with probability one.

In the above coupling arguments, conditioned on every possible realization of policy P1 and policy π1

before the service of task j starts, we can construct the service of task j in policy π1 and the service

of the corresponding task j′ in policy P1 such that the requirement of weak work-efficiency ordering is

satisfied for this pair of tasks. Next, following the proof of [27, Theorem 6.B.3], one can continue this

procedure to progressively construct the service of all tasks in policy π1 and policy P1. By this, we obtain

that policy P 1 is weakly more work-efficient than policy π1 with probability one, which completes the

proof.

APPENDIX I

PROOF OF THEOREM 2

Consider the time difference Ci(FUT)− Vi(FUT). At time Vi(FUT), all tasks of job i are completed

or in service. if ki > m, then job i has at most m incomplete tasks that are in service at time Vi(FUT),

see Fig. 2 for an illustration; if ki ≤ m, then job i has at most ki incomplete tasks that are in service at
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time Vi(FUT). Therefore, in policy FUT, no more than ki∧m = min{ki,m} tasks of job i are completed

during the time interval [Vi(FUT), Ci(FUT)].

Suppose that at time Vi(FUT), the remaining tasks of job i are being executed by the set of servers

Si ⊆ {1, . . . ,m}, which satisfies |Si| ≤ ki ∧ m. Let χl denote the amount of time that server l ∈ Si
has spent on executing a task of job i by time Vi(FUT) in policy FUT. Let Rl denote the remaining

service time of server l ∈ Si for executing this task after time Vi(FUT). Then, Rl can be expressed

as Rl = [Xl − χl|Xl > χl]. Because the Xl’s are independent NBU random variables with mean

E[Xl] = 1/µl, for all realizations of χl

[Rl|χl] ≤st Xl, ∀ l ∈ Si.

In addition, Theorem 3.A.55 of [27] tells us that

Xl ≤icx Zl, ∀ l ∈ Si,

where ≤icx is the increasing convex order defined in [27, Chapter 4] and the Zl’s are independent

exponential random variables with mean E[Zl] = E[Xl] = µl. Hence,

[Rl|χl] ≤icx Zl, ∀ l ∈ Si.

Lemma 3 tells us that the Rl’s are conditional independent for any given realization of {χl, l ∈ Si}.
Hence, by Corollary 4.A.16 of [27], for all realizations of Si and {χl, l ∈ Si}

[
max
l∈Si

Rl
∣∣Si, {χl, l ∈ Si}] ≤icx

[
max
l∈Si

Zl
∣∣Si]. (70)

Then,

E[Ci(FUT)− Vi(FUT)|Si, {χl, l ∈ Si}]

=E
[
max
l∈Si

Rl

∣∣∣∣Si, {χl, l ∈ Si}]
≤E
[
max
l∈Si

Zl

∣∣∣∣Si] (71)

≤E
[

max
l=1,...,ki∧m

Zl

]
(72)

≤
ki∧m∑
l=1

1∑l
j=1 µj

, (73)

where (71) is due to (70) and Eq. (4.A.1) of [27], (72) is due to µ1 ≤ . . . ≤ µM , |Si| ≤ ki∧m, and the fact

that maxl=1,...,ki∧m Zl is independent of Si, and (73) is due to the property of exponential distributions.
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Because Si and {χl, l ∈ Si} are random variables which are determined by the job parameters I, taking

the conditional expectation for given I in (73), yields

E[Ci(FUT)− Vi(FUT)|I] ≤
ki∧m∑
l=1

1∑l
j=1 µj

.

By taking the average over all n jobs, (18) is proven. In addition, it is known that for each k = 1, 2, . . . ,

k∑
l=1

1

l
≤ ln(k) + 1.

By this, (19) holds. This completes the proof.
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