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In this paper, we consider the generalized Marcum Q-function of order m > 0 real, defined
by Z 1
. All righ

n (Y. Su
Q mða; bÞ ¼
1

am�1
b

tme�
t2þa2

2 Im�1ðatÞdt;
where a; b P 0, Im stands for the modified Bessel function of the first kind and the
right hand side of the above equation is replaced by its limiting value when a ¼ 0.
Our aim is to prove that the function m 7! Q mða; bÞ is strictly increasing on ð0;1Þ
for each a P 0, b > 0, and to deduce some interesting inequalities for the function
Q m. Moreover, we present a somewhat new viewpoint of the generalized Marcum
Q-function, by showing that satisfies the new-is-better-than-used (nbu) property,
which arises in economic theory.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction and preliminaries

For m unrestricted real (or complex) number let Im be the modified Bessel function of the first kind of order m, defined by the
relation [19, p. 77]
ImðxÞ ¼
X
kP0

ðx=2Þ2kþm

k!Cðmþ kþ 1Þ ;
which is of frequent occurrence in problems of mathematical physics and chemistry. Further, let Q mða; bÞ be the generalized
Marcum Q-function, defined by
Q mða; bÞ ¼
1

am�1

R1
b tme�

t2þa2
2 Im�1ðatÞdt if a > 0;

1
2m�1CðmÞ

R1
b t2m�1e�t2

2 dt if a ¼ 0;

8<
: ð1:1Þ
where b P 0 and m > 0. Clearly the function a 7! Q mða; bÞ is continuous, because for each t P b fixed we have
lim
a!0

2m�1CðmÞðatÞ1�mIm�1ðatÞ
h i

¼ 1;
which implies that
lim
a!0

Q mða; bÞ ¼ Q mð0; bÞ
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for all b P 0 and m > 0. The generalized Marcum Q-function defined above is widely used in radar signal processing and has
important applications in error performance analysis of multichannel dealing with partially coherent, differentially coherent,
and non-coherent detections in digital communications. For further details the interested reader is referred to the book [17]
and to the references therein. Since, the precise computation of the generalized Marcum Q-function is quite difficult, in the
last few decades several authors established approximation formulas and bounds for the function Q mða; bÞ.

This paper is a further contribution to the subject and is organized as follows: in Section 2 we prove that the function
b 7! Q mða; bÞ is strictly log-concave on ð0;1Þ, which implies that the generalized Marcum Q-function satisfies the nbu prop-
erty (see Section 2), which is of importance in economic theory. In Section 3 we prove that the function m 7! Q mða; bÞ is strictly
increasing on ð0;1Þ, and we deduce some new inequalities for the function Q mða; bÞ.

It is worth mentioning that the generalized Marcum Q-function has an important interpretation in probability theory,
namely that is the complement (with respect to unity) to the cumulative distribution function (cdf) of the non-central chi
distribution with 2m degrees of freedom. We note here that in probability theory and in economic theory the complement
(with respect to unity) of a cdf is called a survival (or a reliability) function. For these we refer the reader to the papers
[1,2,4]. To be more precise for the reader’s convenience we recall some basic facts. First note that when a > 0 the integrand
in (1.1) is a probability density function (pdf). For this, consider the Sonine formula [19, p. 394]
Z 1

0
JmðatÞe�pt2

tmþ1dt ¼ ame�
a2
4p

ð2pÞmþ1 ;
which holds for all a; p; m complex numbers such that ReðpÞ > 0, ReðmÞ > �1 and where Jm stands for the Bessel function of the
first kind. Taking into account the relation ImðxÞ ¼ i�mJmðixÞ and changing in the above Sonine formula a with ia we easily get
that
Z 1

0
ImðatÞe�pt2

tmþ1dt ¼ ame
a2
4p

ð2pÞmþ1 ;
which implies that for each m; a > 0 we have
Q mða;0Þ ¼
1

am�1

Z 1

0
tme�

t2þa2
2 Im�1ðatÞdt ¼ 1
as we required. When a ¼ 0 clearly we have for each m > 0 that
Q mð0;0Þ ¼
1

2m�1CðmÞ

Z 1

0
t2m�1e�

t2
2 dt ¼ 1

CðmÞ

Z 1

0
e�uum�1 du ¼ 1:
Thus in fact for all b P 0 and m > 0 we have
Q mða; bÞ ¼
1� 1

am�1

R b
0 tme�

t2þa2
2 Im�1ðatÞdt; if a > 0;

1� 1
2m�1CðmÞ

R b
0 t2m�1e�t2

2 dt; if a ¼ 0:

8<
: ð1:2Þ
On the other hand, it is known that if X1;X2; . . . ;Xn are random variables that are normally distributed with unit variance and
nonzero mean l1; l2; . . . ; ln, then the random variable ½X2

1 þ X2
2 þ � � � þ X2

n�
1=2 has the non-central chi distribution with

n ¼ 1;2;3; . . . degrees of freedom and non-centrality parameter s ¼ ½l2
1 þ l2

2 þ � � � þ l2
n�

1=2. The pdf vn;s : ð0;1Þ ! ð0;1Þ of
the non-central chi distribution [13] is defined as
vn;sðxÞ ¼ 2�
n
2þ1e�

x2þs2
2

X
kP0

xnþ2k�1ðs=2Þ2k

Cðn=2þ kÞk!
¼ se�

x2þs2
2

x
s

� �n=2
In

2�1ðsxÞ:
Observe that when l1 ¼ l2 ¼ � � � ¼ ln ¼ 0, i.e. s ¼ 0, the above distribution reduces to the classical chi distribution with pdf
vn;0 : ð0;1Þ ! ð0;1Þ given by
vnðxÞ ¼ vn;0ðxÞ ¼
xn�1e�x2=2

2n=2�1Cðn=2Þ
:

Thus taking into account the above definitions and (1.2), in particular, when n ¼ 2m is an integer the generalized Marcum Q-
function is exactly the reliability function of the non-central chi distribution with 2m degrees of freedom and non-centrality
parameter s ¼ a. In fact there is another probabilistic interpretation of the generalized Marcum Q-function, i.e. a transforma-
tion of this function is connected with the non-central chi-squared distribution. For this let Y1;Y2; . . . ;Ym be random vari-
ables that are normally distributed with unit variance and nonzero mean ci, where i ¼ 1;2; . . . ;m. It is known that
Y2

1 þ Y2
2 þ � � � þ Y2

m has the non-central chi-squared distribution with m ¼ 1;2;3; . . . degrees of freedom and non-centrality
parameter k ¼ c2

1 þ c2
2 þ � � � þ c2

m. The pdf v2
m;k : ð0;1Þ ! ð0;1Þ of the non-central chi-squared distribution [13] is defined as
v2
m;kðxÞ ¼ 2�m=2e�ðxþkÞ=2

X
kP0

xm=2þk�1ðk=4Þk

Cðm=2þ kÞk!
¼ e�ðxþkÞ=2

2
x
k

� �m=4�1=2
Im=2�1ð

ffiffiffiffiffi
kx
p
Þ:
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Recall that when c1 ¼ c2 ¼ � � � ¼ cm ¼ 0, i.e. k ¼ 0, the above distribution reduces to the classical chi-squared distribution. The
pdf v2

m;0 : ð0;1Þ ! ð0;1Þ of this distribution is given by
v2
mðxÞ ¼ v2

m;0ðxÞ ¼
xm=2�1e�x=2

2m=2Cðm=2Þ
:

Now from (1.1) and (1.2) it is easy to verify that
Q m

ffiffiffi
a
p

;
ffiffiffi
b
p� �

¼
1� 1

2

R b
0

t
a

� �m
2�

1
2e�

tþa
2 Im�1

ffiffiffiffiffi
at
p� �

dt if a > 0;

1� 1
2mCðmÞ

R b
0 tm�1e�t

2dt if a ¼ 0;

8<
: ð1:3Þ
i.e. the function Q mð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ in particular is the survival function of the non-central chi-squared distribution with m ¼ 2m de-

grees of freedom and non-centrality parameter k ¼ a.
2. The nbu property for the generalized Marcum Q-function

Solving a problem which arises in random flights, Findling [9, Theorem 8], using an interesting method, proved that the
function x 7! xI1ðxÞ is strictly log-concave on R n f0g. The following result – which is of independent interest – improves Fin-
dling’s result when x > 0 and is useful in establishing the nbu property for the generalized Marcum Q-function.

Proposition 2.1. Let m be a real number and let x > 0. The following assertions are true:

(a) the function x 7! xImðxÞ is log-concave for each m P 1=2;
(b) the function x 7! xmImðxÞ is strictly log-concave for each m P 1.

Proof
(a) Let us consider the modified Bessel function of the second kind (which is called sometimes as the MacDonald function)

Km, defined by [19, p. 78]
KmðxÞ :¼ p
2

I�mðxÞ � ImðxÞ
sin mp

;

where the right hand side of this equation is replaced by its limiting value if m is an integer or zero. Due to Hartman [12] it is
known that the function x 7! xImðxÞKmðxÞ is concave on (0,1) for all m > 1=2. Since x 7! 2xI1=2ðxÞK1=2ðxÞ ¼ 1� e�2x is concave on
(0,1), we conclude that in fact the function x 7! xImðxÞKmðxÞ is concave on (0,1) for all m P 1=2.

On the other hand it is known that the function x 7! KmðxÞ is log-convex on (0,1), which result was stated in [11, Remark
3.2] without proof. For the sake of completeness we include here the proof. For this recall the following integral
representation [19, p. 181] of the modified Bessel function of the second kind
KmðxÞ ¼
Z 1

0
e�x cosh t coshðmtÞdt; ð2:2Þ
which holds for each x > 0 and m 2 R. Further consider the well-known Hölder-Rogers inequality [16, p. 54], that is
Z b

a
jf ðtÞgðtÞjdt 6

Z b

a
jf ðtÞjpdt

" #1=p Z b

a
jgðtÞjqdt

" #1=q

; ð2:3Þ
where p > 1, 1=pþ 1=q ¼ 1, f and g are real functions defined on ½a; b� and jf jp, jgjq are integrable functions on ½a; b�. Using
(2.2) and (2.3) we conclude that
Kmðax1 þ ð1� aÞx2Þ ¼
Z 1

0
e�ðax1þð1�aÞx2Þ cosh t coshðmtÞdt ¼

Z 1

0
e�x1 cosh t coshðmtÞ
� �a

e�x2 cosh t coshðmtÞ
� �1�a

dt

6

Z 1

0
e�x1 cosh t coshðmtÞdt

	 
a Z 1

0
e�x2 cosh t coshðmtÞdt

	 
1�a

¼ ½Kmðx1Þ�a½Kmðx2Þ�1�a
holds for all a 2 ½0;1�, x1; x2 > 0 and m 2 R, i.e. x 7! KmðxÞ is log-convex on (0,1) for all m 2 R. Thus, we have that the function
x 7! 1=KmðxÞ is log-concave on ð0;1Þ for each m 2 R.

Now, since the function x 7! xImðxÞKmðxÞ is concave on (0,1) for all m P 1=2, it follows that it is log-concave on (0,1) for all
m P 1=2. Consequently we have that the function x 7! xImðxÞ is log-concave on (0,1) for all m P 1=2, as a product of two log-
concave functions.

(b) First suppose that m ¼ 1. Recall that due to Findling [9] it is known that the function x 7! xI1ðxÞ is strictly log-concave
on (0,1). Now assume that m > 1. Since the function x 7! xm�1 is strictly log-concave on (0,1), using part (a) of this
proposition, we deduce that x 7! xmImðxÞ is strictly log-concave as a product of a strictly log-concave and log-concave
functions, as we required. h
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In probability theory usually the cumulative distribution functions (cdf-s) does not have closed-form, and consequently is
quite difficult to study their properties directly. In statistics, economics and industrial engineering frequently appears some
problems which are related to the study of log-concavity (log-convexity) of some univariate distributions. An interesting uni-
fied exposition of related results on the log-concavity and log-convexity of many distributions – including applications –
were communicated by Bagnoli and Bergstrom [4]. The next results are widely used in economic theory and for proofs
the interested reader is referred to the following papers [1,3,4,6]. We note that in economics, the inequality (2.5) is called
the new-is-better-than-used (nbu) property [1, p. 21], because if X is the time of death of a physical object, then the prob-
ability PðX P xÞ ¼ SðxÞ that a new unit will survive to age x, is greater than the probability
PðX P xþ yÞ
PðX P yÞ ¼ Sðxþ yÞ

SðyÞ
that a survived unit of age y will survive for an additional time x.

Lemma 2.4. Let f : ½u; v� ! ½0;1Þ be a continuously differentiable pdf and consider the survival function S : ½u; v� ! ½0;1�, defined by
SðxÞ ¼
Z v

x
f ðtÞdt:
If f is (strictly) log-concave, then the reliability function S is (strictly) log-concave too. Moreover, if the random variable X has po-
sitive support and its survival function S is log-concave, then for all x; y P 0 the following inequality
Sðxþ yÞ 6 SðxÞSðyÞ ð2:5Þ
holds true. If the survival function S is strictly log-concave, then the inequality (2.5) is strict.

For the shape parameter m > 0 and k; s P 0 consider the pdf-s of the non-central chi-squared and non-central chi distri-
butions v2

m;k; vm;s : ½0;1Þ ! ½0;1Þ, defined by the relations
v2
m;kðxÞ ¼ e�ðxþkÞ=2

X
kP0

ðx=2Þm=2ðk=4Þk

Cðm=2þ kÞk!
xk�1;

vm;sðxÞ ¼ e�ðx
2þs2Þ=2

X
kP0

xmðs=2Þ2k

2m=2�1Cðm=2þ kÞk!
x2k�1:
Further, let us denote simply v2
m;0ðxÞ ¼ v2

m ðxÞ and vm;0ðxÞ ¼ vmðxÞ. Recently, the second author in [6], among other things, proved
that the survival function of the (central) chi and chi-squared distributions satisfies the nbu property (2.5), i.e. the functions
Q m=2ð0;
ffiffiffi
b
p
Þ ¼ Sv2

m
ðbÞ ¼ 1�

Z b

0

tm=2�1e�t=2

2m=2Cðm=2Þ
dt; m P 2;

Q m=2ð0; bÞ ¼ Svm
ðbÞ ¼ 1�

Z b

0

tm�1e�t2=2

2m=2�1Cðm=2Þ
dt; m P 1;
satisfies the inequality (2.5). We note that since t 7! tm�1 is log-concave on (0,1) for all m P 1, using part (a) of Proposition 2.1
and the formula (1.2), we conclude that the pdf b 7! v2m;aðbÞ of the survival function b 7! Q mða; bÞ is log-concave on (0,1) for
all a > 0 and m P 3=2. Therefore, in view of Lemma 2.4 the function b 7! Q mða; bÞ is log-concave too on (0,1), and conse-
quently satisfies the nbu property, that is we have
Q mða; b1 þ b2Þ 6 Q mða; b1ÞQ mða; b2Þ 6 Q2
m a;

b1 þ b2

2

� �
ð2:6Þ
for all a > 0, m P 3=2 and b1; b2 > 0. However, using a slightly different approach, in the followings we prove that in fact the
strict version of (2.6) holds for each m > 1 and a P 0.

The main result of this section improves the above mentioned results.

Theorem 2.7. Let a P 0 and m > 1. Then the following assertions are true:

(a) the function b 7! Q mða;
ffiffiffi
b
p
Þ is strictly log-concave on ð0;1Þ;

(b) the function b 7! Q mða; bÞ is strictly log-concave on ð0;1Þ;
(c) the strict version of inequality (2.6) and
Q m a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b2

p� �
< Q mða;

ffiffiffiffiffi
b1

p
ÞQ mða;

ffiffiffiffiffi
b2

p
Þ < Q 2

m a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b2

2

r !
; ð2:8Þ
hold true for all b1; b2 > 0 and b1 6¼ b2. Moreover, the inequality (2.6) is weaker than the inequality (2.8) in the sense that for all
b1; b2 > 0 and b1 6¼ b2 we have
Q mða; b1 þ b2Þ < Q m a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q� �
< Q mða; b1ÞQ mða; b2Þ < Q 2

m a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

2

s0
@

1
A < Q 2

m a;
b1 þ b2

2

� �
: ð2:9Þ
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Proof

(a) It is known [7, Theorem 1.5] that the function b 7! v2
m;aðbÞ is strictly log-concave on ð0;1Þ for all a P 0 and m > 2.

Hence, in view of (1.3), the pdf of the survival function b 7! Q mð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ is strictly log-concave, i.e. the function b 7! v2

2m;aðbÞ is
strictly log-concave on ð0;1Þ for all a P 0 and m > 1. Consequently from Lemma 2.4 we have that the function
b 7! Q mð

ffiffiffi
a
p

;
ffiffiffi
b
p
Þ, as well as the function b 7! Q mða;

ffiffiffi
b
p
Þ are strictly log-concave, as we required.

(b) Since b 7! Q mða;
ffiffiffi
b
p
Þ is strictly log-concave and the function b 7! Q mða; bÞ is decreasing, by definition we have that for all

a P 0, b1; b2 > 0, b1 6¼ b2, a 2 ð0;1Þ and m > 1 the inequality
½Q mða; b1Þ�a½Q mða; b2Þ�1�a
< Q m a;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab2

1 þ ð1� aÞb2
2

q� �
< Q mða; ab1 þ ð1� aÞb2Þ
holds, where we used the inequality ab2
1 þ ð1� aÞb2

2 > ½ab1 þ ð1� aÞb2�2. With other words, in the proof of strict log-concavity
of b 7! Q mða; bÞ we have used the following property: if a positive function f is strictly log-concave and decreasing, and g is
convex, then the composite function f � g is strictly log-concave too. Here f ðbÞ ¼ Q mða;

ffiffiffi
b
p
Þ, which is decreasing and strictly

log-concave, and gðbÞ ¼ b2, which is clearly convex.
(c) Using Lemma 2.4, we conclude that the inequalities (2.6) and (2.8) follows easily from parts (a) and (b) of this theorem.

On the other hand, since the function b 7! Q mða; bÞ is a survival function, clearly it is decreasing. Therefore changing in (2.8) b1

with b2
1 and b2 with b2

2, we immediately get (2.9). h

Remark 2.10. We note that, since b 7! Q mða; bÞ is a survival function, clearly it is decreasing on (0,1) for all m > 0 and a P 0.
Hence the function b 7! Q mða; bÞ=b is strictly decreasing on (0,1) for all a P 0 and m > 0. Thus we have that the survival func-
tion b 7! Q mða; bÞ is strictly sub-additive on (0,1), that is for all b1; b2; m > 0 and a P 0 the inequality
Q mða; b1 þ b2Þ < Q mða; b1Þ þ Q mða; b2Þ ð2:11Þ
holds true. In fact, the same argument can be applied to the survival function b 7! Q mð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ. Namely, the function

b 7! Q mð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ is strictly sub-additive on (0,1), that is for all b1; b2; m > 0 and a P 0 the inequality
Q m a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b2

p� �
< Q mða;

ffiffiffiffiffi
b1

p
Þ þ Q mða;

ffiffiffiffiffi
b2

p
Þ ð2:12Þ
holds true. Moreover, since b 7! Q mða; bÞ is decreasing, we have that (2.11) is weaker than (2.12), that is we have the
inequality
Q mða; b1 þ b2Þ < Q m a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q� �
< Q mða; b1Þ þ Q mða; b2Þ;
which holds for all for all b1; b2; m > 0 and a P 0.
3. New inequalities for the generalized Marcum Q-function

Recently Li and Kam [14], using an interesting geometric interpretation of the function Q mða; bÞ, proved that for all m ¼ m
natural number and a; b > 0 the inequalities
Q mða; bÞ < Q mþ1=2ða; bÞ < Q mþ1ða; bÞ
hold. The following result improves the above inequalities.

Theorem 3.1. Let b > 0 and a P 0. Then the following assertions are true:

(a) the function m 7! Q mða; bÞ is strictly increasing on (0,1);
(b) the function m 7! Q mþ1ða; bÞ � Q mða; bÞ is strictly decreasing on (0,1) provided a P b;
(c) the function m 7! Q mþ1ða; bÞ � Q mða; bÞ is log-concave on (0,1);
(d) the inequality
Q mþ1ða; bÞ >
Q mða; bÞ þ Q mþ2ða; bÞ

2
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q mða; bÞQ mþ2ða; bÞ

q
ð3:2Þ
holds for all a P b > 0 and m > 0, while the inequalities
½Q mþ2ða; bÞ � Q mþ1ða; bÞ�2 > ½Q mþ1ða; bÞ � Q mða; bÞ�½Q mþ3ða; bÞ � Q mþ2ða; bÞ�; ð3:3Þ
b2Q 2

mþ1ða; bÞ þ Q2
mþ2ða; bÞ > Q mþ2ða; bÞQ mþ1ða; bÞ þ b2Q mþ2ða; bÞQ mða; bÞ ð3:4Þ
hold true for all a P 0 and b; m > 0.

Proof

(a) To show that m 7! Q mða; bÞ is strictly increasing we prove that for all m1; m2 > 0 we have that
Q m1þm2
ða; bÞ > Q m1

ða; bÞ; ð3:5Þ
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where a P 0 and b > 0. For this, let X be a random variable which has non-central chi-squared distribution with shape
parameter (degree of freedom) 2m1 and non-centrality parameter a. Further let Y be a random variable which has chi-squared
distribution with the shape parameter 2m2. Using the characteristic functions of the non-central chi-squared and (central)
chi-squared distributions, it is easy to verify that the random variable X þ Y has non-central chi-squared distribution with
shape parameter 2ðm1 þ m2Þ and non-centrality parameter a. Namely, the characteristic functions of the independent random
variables X and Y are defined as follows
uXðtÞ ¼ e
iat

1�2itð1� 2itÞ�m1 ; uYðtÞ ¼ ð1� 2itÞ�m2
and then we have
uXþY ðtÞ ¼ uXðtÞuYðtÞ ¼ e
iat

1�2itð1� 2itÞ�ðm1þm2Þ;
which is the characteristic function of the non-central chi-squared distribution with shape parameter 2ðm1 þ m2Þ and non-
centrality parameter a. Therefore we conclude that the random variable X þ Y indeed has non-central chi-squared distribu-
tion with shape parameter 2ðm1 þ m2Þ and non-centrality parameter a. Thus, in view of (1.3), we have
Q m1þm2
ð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ ¼ 1� 1

2

Z b

0

t
a

� �m1þm2
2 �1

2

e�
tþa

2 Im1þm2�1ð
ffiffiffiffiffi
at
p
Þdt

¼ 1� PðX þ Y < bÞ ¼ PðX þ Y P bÞ
¼ PðX P b;X þ Y P bÞ þ PðX < b;X þ Y P bÞ
P PðX P bÞ þ PðX < b;Y P bÞ
¼ PðX P bÞ þ PðX < bÞPðY P bÞ
> PðX P bÞ ¼ 1� PðX < bÞ

¼ 1� 1
2

Z b

0

t
a

� �m1
2�

1
2

e�
tþa

2 Im1�1ð
ffiffiffiffiffi
at
p
Þdt ¼ Q m1

ð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ;
for all m1; m2; b; a > 0. When a ¼ 0, using the characteristic function of the (central) chi-squared distribution, the same argu-
ment can be applied to show that for all m1; m2; b > 0 we have
Q m1þm2
ð0;

ffiffiffi
b
p
Þ > Q m1

ð0;
ffiffiffi
b
p
Þ:
Thus we have proved that for all m1; m2; b > 0 and a P 0 we have
Q m1þm2
ð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ > Q m1

ð
ffiffiffi
a
p

;
ffiffiffi
b
p
Þ

consequently changing a with a2 and b with b2, the required inequality (3.5) follows.
(b) It is known that the generalized Marcum Q-function satisfies the recurrence formula [17, p. 82]
Q mþ1ða; bÞ ¼
b
a

� �m

e�
a2þb2

2 ImðabÞ þ Q mða; bÞ: ð3:6Þ
On the other hand due to Cochran [8] we know that dImðabÞ=dm < 0 for all a; b; m > 0. Thus from (3.6) we have that for all
a P b > 0 and m > 0
d
dm
½Q mþ1ða; bÞ � Q mða; bÞ� ¼

b
a

� �m

e�
a2þb2

2 ImðabÞ log
b
a

� �
þ d

dm
ImðabÞ

	 

< 0;
i.e. the function m 7! Q mþ1ða; bÞ � Q mða; bÞ is strictly decreasing on (0,1), as we required.
(c) Observe that with our notations the relation (3.6) can be written as
b½Q mþ1ða; bÞ � Q mða; bÞ� ¼ v2mþ2;aðbÞ: ð3:7Þ
Recently, the second author, by showing that m 7! ImðxÞ is log-concave on ð�1;1Þ, deduced that [7, Theorem 1.5] the function
m 7! vm;aðbÞ is log-concave on (0,1) for each a P 0 and b > 0. From this we clearly have that the function m 7! v2mþ2;aðbÞ is log-
concave too on (0,1). Application of (3.7) yields the asserted result.

(d) The first inequality in (3.2) follows from part (b), while the second inequality in (3.2) follows from the well-known
arithmetic–geometric mean value inequality. Now, application of part (c) yields inequality (3.3). Finally, recall that
from part (b) of Theorem 2.7, the reliability function b 7! Q mða; bÞ is strictly log-concave on (0,1) for all a P 0 and
m > 1. From this we conclude that the function b 7! Q mþ1ða; bÞ is strictly log-concave too on (0,1) for all a P 0 and
m > 0. Thus, in view of (3.7), we have that the function
b 7! d
db
½log Q mþ1ða; bÞ� ¼ �

v2mþ2;aðbÞ
Q mþ1ða; bÞ

¼ b
Q mða; bÞ

Q mþ1ða; bÞ
� b
is strictly decreasing on (0,1). Thus, applying again (3.7), it is just straightforward to verify that the inequality (3.4)
holds. h
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4. Concluding remarks

1. We note that the first part of Theorem 3.1, namely the fact that the function m 7! Q mða; bÞ is strictly increasing on (0,1) for
each fixed b > 0 and a P 0, can be proved also by an analytical argument. More precisely, the anonymous referee of this
paper has communicated to us the following simple proof: since due to Tricomi [18] the incomplete gamma function
ratio:
m 7! Qðm; xÞ ¼ 1
CðmÞ

Z 1

x
tm�1e�tdt
is strictly increasing on (0,1) for each fixed x > 0, it follows that the function:
m 7! Q mða; bÞ ¼ e�a2=2
X
nP0

ða2=2Þn

n!
Qðmþ n; b2

=2Þ
is strictly increasing too on (0,1) for each a; b > 0 fixed. The later expansion follows from substituting the power series of
the modified Bessel function into the integral in the first line of (1.1). We are grateful to the referee for this important infor-
mation.
Notice that the above mentioned result of Tricomi on the incomplete gamma function ratio in fact can be deduced from the
first part of Theorem 3.1. Namely, since there is a close connection between the gamma and the chi-squared distributions, it
is easy to see that Qðm; xÞ ¼ Q mð0;

ffiffiffiffiffiffi
2x
p
Þ for each m; x > 0 and thus applying part (a) of Theorem 3.1 we obtain that the function

m 7! Qðm; xÞ is indeed strictly increasing on (0,1) for each fixed x > 0. The above relation in turn implies that Tricomi’s result
implies in fact that the function m 7! Q mða; bÞ is strictly increasing on (0,1) for each a P 0 and b > 0 fixed. With other words
the first part of Theorem 3.1 is in fact equivalent with Tricomi’s result.
We note also that after we have completed the first draft of this manuscript we have found that a similar analytical proof of
the monotonicity of m 7! Q mða; bÞ has been given recently by Mihos et al. [15]. Moreover, a slightly different analytical proof
can be found in Ghosh’s paper [10, Theorem 1].
2. It is worth mentioning here that the inequality
Q2
mþ1ða; bÞP Q mða; bÞQ mþ2ða; bÞ ð3:8Þ
it is a little surprising. As we mentioned in the proof of Theorem 3.1 the integrand of Q mða; bÞ as a function of m, i.e. m 7! v2m;aðbÞ
is log-concave on (0,1), and surprisingly part (d) of Theorem 3.1 states that this log-concavity property remains true after
integration, of course with some assumptions on parameters. Moreover, we note that the inequality (3.8) is interesting in its
own right, because similar inequalities appears in literature as Turán type inequalities. Turán type inequalities have an
extensive literature, and in the last six decades it was proved by several researchers that the most important special func-
tions, orthogonal polynomials satisfies a Turán type inequality. For further details and for a large list of references on this
topic, the interested reader is referred to the recent papers [5,7].

Our numerical experiments suggest the following conjecture.

Conjecture 3.9. The function m 7! Q mða; bÞ is strictly log-concave on (0,1) for all a P 0 and b > 0.
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