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Abstract—This paper investigates the distributed power al-
location problem for coordinated multipoint (CoMP) transm is-
sions in distributed antenna systems (DAS). Traditional duality-
based optimization techniques cannot be directly applied to
this problem, because the non-strict concavity of the CoMP
transmission’s achievable rate with respect to the transmission
power induces that the local power allocation subproblems have
non-unique optimum solutions. We propose a distributed power
allocation algorithm to resolve this non-strict concavitydifficulty.
This algorithm only requires local information exchange among
neighboring base stations serving the same user, and is thus
flexible with respect to network size and topology. The step-
size parameters of this algorithm are determined by only local
user access relationship (i.e., the number of users served by each
antenna), but do not rely on channel coefficients. Therefore, the
convergence speed of this algorithm is quite robust to channel
fading. We rigorously prove that this algorithm converges to an
optimum solution of the power allocation problem. Simulation
results are presented to demonstrate the effectiveness of the
proposed power allocation algorithm.

Index Terms—Coordinated multipoint transmission, distribu-
ted power allocation, distributed antenna system.

I. I NTRODUCTION

The explosive growth of mobile access services has led
to a huge demand for enhanced throughput and extended
coverage in the next generation wireless networks. In recent
years, distributed antenna system (DAS) has emerged as a
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promising network architecture to achieve these goals [1]–[3].
In this architecture, each base station is equipped with some
remote antennas which are distributed in the entire cell area, as
shown in Fig. 1. These distributed antennas are connected to
the base station via wired backhaul network. By this, nearby
distributed antennas are able to coordinate with each other
and provide enhanced service experience to the mobile users.
This technique is called the coordination multipoint (CoMP)
transmission in the literature [3], [4].

One of the key techniques to realize high throughput in
wireless networks is power allocation. Traditionally, power
allocation of wireless networks is handled by centralized
algorithms, e.g., [5]–[8]. These algorithms request multi-hop
signaling mechanisms to gather the channel state informa-
tion (CSI) of all the wireless links at a central processing
unit in a short time period, and then distribute the obtained
power allocation solution to the transmitters. Such mechanisms
would generate enormous signaling overhead on the backhaul
network, and is probably not scalable when the network size
grows large.

Recently, a great deal of research efforts have focused on
distributed power allocation for various wireless networks.
Game theory based power allocation techniques were pro-
posed in [9]–[13], which intend to compute Nash equilibrium
power allocation solutions. However, these Nash equilibrium
solutions might be far from optimality [12]. Duality-based
distributed power allocation techniques were proposed in [14]–
[16], where the global power allocation problem is decom-
posed into many local power allocation subproblems, each of
which can be solved by utilizing only locally available network
information. However, these techniques cannot be directly
applied to CoMP transmissions in DAS — the local power
allocation subproblem may have many optimum solutions,
because the data rate of CoMP transmission is not strictly
concave with respect to the power variables [14], [17]. Since
no global network information is available when solving the
local power allocation subproblems, it is quite difficult to
find a global feasible solution among all the locally optimum
solutions.

One promising method to address this non-strict concavity
problem is the proximal point method [18], which adds strictly
concave terms to the objective function without affecting the
optimum solution. However, typical proximal point algorithms
require a two-layer nested iteration structure, where each
outer-layer update can proceed only after the inner-layer itera-
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Fig. 1. System model of coordination multipoint (CoMP) transmissions in
a distributed antenna system (DAS).

tions converge [18]. Such a structure is not suitable for on-line
distributed implementation, because it is difficult to decide in
a distributed manner when the inner-layer iterations can stop.
In [19], a single-layer proximal point algorithm was proposed
for multi-path routing problems. However, the convergence
analysis in [19] also cannot be directly utilized for the power
allocation problem considered here, owing to the additional
channel coefficients in our problem. It is difficult to answer
whether the channel coefficients have significant impact on the
convergence behavior of the algorithm mentioned above.

This paper investigates the distributed power allocation
problem for a downlink DAS with many antennas and many
single antenna users. Each user is served by several nearby
antennas via CoMP transmission techniques. Meanwhile, each
antenna may serve several users over orthogonal channels. The
main contributions of this paper are summarized as follows:

1) A distributed power allocation algorithm is proposed to
maximize the weighted sum rate of the downlink DAS,
subject to per-antenna power consumption constraints.
This power allocation algorithm is implemented distribut-
edly among the base stations instead of being executed
in a centralized fashion. The algorithm possesses a nice
single-layer iteration structure, which is desirable for on-
line implementations. In each iteration, the algorithm only
requires local information exchange among neighboring
base stations serving the same user, which is flexible with
respect to network size and topology.

2) A novel procedure is proposed to compute the primal op-
timum solution of the local power allocation subproblem,
which is simpler than that proposed in [19].

3) We rigorously analyze the convergence and optimality of
the proposed distributed algorithm for the power alloca-
tion problem. The bounds of the step-size parameters to
ensure convergence are derived.

4) We show that the step-size parameters of this algorithm
are determined by only local user access relationship (i.e.,
the number of users served by each antenna), but do not
rely on channel coefficients1. Therefore, the convergence

1The channel coefficients are only utilized locally to solve the local power
allocation subproblem.

speed of this algorithm is quite robust to channel fading.

Our proposed power allocation algorithm is motivated by
the work of [19]. However, our work differs from it in several
respects. First, our analysis indicates that a larger step-size
can be used for the algorithm in [19], which can achieve
a faster convergence speed. Second, while our problem has
additional channel fading coefficients, we show that the step-
size parameters and the convergence speed of our algorithm
are robust to different channel fading coefficients. Finally, our
procedure for solving the local power allocation problem is
simpler than that proposed in [19].

For ease of later use, we define the following notations: Let
|S| denote the number of elements in setS, and letS/T denote
the setS/T = {x|x ∈ S, x /∈ T }. The projection of a real
numberx on the set[0,∞) is defined as[x]+ = max{x, 0}.

The remaining parts of this paper are organized as follows:
In Section II, the system model and problem formulation are
presented. Section III presents the proposed power allocation
algorithm and its distributed implementation. Simulationre-
sults of the proposed power allocation strategy are presented
in Section IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink DAS withK distributed antennas
andN single antenna mobile users, which are denoted byK =
{1, 2, · · · ,K} and N = {1, 2, · · · , N}, respectively. Each
base station is equipped with several distributed antennas, as
illustrated in Fig. 1. These distributed antennas are connected
to the base station via wired backhaul network. The total
throughput of this network is limited by the strong co-channel
interference. By allowing several nearby antennas to transmit
to one user in a coordinated fashion, the CoMP transmission
techniques, such as space-time block coding or maximum
ratio transmission [3], convert the strong interferences into
useful signals and thereby significantly boost the total network
throughput. The set of antennas serving thenth user is denoted
byR(n) ⊆ K, and the set of users communicating with thekth
antenna is expressed asU(k) ⊆ N . In practice, the number of
serving antennas for each user, i.e.,|R(n)|, is usually small,
due to the limitation of implementation complexity for CoMP
transmissions.

When the density of the distributed antennas is high, CoMP
transmissions can not mitigate all the strong interferences,
which results in some strong residual interferences. In [20],
it was shown that orthogonal transmission is Pareto optimal
for strong interference Gaussian channels. Therefore, theusers
with strong mutual interference should be scheduled to com-
municate over orthogonal channels via frequency (or time)
division multiple access, while geographically separatedusers
with weak mutual interference are allowed to share the same
channel resource. This scheduling task belongs to the type
of timetabling problem, which is a classic problem in the
computer science literature with many practical algorithms
[21], [22].

After selecting proper antennas for CoMP transmission and
scheduling the users, there are only weak interferences in the
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network. We consider a slow fading wireless environment. Let
hkn be the complex coefficient of the wireless channel from
the kth antenna to thenth user andpkn be the transmission
power of thekth antenna for serving thenth user. The data
rate of CoMP transmission to thenth user is given by

Cn = log2

(

1 +

∑

k∈R(n) |hkn|2pkn

σ2 +
∑

(k,m)∈I(n) |hkn|2pkm

)

, (1)

where I(n) is the set of source antenna and serving user
pair which may interfere thenth user, or more specifically,
(k,m) ∈ I(n) represents that thek-th source antenna serving
the m-th user through the same serving channel of thenth
user.

There are two difficulties for utilizing the data rate function
Cn to formulate the power allocation problem: First, it leads
to a non-convex optimization problem that is NP-hard [23],
for which one may not be able to find a solution that is both
fast and global optimal even by centralized optimization. The
design of a distributed optimization algorithm will be even
more difficult, if not impossible. In order to reduce the solution
complexity, we need to find an approximate rate function of
Cn that is convex. Second, it can be quite difficult to attain
the exact expression of the rate functionCn. In practice, the
number of interfering antennas is usually much larger than
the number of source antennas. Although the receiver can
get an accurate estimation of the channel gain|hkn|2 for
each source antennak ∈ R(n), it may be too demanding
to estimate the channel gain from the enormous interfering
antennas, especially when the powers of the interference
signals are weak. On the other hand, estimating the noise-
plus-interference powerσ2

n , σ2 +
∑

(k,m)∈I(n) |hkn|2pkm
is obviously much easier. For these reasons, we consider to
utilize an upper bound of the noise-plus-interference power
σ2
n, which is denoted byσ2

n,peak, to derive an approximate
rate function. Letγkn = |hkn|2/σ2

n,peak denote the normalized
channel gain from thekth antenna to thenth user. Then, we
derive a conservative rate function

C̃n = log2



1 +
∑

k∈R(n)

pknγkn



 ≤ Cn. (2)

The key benefit of the conservative rate functionC̃n is that
it is convex and is computable without accurate knowledge of
the channel gain|hkn|2 for the enormous interfering antennas,
which resolves the two difficulties mentioned above. We will
illustrate the rate loss for using this conservative rate function
to formulate the power allocation problem in Section IV.

B. Problem Formulation

The rest of this paper focuses on the following power
allocation problem to maximize the weighted sum rate of the

DAS:

max
pkn

N
∑

n=1

wn log2



1 +
∑

k∈R(n)

pknγkn



 (3)

s.t.
∑

n∈U(k)

pkn ≤ Pk, k = 1, 2, . . . ,K,

pkn ≥ 0, k = 1, 2, . . . ,K, n ∈ U(k),

wherewn > 0 is the weight of thenth user’s data rate and
Pk is the maximal allowable transmission power of thekth
antenna.

This problem is a convex optimization problem, which can
be solved by standard centralized convex optimization algo-
rithms such as the interior point method [24]. However, these
centralized algorithms are hard to be fulfilled in large-scale
DAS, due to the heavy signaling overhead over the backhaul
network. In contrast, duality-based optimization techniques
[14]–[16] cannot be directly applied to this problem, either, be-
cause they require the objective function to be strictly concave.
However, the objective function in (3) is not strictly concave
with respect to the transmission power variables, since it is
constant when the value of

∑

k∈R(n) pknγkn is fixed. If the
duality-based optimization techniques [14]–[16] are utilized,
the decomposed local power allocation subproblem may have
many locally optimum solutions at some special dual points.
It is quite difficult to recover a global feasible solution among
all the locally optimum solutions. When the dual variables are
updated around these dual points, the primal power allocation
variables keep oscillating and hardly converge (see [19] for
more details).

III. D ISTRIBUTED POWER ALLOCATION ALGORITHM

In this section, we propose a power allocation algorithm to
solve the problem (3), which is distributed among the base sta-
tions instead of being centralized over the entire network.The
key feature of this algorithm is that its step-size parameters
and convergence speed are robust to different channel fading
coefficients, which makes our algorithm quite convenient for
practical implementations. The details are provided in the
following subsections.

A. Single-layer Distributed Power Allocation Algorithm

To circumvent the aforementioned oscillation problem, we
make use of the idea in the proximal point method [18],
which is to add some quadratic terms to the objective function
and make it strictly concave in the primal variables. We
reformulate the original power allocation problem (3) as

max
pkn,ykn

N
∑

n=1

wn log2(1 +
∑

k∈R(n)

pknγkn)

−
N
∑

n=1

∑

k∈R(n)

cn
2
(pkn − ykn)

2 (4)

s.t.
∑

n∈U(k)

pkn ≤ Pk, k = 1, 2, ...,K, (5)

pkn ≥ 0, k = 1, 2, ...,K, n ∈ U(k),
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where we have introduced some quadratic auxiliary terms to
make the objective function strictly concave with respect to
the transmission power variables. Here,ykn is the auxiliary
variable corresponding topkn, cn > 0 is the parameter of
the quadratic terms. For notational convenience, let us use
the |R(n)| dimensional vector~pn to denote the transmission
power variables of the antennas serving thenth users, and
the

∑N
n=1 |R(n)| dimensional vector~p = [~pT1 , ~p

T
2 , · · · , ~p

T
N ]T

to denote all the transmission power variables. Similarly,we
define the|R(n)| dimensional vector~yn and the

∑N
n=1 |R(n)|

dimensional vector~y = [~yT1 , ~y
T
2 , · · · , ~y

T
N ]T as the auxiliary

variable vectors corresponding to~pn and ~p. It is known that
the optimum value of the objective function in (4) coincides
with that in (3) [18]. In particular, if~p∗ is the optimum solution
to (3), then~p = ~p∗, ~y = ~p∗ solves (4).

The standard proximal point method in general has a two-
layer nested optimization structure: the inner layer iterations
optimizing ~p for fixed ~y by a Lagrangian dual optimization
method, and the outer layer iterations optimizing the auxiliary
variable~y. Such a layered structure is not suitable for on-line
distributed implementations, because it is difficult to decide
in a distributed manner when the inner-layer iterations have
converged. In the following, we present a modified proximal
point method with a single-layer optimization structure, where
the outer-layer update of~y does not request that the inner-layer
dual updates have converged.

The Lagrangian of the problem (4) can be written as:

L(~p,~λ, ~y) =

N
∑

n=1

wn log2(1 +
∑

k∈R(n)

pknγkn)

−
K
∑

k=1

λk(
∑

n∈U(k)

pkn − Pk)

−
N
∑

n=1

∑

k∈R(n)

cn
2
(pkn − ykn)

2, (6)

where~λ = [λ1, λ2, · · · , λK ]T is the vector of dual variables
corresponding to the constraints in (5). Now we are able
to present our distributed power allocation algorithm as the
following:
Algorithm A: Single-layer Distributed Power Allocation
Algorithm
At the tth iteration,
Step 1: Dual variable update:

Let ~y = ~y(t) and ~λ = ~λ(t), maximizeL(~p,~λ, ~y) with
respect to~p:

~p(t) = argmax~p≥0L(~p,
~λ(t), ~y(t)). (7)

Update the dual variables by

λk(t+ 1) = [λk(t) + αk(
∑

n∈U(k)

pkn − Pk)]
+, (8)

whereαk is the step-size of the dual update.
Step 2: Auxiliary variable update:

Let ~y = ~y(t) and~λ = ~λ(t+1), maximizeL(~p,~λ, ~y) with
respect to~p:

~z(t) = argmax~p≥0L(~p,
~λ(t+ 1), ~y(t)). (9)

Update the auxiliary variables by

ykn(t+ 1) = ykn(t) + β(zkn(t)− ykn(t)), (10)

where0 < β ≤ 1 is the step-size for auxiliary variable
update.

The value ofβ can be chosen arbitrarily in(0, 1]. The
choices ofαk to ensure convergence ofAlgorithm A will be
discussed in Section III-C. We note that while the convergence
analysis in [19] apply for the degenerated case ofγkn = 1,
it is difficult to answer if practical channel coefficientsγkn
would have significant impact on the convergence behavior of
the algorithm. One major contribution of this paper is to show
that the step-size parametersαk to ensure convergence are
irrelevant of γkn (see Section III-C). Since the convergence
speed of iterative optimization algorithms is mainly affected
by the step-size, the convergence speed of our algorithm is
quite robust to different values ofγkn. We will also show
that step-sizes larger than those of [19] can be utilized in our
algorithm to achieve a faster convergence speed.

B. Distributed Implementation of Algorithm A

We proceed to explain how to implementAlgorithm A in
a distributed fashion. The Lagrangian maximization problems
(7) and (9) can be decomposed into many independent local
power allocation subproblems for each user. Specifically, the
terms of the Lagrangian (6) can be reassembled as

L(~p,~λ, ~y) =

N
∑

n=1



wn log2(1 +
∑

k∈R(n)

pknγkn)−
∑

k∈R(n)

λkpkn

−
∑

k∈R(n)

cn
2
(pkn − ykn)

2



+
K
∑

k=1

λkPk. (11)

Therefore, the Lagrangian maximization problems (7) and (9)
can be rewritten as

max
~p≥0

L(~p,~λ, ~yn) =

N
∑

n=1

max
~pn≥0

Bn(~pn, ~λ, ~yn) +

K
∑

k=1

λkPk, (12)

where

Bn(~pn, ~λ, ~yn) =wn log2(1 +
∑

k∈R(n)

pknγkn)−
∑

k∈R(n)

λkpkn

−
∑

k∈R(n)

cn
2
(pkn − ykn)

2. (13)

Therefore, problems (7) and (9) can be decomposed into a
series of local power allocation subproblems.

In practice, the resource allocation of a user is carried outat
a nearby base station. However, the antennas serving this user
may belong to several base stations, as illustrated in Fig. 1.
Therefore, neighboring base stations need to exchange infor-
mation during the iterations ofAlgorithm A . The distributed
implementation procedure ofAlgorithm A is described as
follows:

At the tth iteration of Algorithm A , the base station
assigned to thenth user first utilizes the channel quality
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information{γkn}k∈R(n) to solve a subproblem of (7), given
by

{pkn(t)}k∈R(n) = argmax~pn≥0Bn(~pn, ~λ(t), ~yn(t)), (14)

and forwards the power allocation solutions{pkn(t)}k∈R(n)

to nearby base stations controlling the antennask ∈ R(n).
Then, the base station controlling thekth antenna utilizes the
power allocation solutions{pkn(t)}n∈U(k) to update the dual
variableλk(t+1) according to (8), and sendsλk(t+1) to the
base station assigned to thenth user. Next, the base station
assigned to thenth user solves a subproblem of (9), i.e.,

{zkn(t)}k∈R(n) = argmax~pn≥0Bn(~pn, ~λ(t+ 1), ~yn(t)),
(15)

and utilizes the resultant solution{zkn(t)}k∈R(n) to update the
auxiliary variablesykn(t + 1) according to (10). Therefore,
Algorithm A can be implemented in a totally distributed
fashion, and it only requires local exchange of the power
allocation solutionpkn(t) and the dual variableλk(t + 1)
among neighboring base stations in each iteration. In addition,
when the channel power gainγkn changes, each user sends
the updated channel power gain to its assigned base station.

1) Solution to Local Power Allocation Subproblem(14):
The optimum solution to (14) satisfies the following Karush-
Kuhn-Tucker (KKT) conditions [24]:

∂Bn

∂pkn
=

wnγkn
ln 2(1 +

∑

k∈R(n) pknγkn)
− λk

− cn(pkn − ykn)

{

= 0, if pkn > 0;
≤ 0, if pkn = 0,

∀ k ∈ R(n).

(16)

Define
Ω(n) = {k ∈ R(n)|pkn > 0} (17)

as the set of antennas serving thenth user with positive power.
Hence,pkn = 0 for all k ∈ R(n)/Ω(n). If Ω(n) is known,
the KKT conditions in (16) indicate

wnγkn
ln 2(1+

∑

k∈Ω(n) pknγkn)
− λk − cn(pkn − ykn) = 0,

∀ k ∈ Ω(n). (18)

By conducting a weighted summation of the equations in (18),
we obtain an equation of

∑

k∈Ω(n) pknγkn, i.e.,
∑

k∈Ω(n) wnγ
2
kn

ln 2(1 +
∑

k∈Ω(n) pknγkn)
−
∑

k∈Ω(n)

γknλk − cn
∑

k∈Ω(n)

γknpkn

+ cn
∑

k∈Ω(n)

γknykn = 0. (19)

Let us definesn ,
∑

k∈Ω(n) pknγkn, then (19) can be
reformulated as

cns
2
n + (cn + µn)sn + µn − γn = 0, (20)

whereγn =
∑

k∈Ω(n) wnγ
2
kn/ ln 2, µn =

∑

k∈Ω(n) γkn(λk −
cnykn). The rootsn of the quadratic equation (20) is given by

sn =
1

2cn
[−(cn + µn) +

√

(cn + µn)2 − 4cn(µn − γn)].

(21)

Substituting (21) into (18), we obtain the optimum solutionto
the subproblem (14) as

pkn =

{

ykn + 1
cn

[

wnγkn

ln 2(1+sn) − λk

]

, if k ∈ Ω(n),

0, if k ∈ R(n)/Ω(n).
(22)

2) A Novel Procedure to DeriveΩ(n): Until now, the left
task is to determineΩ(n) in the optimum solution to (14). Let
us consider the unconstrained problem corresponding to (14),
i.e.,

~pn,0 = argmax
~pn

Bn(~pn, ~λ, ~yn). (23)

Our research indicates that ifpkn,0 in the solution to (23)
satisfiespkn,0 ≤ 0, then the solution to (14) must satisfypkn =
0 (i.e.,k /∈ Ω(n)). This statement is expressed in the following
lemma:

Lemma 1 Suppose thatg(x) is a differentiable concave
function on x ∈ [0,∞), and B(~p) is defined asB(~p) =
g(
∑

k pkγk) −
∑

k(akp
2
k + bkpk + ck) with ak > 0. If

{p∗k} = argmax~p≥0B(~p) and {pk,0} = argmax~pB(~p), then
p∗k = 0 for any k satisfyingpk,0 ≤ 0.

Proof: See Appendix A.
With Lemma 1, we are able to compute the optimum choice
of Ω(n). The detailed procedure is given as follows:
P-1. Initialization: SetΩ(n) = R(n).
P-2. Computesn andpkn according to (21) and (22), respec-

tively.
P-3. If pkn > 0 for all k ∈ Ω(n), output Ω(n) and exit;

otherwise, setΩ(n) = {k|pkn > 0, k ∈ R(n)} and return
to P-2.

Remark 1:Lemma 1 allows us to rule out all the elements
k with pkn ≤ 0 from Ω(n) in one iteration. Therefore, the
proposed procedure can converge much faster than the method
proposed in [19], [25], which is to eliminate only one element
k with the smallest negativepkn in each iteration. Our method
significantly reduces the number of iterations to computeΩ(n)
and does not require sorting procedure of{pkn}.

C. Convergence Analysis

In this subsection, we obtain the bounds on the step-sizes
αk to ensure convergence. First, we need some notations
and definitions to simplify the expressions of our theoretical
analysis. Let us consider the function

f(~p) =

{
∑N

n=1 wn log2(1 +
∑

k∈R(n) pknγkn), if pkn ≥ 0,

−∞, otherwise,
(24)

which has incorporated the power constraint~p ≥ 0 in the
definition. The analysis of this subsection applies to any
objective functionf(~p) in the form of

∑

n fn(
∑

k pknγkn)
with fn(·) being a concave function. With (24), the Lagrangian
(6) can be rewritten as

L̃(~p,~λ, ~y) = f(~p)−~pTET~λ−
1

2
(~p−~y)TV (~p−~y)+~λT ~R, (25)

whereE is aK×
∑N

j=1 |R(j)| dimensional matrix with binary
elements representing the relationship between the antennas



ACCEPTED BY IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,FEB. 2013 6

and their transmit power variables, i.e., if thekth antenna is
selected to serve thenth user, one of the|R(n)| elements on
thekth row and the(

∑n−1
j=1 |R(j)|+1)th to the(

∑n
j=1 |R(j)|)th

columns is 1; otherwise, all of these|R(n)| elements are 0.
Moreover, it satisfies

∑
N
j=1 |R(j)|
∑

i=1

Eki = |U(k)|, ∀ i,

K
∑

k=1

Eki = 1, ∀ k, (26)

because thekth antenna serves|U(k)| users and each trans-
mit power variable belongs to only one antenna.V is a
∑N

j=1 |R(j)| ×
∑N

j=1 |R(j)| diagonal matrix with diagonal
elementscn representing the parameters of the quadratic terms.
~R = [P1, P2, ..., PK ]T represents the vector of maximal
transmission power of the antennas. Therefore, the Lagrangian
maximization problems (7) and (9) can be expressed as

~p(t) = argmax~p L̃(~p,
~λ(t), ~y(t)), (27)

and
~z(t) = argmax~p L̃(~p,

~λ(t+ 1), ~y(t)), (28)

respectively. LetA be aK×K diagonal matrix with diagonal
elementsαk representing the step size for dual update. LetB
be a

∑N
j=1 |R(j)|×

∑N
j=1 |R(j)| diagonal matrix with diagonal

elementsβ representing the step size for auxiliary update.
Then, the dual update (8) and auxiliary update (9) can be
rephrased as

~λ(t+ 1) = [~λ(t) +A(E~p(t)− ~R)]+, (29)

and
~y(t+ 1) = ~y(t) +B(~z(t)− ~y(t)). (30)

We also need to define the stationary point ofAlgorithm
A.

Definition 1 A point (~y∗, ~λ∗) is a stationary point ofAlgo-
rithm A , if

~y∗ = argmax
~p

L̃(~p,~λ∗, ~y∗), (31)

E~y∗ − ~R ≤ 0, ~λ∗ ≥ 0, (32)
~λ∗ ⊗ (E~y∗ − ~R) = 0, (33)

where~x ⊗ ~y represents the Hadamard (elementwise) product
of two vectors~x and ~y with the same dimension.

Let us further consider a Lagrangian maximization problem
~p = argmax~p L̃(~p,~λ, ~y). The KKT conditions suggest that
there must exist a subgradient∇f(·) of f(·) satisfying

∇f(~p)− ET~λ− V (~p− ~y) = 0. (34)

Similarly, let (~y∗, ~λ∗) denote a stationary point ofAlgorithm
A, then we can get from (31) that

∇f(~y∗)− ET~λ∗ = 0. (35)

Now we are ready to introduce the main result of this paper
in the following theorem, i.e., the sufficient condition forthe
convergence ofAlgorithm A .

Theorem 1 If the objective functionf(~p) is in the form of
∑

n fn(
∑

k pknγkn) with fn(·) being a concave function, and
the step-sizeαk satisfies

αk ≤
2min{n∈U(k)} cn

3|U(k)|
, (36)

where|U(k)| is the number of users served by thekth antenna,
the proposed distributed power allocationAlgorithm A will
converge to a stationary point(~y∗, ~λ∗) of the algorithm, and
~p∗ = ~y∗ is an optimum solution.

The proof of Theorem 1 relies on the following key result:

Lemma 2 Let (~p1, ~λ1) and(~p2, ~λ2) be two maximizers of the
Lagrangian (25) for fixed auxiliary variable~y, i.e., ~p1 =

argmax
~p

L̃
(

~p, ~y, ~λ1

)

and ~p2 = argmax
~p

L̃
(

~p, ~y, ~λ2

)

, and

(~y∗, ~λ∗) is a stationary point ofAlgorithm A, then

[∇f (~p1)−∇f (~y∗)]T (~p2 − ~y∗)

≤
1

4

(

~λ2 − ~λ1

)T

EV −1ET
(

~λ2 − ~λ1

)

, (37)

where∇f(~p1) and∇f (~y∗) are defined in(34) and (35).

Proof: See Appendix B.
With Lemma 2, we are able to prove Theorem 1. The details
are relegated to Appendix C. Some remarks about Theorem 1
are provided as follows:

Remark 2:If we chooseαk =
2min{n∈U(k)} cn

3|U(k)| , then the
step-size parametersαk do not rely on the channel coeffi-
cientsγkn. On the contrary, they are only determined by the
number of users served by thekth antenna, i.e.,|U(k)|. Since
the convergence speed of iterative optimization algorithms is
mainly affected by the step-size, the convergence speed of our
algorithm is quite robust to different values ofγkn.

Remark 3:It is worthwhile to note that the channel fading
coefficientsγkn is involved in f(~p) on the left hand side of
(37), by not in the right hand side of (37). This is the key
reason that the bound on the step-sizeαk in Theorem 1 is
irrelevant toγkn.

Remark 4:In [19, Lemma 3], the authors proved that

[∇f(~p1)−∇f(~y∗)]T (~p2−~y∗) ≤
1

2
(~λ1−~λ2)

TEV −1ET (~λ1−~λ2),

(38)
for the degenerated case ofγkn = 1. One can see that (38)
is looser than the inequality (37) in Lemma 2. Moreover, in
[19, Proposition 4], the authors only proved the convergence
of their algorithm for the step-sizesαk =

min{n∈N} cn
2max{k∈K} |U(k)| ,

which are smaller than the step-sizes of our algorithm, i.e.,
αk =

2min{n∈U(k)} cn
3|U(k)| . Therefore, our algorithm can achieve a

faster speed of convergence than that of [19]. Some numerical
results will be provided in the next section to illustrate this.

Remark 5:Theorem 1 provides a sufficient condition for the
convergence ofAlgorithm A , for all the system circumstances.
According to our simulation experiences, there exist some
circumstances that larger step-sizes than those of (36) can
also obtain an optimum solution to problem (3). However, it
is difficult to prove that such weaker conditions ensure the



ACCEPTED BY IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,FEB. 2013 7

convergence ofAlgorithm A uniformly for all the system
circumstances.

Remark 6:If the channel gains change before convergence
as in the slow fading environment, the resultant power allo-
cation solution may not be optimum. However,Algorithm A
is able to track the changes of the slow fading environment
to some extent. For example, suppose that the channel gains
change after the algorithm has reached a near optimum solu-
tion. We can still use the dual variable and auxiliary variable of
the last iteration as the initial state of the subsequent iterations.
As long as the changes of channel gains are small, the dual
variable and auxiliary variable of the last iteration is notfar
from the optimum solution, and the number of iterations for
convergence is much smaller than using a random initial state.

IV. N UMERICAL SIMULATIONS

In this section, we present some simulation results to
demonstrate the efficiency of the proposed power allocation
algorithm. We consider a downlink DAS with 7 cells. Each cell
is equipped with 7 distributed antennas, including 1 antenna
locating at the center of the cell and 6 remote antennas
distributed near the boundary of the cell. Similar with Fig.1,
the locations of these 49 antennas form a hexagonal lattice.
The minimal distance between two neighboring antennas is
D = 1000 meters. The users are distributed uniformly in
the entire network area, with the extra constraint that the
distance from a user to a nearest antenna is no smaller than
10 meters. The wireless channel coefficients are composed by
three components: large-scale path loss, shadowing, and small-
scale Rayleigh fading. The path loss and shadowing are deter-
mined by the SCM model for Urban Macro environments [26].
Specifically, the path loss is given byPL = 34.5+35 log10(d),
whered is the distance in meters between the user and the
antenna. The shadowing component satisfies a log-normal
distribution with zero mean and a standard deviation of 8
dB. For downlink CoMP transmissions, each user is served by
|R(n)| = 3 antennas, which are selected based on large-scale
channel path loss. The maximal transmission power of each
antenna is assumed to be the same, i.e.,Pk = P . The data rate
weights are chosen aswn = 1. Two users are allowed to be
scheduled on the same channel, if they are served by different
antennas. The bandwidth of each receiver is 1MHz, and the
noise figure of each receiver is 5 dB. The conservative noise-
plus-interference powerσ2

n,peak is chosen to be 5 dB greater
than the noise power. Therefore, the noise-plus-interference
power at each receiver isσ2

n,peak = −174+60+5+5= −104

dBm. We utilizeC̃n in (2) to formulate the power allocation
problem (3). After the power allocation solution is derived,
we substitute it into the original rate functionCn in (1) to
compute the achievable data rate. All the simulation results
are obtained by averaging over 1000 system realizations.

We compare our proposed power allocation strategy for
problem (3) with the following 2 reference strategies: The first
strategy considers the optimal power allocation for downlink
CoMP transmissions withno interference, which provides a
performance upper bound of the practical scenarios with in-
terference. The second one is a simple equal power allocation
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Fig. 2. Simulation results of per-user throughput versus transmission power
P for N = 70.

(EPA) strategy, where each antenna allocates its transmission
power equally to serve its users.

Figure 2 illustrates the simulation results of per-user
throughput versus transmission powerP for different power
allocation strategies, where each cell has 10 users.

Figure 3 presents the simulation results of per-user through-
put versus the number of users per cellN/7, where the
transmission powerP = 20 dBm. One can observe that the
proposed power allocation strategy has a small gap from the
performance upper bound, especially when the transmission
powerP is small. However, the simple equal power allocation
scheme has a lower throughput. The performance of equal
power allocation is poor, because the wireless links from
different antennas to one user have quite different channel
quality. The base station should spend more power on the
strong wireless links, instead of using the same power for
different wireless links. Through careful user schedulingand
setting reasonable threshold of noise amplification, the pro-
posed algorithm can achieve performance approaching to that
of the ideal non-interference scenario. Therefore, the proposed
power allocation strategy plays an essential role to realize the
benefits of downlink CoMP transmissions in DAS.

Figure 4 illustrates the evolutions of the dual optimality gap
of the proposed power allocation algorithm and the distributed
optimization algorithm of [19] forN = 175 andP = 30dBm,
where the dual optimality gap is given byL(~p(t), ~λ(t), ~y(t))−
f(~y∗). The parameters of our distributed power allocation
algorithm are chosen ascn = 3, αk =

2min{n∈U(k)} cn

3|U(k)| , and
β = 1. The parameters of the algorithm of [19] are given
by cn = 3, αk =

min{n∈N} cn

2max{k∈K} |U(k)| (see Remark 4), and
β = 1. Since the step-sizes of our proposed power allocation
algorithm are larger than the reference algorithm in [19], our
algorithm exhibits a faster convergence speed. We note that
this is the convergence speed when the algorithm is cold
started. In practice, since the channel condition varies slowly,
the power allocation solution from the previous run of the
algorithm is an excellent initial state for warm-starting the
algorithm. By this, the algorithm generally converges much
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Fig. 3. Simulation results of per-user throughput versus the number of users
per cellN/7 for P = 20dBm.
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Fig. 4. Convergence of our proposed algorithm and the algorithm in [19]
for N = 175 andP = 25dBm.

faster.

V. CONCLUSIONS

We have proposed a distributed power allocation algorithm
for downlink CoMP transmissions in DAS. We considered
an approximate power allocation problem with a non-strictly
concave objective function, which makes traditional duality-
based optimization techniques not applicable for this problem.
We have resolved this non-strict concavity issue by adding
some quadratic terms to make the objective function strictly
concave, and developed a distributed algorithm to solve the
power allocation problem. A key merit of this algorithm
is that its convergence speed is robust to different values
of the channel coefficients. Its implementation only requires
local information exchange among neighboring base stations
serving the same user. The convergence and optimality of
this algorithm has been established rigorously. Our simulation
results have revealed that significant throughput improvements
can be realized by this power allocation algorithm.

APPENDIX A
PROOF OFLEMMA 1

Since g(x) is a concave function ofx, B(~p) =
g(
∑

k pkγk) −
∑

k(akp
2
k + bkpk + ck) is also concave with

respect to~p. The KKT conditions indicate

∂B

∂pk

∣

∣

∣

∣

pk=pk,0

= 0, (A.1)

and

∂B

∂pk

∣

∣

∣

∣

pk=p∗
k

{

= 0 if p∗k > 0,

≤ 0 if p∗k = 0.
(A.2)

By taking the weighted summation of the partial derivations
∂B
∂pk

, we obtain

∑

k

γk
ak

∂B

∂pk
= g′(

∑

k

pkγk)
∑

k

γ2
k

ak
−
∑

k

(2pkγk +
bkγk
ak

).

(A.3)
Let s =

∑

k pk,0γk, (A.1) and (A.3) imply

g′(s)
∑

k

γ2
k

ak
− 2s−

∑

k

bkγk
ak

= 0. (A.4)

For s∗ =
∑

k p
∗
kγk, (A.2) and (A.3) suggest

g′(s∗)
∑

k

γ2
k

ak
− 2s∗ −

∑

k

bkγk
ak

≤ 0. (A.5)

Comparing (A.4) and (A.5), we derive that

[g′(s)− g′(s∗)]
∑

k

γ2
k

ak
− 2(s− s∗) ≥ 0. (A.6)

If s− s∗ 6= 0, then

(s− s∗)

[

g′(s)− g′(s∗)

s− s∗

∑

k

γ2
k

ak
− 2

]

≥ 0. (A.7)

Since g(x) is a concave function,g
′(s)−g′(s∗)

s−s∗
< 0. Further,

by the positivity ofak, we haves− s∗ ≤ 0.
Suppose there exists somek such thatpk,0 ≤ 0 andp∗k > 0.

Then, (A.1) and (A.2) imply

∂B

∂pk

∣

∣

∣

∣

pk=pk,0

=
∂B

∂pk

∣

∣

∣

∣

pk=p∗
k

= 0, (A.8)

which further suggests

pk,0 =
1

2ak
[γkg

′(s)− bk] , p∗k =
1

2ak
[γkg

′(s∗)− bk] .

(A.9)
Since s − s∗ ≤ 0 and g(x) is a concave function, we have
g′(s) ≥ g′(s∗). Therefore,p∗k ≤ pk,0, which contradicts with
the assumption ofpk,0 ≤ 0 andp∗k > 0. Therefore, ifpk,0 ≤ 0,
p∗k = 0.
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APPENDIX B
PROOF OFLEMMA 2

We need to use the fact thatf(~p) is in the form of
∑

n fn(
∑

k pknγkn), wherefn(·) is a concave function. Equa-
tion (34) can be also written as

∇fn(
∑

k∈R(n)

pknγkn)γkn−λk−cn(pkn−ykn) = 0, ∀k ∈ R(n),

(B.1)

where∇fn(·) is the subgradient offn(·). By conducting a
weighted summation of the equations in (B.1), we obtain

∇fn(
∑

k∈R(n)

pknγkn)
∑

k∈R(n)

γ2
kn −

∑

k∈R(n)

λkγkn

− cn
∑

k∈R(n)

pknγkn + cn
∑

k∈R(n)

yknγkn = 0. (B.2)

Let us define(i = 1, 2)

an,i = ∇fn(
∑

k∈R(n)

pkn,iγkn)−∇fn(
∑

k∈R(n)

y∗knγkn),(B.3)

bn,i =
∑

k

pkn,iγkn −
∑

k

y∗knγkn. (B.4)

Then, (B.2) indicates

(an,1 − an,2)
∑

k∈R(n)

γ2
kn − cn(bn,1 − bn,2)

=
∑

k∈R(n)

(λk,1 − λk,2)γkn, k ∈ R(n). (B.5)

Then, the formula on the left hand side of (37) can be
written as

[∇f(~p1)−∇f(~y∗)]
T
(~p2 − ~y∗) =

∑

n

an,1bn,2. (B.6)

Sincefn(·) is a concave function, we obtain

an,1bn,1 ≤ 0, an,2bn,2 ≤ 0. (B.7)

Hence,− cnbn,1

an,1

∑
k∈R(n) γ

2
kn

≥ 0.
Then

an,1bn,2

(

1−
cnbn,1

an,1
∑

k∈R(n) γ
2
kn

)

=

(

an,1 −
cnbn,1

∑

k∈R(n) γ
2
kn

)

bn,2

=

[

an,2 −
cnbn,2

∑

k∈R(n) γ
2
kn

+

∑

k∈R(n)(λk,1 − λk,2)γkn
∑

k∈R(n) γ
2
kn

]

bn,2 (by (B.5))

≤
−cnb

2
n,2+bn,2

∑

k∈R(n)(λk,1−λk,2)γkn
∑

k∈R(n) γ
2
kn

(by an,2bn,2 ≤ 0)

≤

[

∑

k∈R(n)(λk,1 − λk,2)γkn

]2

4cn
∑

k∈R(n) γ
2
kn

(by completing the square)

≤
1

4cn

∑

k∈R(n)

(λk,1 − λk,2)
2 (by Cauchy-Schwarz). (B.8)

Therefore

an,1bn,2 ≤
1

4cn

∑

k∈R(n)

(λk,1 − λk,2)
2. (B.9)

The statement of Lemma 2 follows by substituting (B.9) into
(B.6).

APPENDIX C
PROOF OFTHEOREM 1

Let us define the norm of dual and auxiliary variables:

‖~λ‖A = ~λTA−1~λ, ‖~y‖V = ~yTV ~y, ‖~y‖BV = ~yTB−1V ~y.

Suppose that(~y∗, ~λ∗) is a stationary point ofAlgorithm A ,
we will show that the Lyapunov function

v(~y(t), ~λ(t)) = ‖~λ(t)− ~λ∗‖A + ‖~y(t)− ~y∗‖BV (C.1)

is non-increasing in iteration numbert.
In [19], it was shown that

v(~y(t+ 1), ~λ(t+ 1))− v(~y(t), ~λ(t))

≤− ‖~λ(t+ 1)− ~λ(t)‖A

+ (~λ(t+ 1)− ~λ(t))TEV −1ET (~λ(t+ 1)− ~λ(t))

− ‖~y(t)− ~p(t)‖V

+ 2[∇f(~z(t)) −∇f(~y∗)]T (~p(t)− ~y∗). (C.2)

Invoking Lemma 2, we have

[∇f(~z(t)) −∇f(~y∗)]T (~p(t)− ~y∗)

≤
1

4
(~λ(t+ 1)− ~λ(t))TEV −1ET (~λ(t+ 1)− ~λ(t)). (C.3)

Substituting (C.3) into (C.2), we obtain

v(~y(t+ 1), ~λ(t+ 1))− v(~y(t), ~λ(t))

≤− (~λ(t+ 1)− ~λ(t))TC(~λ(t+ 1)− ~λ(t))− ‖~y(t)− ~p(t)‖V ,
(C.4)

whereC = A−1 − 3
2EV −1ET . If C is non-negative definite,

then the Lyapunov functionv(~y(t), ~λ(t)) is non-increasing
in iteration numbert. Then, we can prove that(~y∗, ~λ∗) is
a stationary point ofAlgorithm A by using the standard
Lyapunov drift arguments in [19, Prop. 4]. According to the
standard duality theory, if(~y∗, ~λ∗) is a stationary point of
Algorithm A , then~p∗ = ~y∗ provides a solution to (3).

Finally, we need to show thatC is a non-negative definite
matrix, if (36) is true. Let~x be any vector ofK dimensions,
according to (26), we have

~xTA−1~x−
3

2
~xTEV −1ET~x

=

K
∑

k=1

a−1
k x2

k −
3

2

N
∑

n=1

∑

k∈R(n)

c−1
n x2

k

=

K
∑

k=1

a−1
k x2

k −
3

2

K
∑

k=1

∑

n∈U(k)

c−1
n x2

k

=

K
∑

k=1



a−1
k −

3

2

∑

n∈U(k)

c−1
n



x2
k. (C.5)
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By (36), we can obtain

ak ≤
2minn∈U(k) cn

3|U(k)|
. (C.6)

This further suggests

a−1
k ≥

3

2
|U(k)| max

n∈U(k)
c−1
n ≥

3

2

∑

n∈U(k)

c−1
n . (C.7)

Substituting (C.7) into (C.5), we obtain that~xTA−1~x −
3
2~x

TEV −1ET~x ≥ 0 for any~x. Therefore,C is a non-negative
definite matrix.
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