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Abstract—The problem of reducing the age-of-information
has been extensively studied in single-hop networks. In this
paper, we minimize the age-of-information in general multihop
networks. If the packet transmission times over the network links
are exponentially distributed, we prove that a preemptive Last
Generated First Served (LGFS) policy results in smaller age
processes at all nodes of the network (in a stochastic ordering
sense) than any other causal policy. In addition, for arbitrary
distributions of packet transmission times, the non-preemptive
LGFS policy is shown to minimize the age processes at all nodes
among all non-preemptive work-conserving policies (again in
a stochastic ordering sense). It is surprising that such simple
policies can achieve optimality of the joint distribution of the age
processes at all nodes even under arbitrary network topologies,
as well as arbitrary packet generation and arrival times. These
optimality results not only hold for the age processes, but also
for any non-decreasing functional of the age processes.

I. INTRODUCTION

There has been a growing interest in applications that
require real-time information updates, such as news, weather
reports, email notifications, stock quotes, social updates, mo-
bile ads, etc. The freshness of the information is also crucial in
other systems, e.g., monitoring systems that obtain information
from environmental sensors, wireless systems that need rapid
updates of channel state information, etc.

As a metric of data freshness, the age-of-information, or
simply age, was defined in [1]–[4]. At time t, if the freshest
update at the destination was generated at time U(t), the age
∆(t) is defined as ∆(t) = t − U(t). Hence, age is the time
elapsed since the freshest packet was generated.

There are a number of studies that have focused on reducing
the age in single-hop networks [4]–[11]. In [4]–[6], the update
generation rate was optimized to improve data freshness for
First-Come First-Served (FCFS) queueing systems. In [7], [8],
it was found that age can be improved by discarding old
packets waiting in the queue when a new sample arrives. In [9],
[10], the time-average age was characterized for Last-Come
First-Served (LCFS) systems with exponential and gamma
service time distributions, respectively. The work in [11]
analyzed the average peak age in the presence of errors.

Age-optimal generation of update packets was studied for
single-hop networks in [12]–[15]. A general class of non-
negative, non-decreasing age penalty functions was minimized
in [14], [15]. In [16], it was shown that for arbitrary packet
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Figure 1: Information updates in a multihop network.

generation times, arrival times, and queue buffer size, a
preemptive Last Generated First Served (LGFS) policy simul-
taneously optimizes the age, throughput, and delay in multi-
server single-hop networks with exponential service times. The
age-of-information was characterized in multihop networks
with special topologies in [17]. More recently, a real-time
sampling problem of the Wiener process is solved in [18]: If
the sampling times are independent of the observed Wiener
process, the optimal sampling problem in [18] reduces to
an age-of-information optimization problem; otherwise, the
optimal sampling policy can use knowledge of the Wiener
process to achieve better performance than age-of-information
optimization.

In this paper, we consider a general multihop network,
where the update packets are generated at an external source
and are then dispersed throughout the network via a gateway
node, as shown in Fig. 1. It is well known that delay-optimality
is notoriously difficult in multihop networks, except for some
special network settings (e.g., tandem networks) [19], [20].
This difficulty stems from the fact that the packet scheduling
decisions at each hop are influenced by the decisions on
other hops and vise versa. Somewhat to our surprise, it turns
out that age minimization has very different features from
delay minimization. In particular, we find that some simple
policies can achieve optimality of the joint distribution of
the age processes at all nodes, even under arbitrary network
topologies. The following summarizes our main contributions
in this paper:

• We consider a general multihop network where the update
packets do not necessarily arrive to the gateway node in
the order of their generation times. We prove that, if the
packet transmission times over the network links are ex-
ponentially distributed, then for arbitrary arrival process,
network topology, and buffer sizes, the preemptive LGFS
policy minimizes the age processes at all nodes in the



network among all causal policies in a stochastic ordering
sense (Theorem 1). In other words, the preemptive LGFS
policy minimizes any non-decreasing functional of the
age processes at all nodes in a stochastic ordering sense.
Note that this age penalty model is very general. Many
age penalty metrics studied in the literature, such as the
time-average age [4], [5], [7]–[10], [12], [13], average
peak age [6], [7], [10]–[12], and average age penalty
function [14], [15], are special cases of the general age
functional model that we consider in this paper.

• We then prove that, for arbitrary distributions of packet
transmission times, the non-preemptive LGFS policy
minimizes the age processes at all nodes among all
non-preemptive work-conserving policies in the sense
of stochastic ordering (Theorem 2). It is interesting to
note that age-optimality here can be achieved even if
the transmission time distribution differs from one link
to another, i.e., the transmission time distributions are
heterogeneous.

To the best of our knowledge, these are the first optimal
results on minimizing the age-of-information in multihop
networks.

II. MODEL AND FORMULATION

A. Notations and Definitions

For any random variable Z and an event A, let [Z|A] denote
a random variable with the conditional distribution of Z for
given A, and E[Z|A] denote the conditional expectation of Z
for given A.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two
vectors in Rn, then we denote x ≤ y if xi ≤ yi for i =
1, 2, . . . , n. A set U ⊆ Rn is called upper if y ∈ U whenever
y ≥ x and x ∈ U . We will need the following definitions:

Definition 1. Univariate Stochastic Ordering: [21] Let
X and Y be two random variables. Then, X is said to be
stochastically smaller than Y (denoted as X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 2. Multivariate Stochastic Ordering: [21] Let
X and Y be two random vectors. Then, X is said to be
stochastically smaller than Y (denoted as X ≤st Y), if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ Rn.

Definition 3. Stochastic Ordering of Stochastic Processes:
[21] Let {X(t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two
stochastic processes. Then, {X(t), t ∈ [0,∞)} is said to be
stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by
{X(t), t ∈ [0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices
of an integer n and t1 < t2 < . . . < tn in [0,∞), it holds that

(X(t1), X(t2), . . . , X(tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (1)

where the multivariate stochastic ordering in (1) was defined
in Definition 2.
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Figure 2: Sample path of the age process ∆j(t) at node j.

B. Network Model

We consider a general multihop network represented by a
directed graph G(V,L) where V is the set of nodes and L is
the set of links, as shown in Fig. 1. The number of nodes in
the network is |V| = N . The update packets are generated at
an external source, which is connected to the network through
a gateway node 0. The update packets are firstly forwarded to
node 0, from which they are dispersed throughout the network.
Let (i, j) ∈ L denote a link from node i to node j, where i is
the origin node and j is the destination node. Once a packet
arrives at node i, it is immediately available to all the outgoing
links from node i. Each link (i, j) has a queue of buffer size
Bij to store the incoming packets. If Bij is finite, the queue
buffer may overflow and some packets are dropped. The packet
transmission time on each link (i, j) is random.

C. Scheduling Policy

The system starts to operate at time t = 0. A sequence of
n update packets are generated at the external source, where
n can be an arbitrary finite or infinite number. The generation
time of the i-th packet is si, such that 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn.
We let π denote a scheduling policy that determines when to
send the packets on each link and in which order. Define aij
as the arrival time of packet i to node j. Then, si ≤ ai0 ≤
aij for all j = 1, . . . , N − 1. The packet generation times
(s1, s2, . . . , sn) and packet arrival times (a10, a20, . . . , an0)
at node 0 are arbitrary given, which are independent of the
scheduling policy. Note that the update packets may arrive at
node 0 out of the order of their generation times. For example,
packet i + 1 may arrive at node 0 earlier than packet i such
that si ≤ si+1 but ai0 ≥ a(i+1)0.

Let Π denote the set of all causal policies, in which
scheduling decisions are made based on the history and current
state of the system. We define several types of policies in Π:

A policy is said to be preemptive, if a link can switch to
send another packet at any time; the preempted packets will
be stored back into the queue if there is enough buffer space
and then sent out at a later time when the link is available
again. In contrast, in a non-preemptive policy, a link must
complete sending the current packet before starting to send
another packet. A policy is said to be work-conserving, if
each link is busy whenever there are packets waiting in the
queue feeding this link.

D. Age Performance Metric

Let Uj(t) = max{si : aij ≤ t} be the generation time
of the freshest packet arrived at node j before time t. The



age-of-information, or simply the age, at node j is defined as

∆j(t) = t− Uj(t). (2)

The initial state Uj(0
−) at time t = 0− is invariant of the

policy π ∈ Π for all j ∈ V . As shown in Fig. 2, the age
increases linearly with t but is reset to a smaller value with the
arrival of a fresher packet. The age vector of all the network
nodes is

∆(t) =(∆0(t),∆1(t), . . . ,∆N−1(t)). (3)

The age process of all the network nodes is given by

∆ = {∆(t), t ∈ [0,∞)}. (4)

In this paper, we introduce a general age penalty functional
g(∆) to represent the level of dissatisfaction for data staleness
at all the network nodes.

Definition 4. Age Penalty Functional: Let V be the set of
N -dimensional Lebesgue measurable functions, i.e.,

V = {f : [0,∞)N 7→ R such that f is Lebesgue measurable}.

A functional g : V 7→ R is said to be an age penalty functional
if g is non-decreasing in the following sense:

g(∆1) ≤ g(∆2), whenever ∆1(t) ≤∆2(t),∀t ∈ [0,∞). (5)

The age penalty functionals used in prior studies include:
• Time-average age [4], [5], [7]–[10], [12], [13]: The

time-average age of node j is defined as

g1(∆) =
1

T

∫ T

0

∆j(t)dt, (6)

• Average peak age [6], [7], [10]–[12]: The average peak
age of node j is defined as

g2(∆) =
1

K

K∑
k=1

Akj , (7)

where Akj denotes the k-th peak value of ∆j(t) since
time t = 0.

• Average age penalty function [14], [15]: The average age
penalty function of node j is

g3(∆) =
1

T

∫ T

0

h(∆j(t))dt, (8)

where h : [0,∞)→ [0,∞) can be any non-negative and
non-decreasing function. As pointed out in [15], a stair-
shape function h(∆) = b∆c can be used to characterize
the dissatisfaction of data staleness when the information
of interests is checked periodically, and an exponential
function h(∆) is appropriate for online learning and
control applications where the desire for data refreshing
grows quickly with respect to the age.

III. AGE-OPTIMALITY OF LGFS POLICIES

In this section, we present our age-optimality results for
general multihop networks. We prove our results in a stochastic
ordering sense.

A. Exponential Transmission Time Distributions
We study the age-optimal packet scheduling when the

packet transmission times are exponentially distributed, inde-
pendent across the links and i.i.d. across time. We consider a
LGFS scheduling principle in which the packet being trans-
mitted at each link is generated the latest (i.e., the freshest)
one among all packets in the queue; after transmission, the
link starts to send the next freshest packet in its queue. We
consider a preemptive LGFS (prmp-LGFS) policy at each link
(i, j) ∈ L.

Define a set of parameters I = {n, (si, ai0)ni=1,
G(V,L), (Bij , (i, j) ∈ L)}, where n is the total number of
packets, si is the generation time of packet i, ai0 is the
arrival time of packet i to node 0, G(V,L) is the network
graph, and Bij is the queue buffer size of link (i, j). Let
∆π = {∆π(t), t ∈ [0,∞)} be the age processes of all nodes
in the network under policy π. The age optimality of prmp-
LGFS policy is provided in the following theorem.

Theorem 1. If the packet transmission times are exponentially
distributed, independent across links and i.i.d. across time, then
for all I and π ∈ Π

[∆prmp-LGFS|I]≤st[∆π|I], (9)

or equivalently, for all I and non-decreasing functional g

E[g(∆prmp-LGFS)|I] = min
π∈Π

E[g(∆π)|I], (10)

provided the expectations in (10) exist.

Proof. See Appendix A.

Theorem 1 tells us that for arbitrary number n,
packet generation times (s1, s2, . . . , sn) and arrival times
(a10, a20, . . . , an0) at node 0, network topology G(V,L), and
buffer sizes (Bij , (i, j) ∈ L), the prmp-LGFS policy achieves
optimality of the joint distribution of the age processes at the
network nodes within the policy space Π. In addition, (10) tells
us that the prmp-LGFS policy minimizes any non-decreasing
age penalty functional g, including the time-average age (6),
average peak age (7), and average age penalty (8).

B. General Transmission Time Distributions
Now, we study the age-optimal packet scheduling for ar-

bitrary general packet transmission time distributions which
are independent across the links and i.i.d. across time. We
consider the set of non-preemptive work-conserving policies,
denoted by Πnpwc ⊂ Π. We propose a non-preemptive LGFS
(non-prmp-LGFS) policy. It is important to note that under
non-prmp-LGFS policy, the fresh packet replaces the oldest
packet in a link’s queue when the queue has a finite buffer
size and full. We next show that the non-preemptive LGFS
policy is age-optimal among the policies in Πnpwc.

Theorem 2. If the packet transmission times are independent
across the links and i.i.d. across time, then for all I and π ∈
Πnpwc

[∆non-prmp-LGFS|I]≤st[∆π|I], (11)

or equivalently, for all I and non-decreasing functional g

E[g(∆non-prmp-LGFS)|I] = min
π∈Πnpwc

E[g(∆π)|I], (12)
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Figure 3: A multihop network.
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Figure 4: Average peak age at node 2 versus packet
generation rate λ for exponential packet transmission times.

provided the expectations in (12) exist.

Proof. The proof of Theorem 2 is similar to that of Theorem
1. The difference is that preemption is not allowed here. See
our technical report for more details [22].

It is interesting to note from Theorem 2 that, age-optimality
can be achieved for arbitrary transmission time distributions,
even if the transmission time distribution differs from a link
to another.

IV. NUMERICAL RESULTS

We present some numerical results to illustrate the age
performance of different policies and validate the theoretical
results. We consider the network in Fig. 3. The inter-generation
times are i.i.d. Erlang-2 distribution with mean 1/λ. The time
difference between packet generation and arrival to node 0,
i.e., ai0 − si, is either 1 or 100, with equal probability. This
means that the update packets may arrive to node 0 out of
order of their generation time.

Figure 4 illustrates the average peak age at node 2 versus
the packet generation rate λ for the multihop network in Fig.
3. The packet transmission times are exponentially distributed
with mean 1 at links (0, 1) and (1, 2), and mean 0.5 at link
(0, 2). One can observe that the preemptive LGFS policy
achieves a smaller peak age at node 2 than the non-preemptive
LGFS policy, non-preemptive LCFS policy (was analyzed for
single hop network in [9]), and FCFS policy, where the buffer
sizes are either 1 or infinity. It is important to emphasize
that the peak age is minimized by preemptive LGFS policy
for out of order packet receptions at node 0, and general
network topology. This numerical result shows agreement with
Theorem 1.

Figure 5 plots the time-average age at node 3 versus the
packets generation rate λ for the multihop network in Fig. 3.
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Figure 5: Average age at node 3 versus packet generation
rate λ for general packet transmission time distributions.

The plotted policies are FCFS policy, non-preemptive LCFS,
and non-preemptive LGFS policy, where the buffer sizes are
either 1 or infinity. The packet transmission times at links
(0, 1) and (1, 3) follow a gamma distribution with mean 1. The
packet transmission times at links (0, 2), (1, 2), and (2, 3) are
distributed as the sum of a constant with value 0.5 and a value
drawn from an exponential distribution with mean 0.5. We find
that the non-preemptive LGFS policy achieves the best age
performance among all plotted policies. By comparing the age
performance of the non-preemptive LGFS and non-preemptive
LCFS policies, we observe that the LGFS scheduling principle
improves the age performance when the update packets arrive
to node 0 out of the order of their generation times. It
is important to note that the non-preemptive LGFS policy
minimizes the age among the non-preemptive work-conserving
policies even if the packet transmission time distributions
are heterogeneous across the links. We also observe that the
average age of FCFS policy with Bij =∞ blows up when the
traffic intensity is high. This is due to the increased congestion
in the network which leads to the delivery of stale packets.
Moreover, in case of the FCFS policy with Bij = 1, the
average age is finite at high traffic intensity, since the fresh
packet has a better opportunity to be delivered in a relatively
short period compared with FCFS policy with Bij =∞. This
numerical result agrees with Theorem 2.

V. CONCLUSION

In this paper, we made the first attempt to minimize the
age-of-information in general multihop networks. We showed
that for general system settings, including arbitrary network
topology, packet generation times, packet arrival times, and
queue buffer sizes, age-optimality can be achieved. These
optimality results not only hold for the age processes, but also
for any non-decreasing functional of the age processes.

APPENDIX A
PROOF OF THEOREM 1

Let us define the system state of a policy π:

Definition 5. At any time t, the system state of policy π
is specified by Uπ(t) = (U0,π(t), U2,π(t), . . . , UN−1,π(t)),
where Uj,π(t) is the generation time of the freshest packet
that arrived at node j by time t. Let {Uπ(t), t ∈ [0,∞)} be



the state process of policy π, which is assumed to be right-
continuous. For notational simplicity, let policy P represent
the preemptive LGFS policy.

The key step in the proof of Theorem 1 is the following
lemma, where we compare policy P with any work-conserving
policy π.

Lemma 3. Suppose that UP (0−) = Uπ(0−) for all work
conserving policies π, then for all I,

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I]. (13)

We use coupling and forward induction to prove Lemma
3. For any work-conserving policy π, suppose that stochastic
processes ŨP (t) and Ũπ(t) have the same distributions with
UP (t) and Uπ(t), respectively. The state processes ŨP (t)
and Ũπ(t) are coupled in the following manner: If a packet
is delivered from node i to node j at time t as ŨP (t) evolves
in policy P , then there exists a packet delivery from node i to
node j at time t as Ũπ(t) evolves in policy π. Such a coupling
is valid since the transmission time is exponentially distributed
and thus memoryless. Moreover, policy P and policy π
have identical packet generation times (s1, s2, . . . , sn) at the
external source and packet arrival times (a10, a20, . . . , an0) to
node 0. According to Theorem 6.B.30 in [21], if we can show

P[ŨP (t) ≥ Ũπ(t), t ∈ [0,∞)|I] = 1, (14)

then (13) is proven.
To ease the notational burden, we will omit the tildes in this

proof on the coupled versions and just use UP (t) and Uπ(t).
Next, we use the following lemmas to prove (14):

Lemma 4. Suppose that under policy P , U′P is obtained by
a packet delivery over the link (i, j) in the system whose state
is UP . Further, suppose that under policy π, U′π is obtained
by a packet delivery over the link (i, j) in the system whose
state is Uπ . If

UP ≥ Uπ, (15)

then,
U′P ≥ U′π. (16)

Proof. See our technical report [22].

Lemma 5. Suppose that under policy P , U′P is obtained by
the arrival of a new packet to node 0 in the system whose state
is UP . Further, suppose that under policy π, U′π is obtained
by the arrival of a new packet to node 0 in the system whose
state is Uπ . If

UP ≥ Uπ, (17)

then,
U′P ≥ U′π. (18)

Proof. See our technical report [22].

Proof of Lemma 3. For any sample path, we have that
UP (0−) = Uπ(0−). This, together with Lemma 4 and
Lemma 5, implies that

[UP (t)|I] ≥ [Uπ(t)|I],

holds for all t ∈ [0,∞). Hence, (14) holds which implies (13)
by Theorem 6.B.30 in [21]. This completes the proof.

Proof of Theorem 1. According to Lemma 3, we have

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π, which implies

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π.
Finally, transmission idling only postpones the delivery of

fresh packets. Therefore, the age under non-work-conserving
policies will be greater. As a result,

[{∆P (t), t ∈ [0,∞)}|I]≤st[{∆π(t), t ∈ [0,∞)}|I],

holds for all π ∈ Π. This completes the proof.
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