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Abstract—This paper considers reliable communications over a
multiple-input multiple-output (MIMO) Gaussian channel, where
the channel matrix is within a bounded channel uncertainty
region around a nominal channel matrix, i.e., an instance of
the compound MIMO Gaussian channel. We study the optimal
transmit covariance design to achieve the capacity of compound
MIMO Gaussian channels, where the channel uncertainty region
is characterized by the spectral norm. This design problem is a
challenging non-convex optimization problem. However, in this
paper, we reveal that this design problem has a hidden convexity
property, and hence it can be simplified as a convex optimization
problem. Towards this goal, we first prove that the optimal
transmit design is to diagonalize the nominal channel, and then
show that the duality gap between the capacity of the compound
MIMO Gaussian channel and the minimal channel capacity is
zero, which proves the conjecture of Loyka and Charalambous
(IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2048-2063, 2012). The
key tools for showing these results are a novel matrix determinant
inequality and some unitarily invariant properties.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques have
been prevalent to improve the spectral efficiencies of wireless
communications. The performance of MIMO communications
relies on access to the channel state information (CSI). When
the CSI is perfectly known at the transmitter, the optimal
power allocation is to diagonalize the channel [1]. However, in
practice, the transmitter often has some channel uncertainty,
which can result in a significant rate loss, if not taken into
consideration in the transmit covariance design.

There has been two categories of research towards reliable
communications over MIMO Gaussian channels with channel
uncertainty. The first category focuses on stochastic models
of channel uncertainty, where the transmitter has access to
only the statistics of the channel state, but not to its real-
ization. When the channel states change quickly over time,
the achievable rate of the channel is described by the ergodic
capacity, e.g., [1]-[4]. On the other hand, when the channel
states vary slowly, the achievable rate is characterized by the
outage capacity, which is the maximum data rate achievable
at any given state with probability no smaller than a specified
value, e.g., [1], [3]-[7].

The second category of studies were centered on deter-
ministic models of channel uncertainty, where the CSI is a
deterministic variable within a known set, but its actual value is
unknown to the transmitter. Such a model is called a compound
channel in information theory [8]. From a practical viewpoint,
it is the maximum data rate that can be reliably transmitted
over any channel from the given set. Characterizing the

capacity of the compound channel is considered to be an
important problem, and has received considerable attention.

In closed-loop MIMO systems, the transmitter is able to ob-
tain an inaccurate CSI, where the channel error may be caused
by estimation, interpolation, mobility, and/or feedback. In this
case, the channel is typically modelled as the sum of a known
nominal channel and an unknown channel uncertainty. This
additive channel uncertainty model has been widely utilized
both in information theoretical studies, e.g., [9]-[11], and in
the robust transceiver designs in signal processing literature,
e.g., [12]-[15]. In [16], the capacity of the compound Rician
MIMO Gaussian channel with additive channel uncertainty
was studied, where the analysis was restricted to a rank-
one nominal channel. Arbitrary rank nominal channel was
considered in [17], where the channel uncertainty is limited to
the singular value of the nominal channel with no uncertainty
on the singular vectors. The capacity of the compound MIMO
channel with a multiplicative channel uncertainty model was
obtained in [11], where the region of channel uncertainty is
described by spectral norm. In addition, the capacity of the
compound MIMO Gaussian channel with additive channel
uncertainty was derived in [11] for some special cases, such
as high signal-to-noise ratio (SNR) limit, low SNR limit, and
rank-two nominal channel.

In this paper, we design the optimal transmit covariance
to achieve the capacity of the compound MIMO Gaussian
channel with additive channel uncertainty. We consider the
case that the channel uncertainty is in a bounded region
around the nominal channel matrix, which is characterized
by the spectral norm. This design problem is a challenging
nonconvex optimization problem. However, we reveal that
the transmit covariance design problem possesses a hidden
convexity property, and hence it can be simplified as a convex
optimization problem. We first prove that the optimal transmit
covariance design is to diagonalize the nominal channel. Then,
we show that the duality gap between the capacity of the
compound MIMO Gaussian channel and the minimal channel
capacity is zero, which proves the conjecture of Loyka and
Charalambous [11]. The key tools for proving these results
are a novel matrix determinant inequality (Lemma 1) and
some unitarily invariant properties.

II. SYSTEM MODEL

A. Notation

The following notations are used. Boldface upper-case let-
ters denote matrices, boldface lower-case letters denote column



vectors, and standard lower case letters denote scalars. Let
C™>™ denote the set of m x n complex-valued matrices, and
C™ denote the set of n X n square complex-valued matrices.
The symbol S™ represents the set of n x n Hermitian matrices,
and S'} represents the set of n x n Hermitian positive semidef-
inite matrices. The operator diag(x1,xs,- -+ ,x,) denotes a
diagonal matrix with diagonal entries given by x1,za, -+ , Zy.
The matrix I,, denotes the n x n identity matrix. By > 0,
we mean that z; > 0 for all i. The operators (-), Tr(-) and
det(-) on matrices denote the Hermitian, trace and determinant
operations, respectively. Let o;(A) and A;(A) represent the
singular value and eigenvalue of A, respectively. The vector
o(A) £ (01(A), + ,Omin{m,n}(A)) contains the singular
values of A € C™ ", Let A(Q) = (M(Q), -+, \(Q))
denote a vector containing the eigenvalues of Q € S™. The
singular values and eigenvalues are listed in descending order.
We use ||| ||| and || - || to denote matrix norm and vector norm,
respectively.

B. Channel Model

Consider the complex-valued Gaussian vector channel:
y=Hzx +n, (1)

where y is a length r received vector, H is a r x ¢ channel
matrix, « is a length ¢ transmitted vector with zero mean and
covariance E{zx} = Q, and n is a complex Gaussian noise
vector with zero-mean and covariance E{nn’} =1,..

The MIMO channel H is an unknown deterministic matrix
satisfying

HeH, 2)
where H is the channel uncertainty region defined by
H S {H: ||[H-Holl> < e}, 3)

H, is the nominal channel, and ||| - ||| is the spectral norm
defined by

Il Allla & max
llz]2<1

[Az]2 = max{oi(A)} = [lo(A)[lo. (4

The spectral norm is a unitarily invariant matrix norm. A
unitarily invariant matrix norm satisfies [18, Section 7.4.16]

DAV = [[[A]| (5)

for all A € C™*"™ and for all unitary matrices U € C™ and
V € C". Therefore, the channel uncertainty A = H — Hj
is within an isotopical set. Note that the channel uncertainty
region (3) provides a conservative performance lower bound
for the regions defined by any other unitarily invariant matrix
norm, because

IIAll2 > (Il

holds for all matrix A and all unitarily invariant matrix norm
Il - Il [18, Corollary 5.6.35]. More discussions about the
relationship among different matrix norms are provided in
[19].

C. Power Constraint

We consider a general transmit power constraint

Qe Q, (6)

where Q C S, is a nonempty compact convex set satisfying
UQUY € 9, (7)

D(Q) € 2, ®)

for all Q € Q and all unitary matrix U € C¢, where D(Q)
is the diagonal matrix with the same diagonal elements with
Q. We say a set Q is unitarily invariant if it satisfies (7)
and (8). One can show that each unitarily invariant Q can be
equivalently expressed as

Q0={QeS} :AQ) e Bg,A(Q) >0}, )

where Bg is a nonempty compact convex set. Two familiar
examples of unitarily invariant power constraints are the sum
power constraint [1]

Q1 ={QeS|  Tr(Q) <t},
={Qes) ) AQ) <tAQ) >0},

i=1

(10)

and the maximum power constraint [14]
Q={Qes, : m?X{Ai(Q)} < P,,A(Q) >0}.

III. OPTIMAL TRANSMIT COVARIANCE DESIGN
A. Main Result
The capacity of the compound MIMO Gaussian channel
(1)-(3) and (6) is [20, Theorem 7.1]

L£max min  I(Q

H
QEQ |[H-Ho|l2<e )

Cmax min (1 1)

where I(Q,H) = I(x;y) is the mutual information of the
channel (1), i.e., [1]

1(Q,H) = logdet (I, + YHQH") ,

and ~y is the per-antenna SNR. Efficient solution of the max-
min problem (11) has been open for a long time (except
for some special cases [11], [14], [16]), because I(Q,H) is
nonconvex with respect to H.

Suppose that the singular value decomposition (SVD) of the
nominal channel Hy is given by

Hy = UpXZn, VY, (12)

where Ug € C" and V| € C! are unitary matrices. The first
key result of this paper is stated as follows:

Theorem 1. If Q and H are nonempty sets, H is defined in
(3), and Q satisfies the unitarily invariant properties (7) and

(8), then
Q" = VoALV{, H = U VT, (13)

is a solution to Problem (11), where Uy and V are defined
in (12), the diagonal matrices A}‘Q and Xj; are determined



by X§; = diag(o*) and Ag = diag(X*), such that (o, X*)
solves the problem

min{t,r}
Chiaxmin = max min log(1 + O‘?}\i , (14
max omin ; g(1+y07N), (14)

A>0 >0

with the convex set Bg defined in (9).

Proof: The proof of Theorem 1 relies on the unitarily
invariant properties (4), (5), (7), and (8), and a novel matrix
determinant inequality presented in Lemma 1 given below. The
proof details are provided in Appendix A. ]

The following lemma is an important technical contribution
of this paper, which plays a key role in proving Theorem 1.

Lemma 1 (Matrix Determinant Inequality). If 3 and A are
diagonal matrices with nonnegative diagonal entries, then one
solution to

min  det [I+(Z+A)A(S+A)Y]

(15)
lTAfl2<e

is a diagonal matrix.

The proof of Lemma 1 is provided in [19].

Theorem 1 implies that the optimal transmit covariance
of the MIMO Gaussian channel with worst case channel
uncertainty is to diagonalize the nominal channel Hy, if the
conditions in Theorem 1 are satisfied. Such a solution structure
was previously known only for some special cases, such as
high SNR limit (v > 1), low SNR limit (y < 1), low
rank nominal channels (rank(Hg) < 2) [11], [14], [16], while
Theorem 1 holds for general nominal channels and all SNR
values. By Theorem 1, the problem (11) reduces to (14) with
much fewer variables.

B. The Dual Problem

Now we consider the duality to the max-min problem (11):
the minimal capacity of the MIMO Gaussian channels, given
by the following min-max problem

Chni £ min max I(Q, H).
min max HGH QGQ (Q )

(16)
It is important to distinguish the capacity of the compound
channel Cax min and the minimal channel capacity Clyin max:
Chaxmin can be achieved for any channel H within H, by
using the same transmit covariance matrix Q.! Ciuinmax iS
the minimal capacity of the channels with H € H, evaluating
which requires knowledge of H at the transmitter to obtain
Q.2 We study the min-max problem (16) to gain more insight
into the max-min problem (11). We consider a more general
channel uncertainty region

HE{H:H - Hy|| <e}, (17

where ||| - ||| is a unitarily invariant matrix norm satisfying (5).

For any unitarily invariant matrix norm ||| - |||, there is a vector
norm || - || such that

ITAllF= llo(A)l (18)

I'The outer optimization of Q in (11) is done without knowledge of H.
2The inner optimization of Q in (16) is done with knowledge of H.

holds for all A € C™*" [21, Theorem 3.5.18]. For the special
case of spectral norm, the associated vector norm in (18) is
I l|oo» as given by (4). We have the following result:

Theorem 2. If Q and H are nonempty sets, H is defined in
(17), and Q satisfies the unitarily invariant properties (7) and
(8), then

Q' = VARV, H =U SV, (19)

is a solution to Problem (16), where Uy and V are defined
in (12), the diagonal matrices Aq and 3y are determined by
Yy = diag(o') and Aq = diag(X\') such that (o', X') solves
the problem

min{t,r}
Chmi = min max log(1 4 yo?\; 20
min max H070-0HS5 AGBQ Z g( ’Y 7 L)? ( )
>0 A>0 =1
with the vector norm || - || and the convex set Bg defined in

(18) and (9), respectively.

Proof: The proof of Theorem 2 relies on the unitarily
invariant properties (18), (5), (7), and (8), but not the matrix
determinant inequality in Lemma 1 for the spectral norm case.
Therefore, Theorem 2 holds for any unitarily invariant matrix
norm. The proof details are provided in Appendix B. [ ]

Note that a special case of Theorem 2 was obtained in
Theorem 3 of [11], where ||| - ||| is limited to the spectral norm
Il - lll2 and Q is the sum power constraint Q;.

C. Duality Gap is Zero

It is interesting to see that the max-min problem (11) and
the min-max problem (16) have similar solution structures,
as given in (13) and (19), and the difference is only in the
solutions to (14) and (20). Next, we study whether (14) and
(20) have a common solution for the spectral norm case.

It is known that the following weak duality relation is
always true: [20]

C(max min S C(min max- (21)
Moreover, equality holds in (21), i.e.,
CVmax min — Cvmin max (22)

if and only if (14) and (20) have a common solution [22,
Corollary 9.16]. It was conjectured in [11] that (22) holds
for the case that ||| - ||| = ||| - ||l and the power constraint is
Q = Q;. Here, using Theorem 1 and 2, we can simply prove
this conjecture:

Theorem 3. If the conditions of Theorem I are satisfied, then:
1) The strong duality relation (22) holds.

2) Problems (14) and (20) have a common solution
(o*,\*), where o* is given by
o} = max{og; — ¢, 0}, (23)
and X* is determined by the convex optimization problem
min{t,r} ,
Crnax min = {}l}z}; ; log(14+~ymax{og;—e,0}°)\;). (24)



Proof: 1) Problem (14) can be expressed as

min{t,r}
i log(1 2\ 25
jmax min Z} og(1+ 707 \) (295)
A>0 i=

s.t. max{og; —¢,0} <o, <og,;+e, Vi

By introducing z; £ log(o;), this problem can be reformulated
as the following convex optimization problem:

min{¢,r}
)I‘IéaBé min Z log[1 4+ ve“™* )]
A>0 1=1

s.t.  log(max{og; —¢€,0}) < z; <log(op; +¢), ¥ 1,

where the objective function is concave in A and convex in
a [23]. Similarly, (20) can be also reformulated as a convex
optimization problem. Then, (22) follows from von Neumann’s
minimax theorem [22, Theorem 9.D].

2) For any A, the inner minimization problem of (25) can be
separated into several subproblems, and the solution is given
by (23). Thus, Problem (25) reduces to (24). [ |

We note that the conjecture of [11] is a special case
of Theorem 3 where Q is restricted to be the sum power
constraint Q. By Theorem 1 and 3, we have shown that
the covariance design problem (11) is a convex optimization
problem in nature, if the channel uncertainty region H is
characterized by the spectral norm.

IV. CONCLUSION

In this paper, we have investigated the capacity of a com-
pound MIMO channel with an additive uncertainty of bounded
spectral norm, and derived the optimal transmit covariance
matrix in close-form. When the channel uncertainty region is
characterized by the spectral norm, we have revealed a hidden
convexity property in this problem. We have proved that
the optimal transmit covariance design is to diagonalize the
nominal channel matrix and there is zero duality gap between
the capacity of the compound MIMO Gaussian channel and
the minimal channel capacity.

APPENDIX A
PROOF OF THEOREM 1

First, we construct an upper bound of Cy,ax min by imposing
one extra constraint in the inner minimization problem:

Cmax min

(a) .
< max min
QeQ ||[H-Hol|2<e
H=U SV}

log det (IT + 'yHQHH)

®) .
= max min
QeQ |[H-Holll2<e

H=U,=uV{

logdet (I, + yZu V' QVoZH) ,

where Uy and V| are defined in (12), step (a) is due to
the additional constraint in the inner minimization problem,
and step (b) is due to H = UOEHV and det(I+ AB) =
det(T+ BA). Let us define Q £ VHQVO and use D(Q) to

denote the diagonal matrix that has the same diagonal elements
with Q, then we attain

Cmax min
<max min logdet (I + ’YEHQEH)
QEQ ||H-Ho||2<e "
H=U,=uV{
(@) :
= max min
Qe IH-Hol||2<e
H=UZugV}

log det (IT + VEHQEH)

© max min log det (IT + 'yEHQZH)
QeQ lIZu—2nll2<e

(c)
< max
Qeo lIZua—3ull2<¢
(d)
< max min
D(Q)eQ lIZEr—2nlll2<e
min{t,r}

© max  min Z log(1 4 yo2)\;),

AEBQ lo—0o0]|ec<e “
0 0’> =1

log det (IT + WEHD(Q)EH)

log det (Ir + WEHD(Q)2H>
(26)

where step (a) is due to (7), step (b) is due to |||Zg —
Yu,llz = [IH — Hpl||2 that is derived from H, =
UpXy, VI, H=U S VE and (5), step (c) is due to the
Hadamard inequality det(A) <[], Ay, step (d) is due to that
the feasible region D(Q) € Q is larger than the region Q € Q
according to (8), and step (e) is due to (4) and (9) with \;
representing the diagonal entries of D(Q).

Next, we build a lower bound of Clax min by considering
one extra constraint in the outer maximization problem:

Cmax min

(@)

> I(QH
Sogn aRfQn
Q=VoAqV{
= max min logdet |L.+~v(Ho+A Hy+A)X
Qe A< g [ v(Ho )Q(Hy ) ]
Q:VUAQV0
®

® max  min log det [Ir—i—’y(EHo—i—A)AQ(EHO—i—A)H},
AQ€Q|A|l2<e

27)

where A 2 Ul AV, step (a) is due the additional constraint
in the outer maximization, and step (b) is due to Hy =
UOEHOVO , Q= VOAQV0 , the definition A2 UHAVO,
and the unitarily invariant properties (5) and (7).

According to Lemma 1, the optimal Aisa diagonal matrix.
Hence, ¥y = Xpg, +A in (27) is also a diagonal matrix.
Substituting this into (27), we have

log det [I, + 72Xz AQ Y]

C(rnax min =~ IMax min
AQEQ |IZ=y—ZH,ll2<e

min{t,r}
= max min log(1 + 02»2)\i, 28
0 Z g(1+7y07A:),  (28)
A>0 o>0 =1

where the last step is due to (4) and (9) with o; representing
the diagonal entries of 3%;. Using (26) and (28), the optimal
objective value of (11) is given by (14).



Finally, we show (13) is an optimal solution to (11). For
this, we substitute the solution (13) into (11), i.e.,

max min log det (IT + VHQHH)
QeQ . IH-Hol||2<e
* *
Q=VoALV{ H=U =}, VEH
max min
QeQ lIH-Holl2<e
Q=VoAL VI H=U =z, VI

log det (I, + 725 AGSH)

(@)

= max min log det (L. +~v25 AL DX
AGERQIZHE—Zn,l2<e & (T THHAQ H)

min{t,r}

Z log(1 +yo?\;)

i=1

(b) .

= max min
AEBg ||lo—0¢l||x<e
A>0 o>0

= CVma.x min» (29)

where step (a) is due to (5) and (7), step (b) is due to (9) and
(18). By this, the theorem is proved. |

APPENDIX B
PROOF OF THEOREM 2

Consider the following upper bound of Ciin max:

C'minl'n'x< i 1 I’r H HH
=Sy maxlogdet (I +HQHY)
H=U,SuV{
(a) . H
= logdet (I.+vyHQH
R ey lesdet (b HQH)
H=UoZuV{ Q=ViAqV{
min{t,r}

—~

) . ,
= min max log(1 2.
llo—oo|<e AeBo E: g(1+y0; \i),
>0 A>0 =1

(30)

where step (a) is due to that the optimal power allocation
result is of the form Q = VoAqul by using (7), (8), and
the Hadamard inequality [1], step (b) is derived by using (5),
(7), (9), and (18) as in (29).

Then, we construct a lower bound of C\pin max:

max log det (I, +vyHQH")

C(rnin max — min
IH-Ho|[|<e QeQ

(a) .
= min  maxlogdet (I, +7YXxgAqQX
T <. B log det (I +7Zx Aq Tn)

®)

= min max logdet (I, +7XxgAQX
1 " < P2 0B det (I +72mAQn)
(o)
> min max logdet (I, +7XxgAQX
IS0 By <= Aqe Q. © (L +7EnAQEH)
@ min{t,r}
= min max Z log(14+~02);),  (31)

lo—ooll<e A€ Bgo
o>0 A>0

i=1
where step (a) is due to the optimal power allocation result
by using (7), (8), and the Hadamard inequality [1], step (D) is
due to (7), step (c) is due to the following result for unitarily

invariant matrix norm: [18, Theorem 7.4.51] [21, Eq. (3.5.30)]
1% — Za, | < [[H — Hol|,

with 3¢ and X, being the diagonal matrices in the SVDs
of H and Hy, and step (d) is due to (9) and (18). Then, (20)
follows from (30) and (31). (19) can be proved similar to (13).
By this, the theorem is proved. |
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